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Abstract – The magnitude optimum multiple integration 
(MOMI) tuning method for the PID controllers provides non-
oscillatory closed-loop response for a large class of process 
models. However, one must account for certain additional 
obstacles that have to be overcome to enable application of the 
method in practice. A few practical guidelines for performing 
multiple integrations (MI) from the process step response in 
practice, for re-tuning controller parameters, and for 
calculating the parameters of the two-degrees-of-freedom 
controller in order to improve disturbance rejection 
performance, are given. 
 
 

I. INTRODUCTION 
 
The Ziegler-Nichols tuning rules (Ziegler and Nichols, 
1942) were the very first tuning rules for PID controllers, 
and it is surprising that they are still widely used today. 
Their popularity lies in their simplicity and efficiency. This 
is why so many different tuning rules which are based on 
the same tuning procedures have subsequently been 
developed (Gorez, 1997). 

Following the work of Ziegler and Nichols, a variety of 
PID tuning methods have been developed. In general, these 
methods can be divided into two main groups: the direct 
and the indirect tuning methods (Åström et al., 1993; 
Gorez, 1997).  

The direct tuning methods do not require a process 
model, while the indirect methods calculate controller 
parameters from an identified model of the process. 

Recently, a new indirect tuning method which is based 
on an implicit process model was developed (Vrančić et 
al., 1996). The multiple integrations (MI) method (Rake, 
1987; Strejc, 1960) is used for the implicit process 
identification. However, the areas, calculated by using the 
multiple integrations from the open-loop process response, 
are directly used for the calculation of the controller 
parameters rather than for the process identification in 
order to meet the so-called magnitude optimum (MO) 
criterion (Åström and Hägglund, 1995; Hanus, 1975; 
Kessler, 1955). It was found out that in this way, by using 
the so-called magnitude optimum multiple integration 
(MOMI) method, the magnitude optimum criterion can be 
met for a very large set of process models (low-order, high-
order, highly non-minimum phase and/or processes with 
larger time delays) merely by measuring the process open-
loop step response without the need for additional “fine” 
tuning. The excellent tuning results were also achieved on 
several laboratory set-ups (Vrančić, 1997; Vrančić et al., 
1997; Vrančić et al., 1998b).  

However, one must account for certain additional 
obstacles that have to be overcome to enable application of 
the method in practice or to improve disturbance rejection 
for some certain processes. Such problems and 
corresponding solutions are closely studied in this paper.  

II. THE MOMI PID CONTROLLER TUNING METHOD 
 
A magnitude optimum multiple integration (MOMI) 

tuning method is based on a magnitude optimum (MO) 
frequency criterion which makes the frequency response 
from set-point to plant output as close to one as possible 
for low frequencies.  

If GCL(s) is the closed-loop transfer function from the 
set-point (w) to the process output (y), the controller is 
determined in such a way that 
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for as many n as possible (Åström and Hägglund, 1995).  
Such criterion results in a fast and non-oscillatory 

closed-loop time response for a large class of process 
models. 

In order for the MO method to be applied by using the 
following PID controller transfer function: 
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where u is the controller output and e is the controller error 
(e=w-y), and the following process transfer function: 

 ( ) ( )
( )

delsT

n
n

m
m

PRP e
sasasa
sbsbsbK

sU
sYsG −

++++
++++==

�

�

2
21

2
21

1
1  , (3) 

an explicit identification of the parameters KPR, a1, a2, a3, 
a4, a5, b1, b2, b3, b4, b5, and Tdel is required (Vrančić, 1997; 
Vrančić et al., 1997, Vrančić et al., 1998b). However, it is 
well known that accurately estimating such a number of 
parameters from real measurements could prove to be very 
problematic. 

However, this problem can be avoided by using the 
concept of multiple integrations (Rake, 1987; Strejc, 
1960). Following Rake, (1987), the following areas can be 
expressed by integrating the process open-loop step 
response (y(t)), after applying the step-change ∆U at the 
process input at t=0: 
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In order to meet quite demanding MO frequency 
criterion (1), the PID controller parameters can be 
calculated in the following way (Vrančić, 1997; Vrančić et 
al., 1997, Vrančić et al., 1998b): 
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Note that the PI controller parameters can be expressed 
from (7) and (8) simply by applying Td=0.  

