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3. A Review of Some Existing AW (BT, CT) Algorithms 

In this section, some typical anti-windup algorithms will be described. As the solutions 
for bumpless and conditioned transfer are similar to those for anti-windup, the presented 
algorithms can be used for bumpless and conditioned transfer except that the limitation 
(LIM) should be replaced by a switch, as shown in Figures 2.12 and 2.18.  

 

 

3.1. AW Algorithms for PID Controllers 

3.1.1. Linear Feedback AW Algorithms 

In linear feedback anti-windup algorithms, feedback from the difference between u and 
ur is connected to the input of the integral term linearly (through a constant gain 1/Ka) 
(Figure 2.12). The linear feedback anti-windup algorithm is also known as “tracking or 
back calculation” technique [Åström and Rundqwist, 1989] [Hanus et al., 1987] 
[Rundqwist, 1990], proposed by [Fertik and Ross, 1967]. 

Among linear feedback anti-windup algorithms, the so-called observer approach, 
conditioning technique and incremental algorithm will be reviewed. 

 

 

3.1.1.1. Observer Approach 

This approach was first presented in [Åström and Wittenmark, 1984]. We review it now 
in the framework of PID. The PID controller described by the equation 2.3 can also be 
described by the following state-space equations: 

 Dx e=  (3.1) 
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where is Dx  the input of the integral term, yd is the output of D-term described by 
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The interpretation of the windup phenomenon is that the state of the controller does not 
correspond to the control signal being fed to the process [Åström and Rundqwist, 1989] 
[Hanus, 1989] [Morari, 1993] [Campo et al., ACC, 1989] [Rundqwist, 1990] [Zheng, 
1994]. To estimate correctly the state when ur≠u, an observer is introduced. The 
correction of the state(s) is proportional to the difference between u and ur through a 
gain L: 

 � ( )x e L u ue
r= + −  (3.5) 
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 u LIM ur = ( ) (3.7) 

This is the same as linear feedback anti-windup algorithm by taking Ka=1/L. The 
problem which still exists is how to choose L. Fig. 3.1. represents anti-windup observer 
approach solution. 
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Fig. 3.1. Observer AW approach 

 

 

3.1.1.2. Conditioning Technique 

This approach was first presented in [Hanus, 1980]. 

Equations (3.1) to (3.3) can be rewritten as: 

 �x e w y= = −  (3.8) 
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 u LIM ur = ( ) (3.10) 

To understand the conditioning technique, it is important to explain a concept of the 
“realisable reference” [Åström and Rundqwist, 1989] [Hanus, 1980] [Hanus 1989] 
[Hanus et al., 1987] [Hanus and Peng, 1992] [Henrotte, 1989] [Morari, 1993] [Campo et 