Also note that Equations (6) to (8) hold when the filter 
time constant is fixed to Tf=0. However, choosing e.g. 
Tf=Td/10 still does not seriously affect the result of the 
calculation of the PID controller parameters (see Vrančić, 
1997, and Vrančić at al, 1998a, Vrančić et al., 1998b). 

 
III. GUIDELINES FOR PRACTICAL WORK 

 
The previous section showed that the implementation of 
the magnitude optimum multiple integrations (MOMI) 
method is very simple and straightforward. Only the 
process step response has to be measured, and some 
integrations (summations) to be performed in order to 
calculate areas A1 to A5 (A1 to A3 for PI controller). 
However, there are always some additional obstacles that 
have to be overcome in order to be able application of the 
method in practice. In this section, a few practical 
guidelines for deriving areas from the process step 
response will be given, as well as some modifications of 
the tuning procedure where the calculated controller gain is 
too high, or even negative, or where using a two-degrees-
of-freedom controller. 
 
A. Performing multiple integrations in practice 
 
Areas A1 to A5 can be calculated from the final values 
(t=∞) of signals y1(t) to y5(t) (4). Of course, in practice it is 
sufficient to wait until process step response settles. Fig. 1 
shows a typical process step response. At t=t1, a step-
change is applied to the process input. The process 
practically reaches the steady-state value at t=tint, so all the 
integrations in (5) can be made in the time interval t=[t1, 
tint]. 

 
 

Fig. 1. Process input and output during step-change experiment. 

However, relatively small errors in calculating the 
process steady-state gain (KPR) could lead to relatively 
large errors in the calculated areas. Such errors are 
especially noticeable when dealing with a process 
corrupted by noise. To improve the accuracy of the 
calculated KPR, the process step response should be 
averaged in time intervals t=[t0, t1] (before making step 
change) and t=[tint, tfin] (after the new steady-state was 
already been achieved) in the following way (see Fig. 1): 
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The process steady-state gain is then simply calculated 
as: 
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Note that y(0) in (5) should be replaced by ya0. 
How are the time instants t0 and tfin chosen? Numerous 

experiments on several process models and laboratory 
plants showed that good practical results are usually 
obtained when choosing: 
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The proposed integration procedure will now be 
illustrate using an example.  

The following process model was chosen: 
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A random noise, generated by the MATLAB function 
RANDN, and amplified by factor 0.05, was added to the 
process step response. The process output and input signals 
are shown in Fig. 2. The following time intervals were 
chosen: t0=0s, t1=10s, tint=50s, and tfin=60s. Values ya0 and 
ya1 were calculated by averaging process output signal 
during intervals t=[t0, t1] and t=[tint, tfin] (9) which resulted 
in ya0=-6.97⋅10-4, and ya1=0.996. Using (10), the calculated 
process gain was KPR=0.997. Functions y1(t) to y5(t) were 
calculated from (5), where integrations were performed in 
the time interval t=[t1, tint]. Areas A1 to A5 were calculated 
from y1(tint) to y5(tint). The following values of the areas and 
controller parameters were obtained: 
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The ideal values, obtained on the process without noise 
present, were the following: 
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It is clear that the obtained controller parameters (13) are 
close to the ideal ones (14).   
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Fig. 2. Process output (y) and controller output (u) during the open-loop 
experiment on the process with present noise. 

 
B. Re-tuning the controller parameters 
 

In some cases, the controller parameters, obtained by 
using the MOMI method, have to be re-tuned due to some 
practical reasons, namely that when tuning the PID 
controllers for a first-order or second-order process the 
controller gain is, in accordance with the MO tuning 
criterion, theoretically infinite. In practice (when there is 
process noise), the calculated controller gain can have a 
very high positive or negative value. In this case, the 
controller gain should be limited to some acceptable value, 
which depends on the controller and the process 
limitations.  

The remaining two controller parameters can now be 
calculated according to the limited (fixed) controller gain 
from (7) and (8): 
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When limiting the controller gain of the PI controller, of 
course, only (15) is used. Note that the proposed re-tuning 
of controller parameters can also be used in cases when 
slower and more robust controller should be designed (by 
decreasing gain K), or if a faster, but more oscillatory, 
response is required (by increasing gain K).  

The proposed modified tuning procedure will now be 
illustrated.  

The following process model was chosen: 
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The multiple integrations were performed on the process 
step response (y), and the following values of the process 
steady-state gain and areas were obtained from (4) and (5): 
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In the next step, the PI and PID controller parameters 
were calculated from (6) to (8): 
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By fixing the controller gain at K=10, and by applying 
(15) and (16), the following modified PID controller 
parameters were obtained: 

 sTsTK di 725.0  ,85.5  ,10 ===  . (23) 

Fig. 3 shows the closed-loop process responses when 
using the original PI controller and the modified PID 
controller parameters. It is clear that the closed-loop 
process response when using such modified PID controller 
is very good.  
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Fig. 3. Process output (y) and controller output (u) during the closed-loop 
experiment with: __ modified PID controller, -- PI controller. 

 



 

C. Modified tuning procedure for 2-degrees-of-freedom 
PI controllers 

 
It is frequently claimed that a drawback of the MO 

tuning approach is that the process poles are cancelled by 
the controller zeros. This may lead to poor attenuation of 
load disturbances if the cancelled poles are excited by 
disturbances, and if they are slow compared to the 
dominant closed-loop poles (Åström and Hägglund, 1995).  

Poorer disturbance rejection can be observed when 
controlling low-order processes. In such cases, disturbance 
rejection can be significantly improved by using a two-
degrees-of-freedom PI (PID) controller. However, the 
controller parameters have to be recalculated according to 
the changed controller structure. 

The controller parameters will be calculated for the 
simple two-degrees-of-freedom PI controller, shown in Fig. 
4 (see e.g. Åström and Hägglund, 1995). 

 

 
 

Fig. 4. A two-degrees-of-freedom PI controller. 
 
By following the same tuning objective as given in (1), 

the following PI controller parameters are derived as a 
function of parameter β: (see Vrančić (1997)): 
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From (24), the controller proportional gain K can be 
expressed in the following way: 
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if KPRA3-A1A2 < 0, and 
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if KPRA3-A1A2 > 0, where 
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In case when β=1, or KPR
2A3+A1

3-2KPRA1A2=0, the 
proportional gain is calculated from (7) by applying Td=0. 
The remaining question is how to choose the new 
parameter β? By using optimisation of the closed-loop 
responses on the reference and disturbance step changes, 

performed on several process models, the following 
expression was derived (Vrančić, 1997)1: 
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The proposed tuning procedure will now be illustrated. 
The following process model was chosen: 
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The following values of the process steady-state gain 
and areas were obtained: KPR=1, A1=45, A2=1821, and 
A3=7.29⋅104. Parameters of the classical PI controller 
(β=1), and the modified PI controller are calculated from 
(7), (8), (25), (26a), and (28): 
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Fig. 5 shows the closed-loop process responses when 
using the classical PI controller and the modified PI 
controller parameters. It is clear that disturbance rejection, 
when using the modified PI controller, is significantly 
improved.  
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Fig. 5. Process output (above) and controller output (below) during the 
closed-loop experiment with:  

__ classical PI controller, -- modified PI controller. 
 
 

IV. CONCLUSIONS 
 
The purpose of this paper was to present how to 

overcome some obstacles in order to be able to apply the 
MOMI tuning method in practice. Namely, tuning result 
can become quite sensitive to the process noise, the 
calculated controller gain can become quite high (positive 
or negative), and the MOMI tuning method could result in 
poor disturbance rejection. All of the counted problems 
were treated in the present paper. 

                                                           
1 Criteria used for optimisation will be given in the final 
version of the paper. 



 

It was shown that the tuning result can become relatively 
insensitive to the process corrupted by noise by properly 
choosing integration interval of the process step response. 

The calculated gain of the PID controller, when applying 
the MO criterion, could be too high for successful 
implementation in practice. It was shown that in this 
particular case the PID controller parameters can be simply 
re-tuned, according to arbitrary chosen controller gain, 
without the need for additional process identification stage. 

The MO technique may lead to poor attenuation of load 
disturbances. It was shown that disturbance rejection can 
be significantly improved by using a two-degrees-of-
freedom controller structure. 
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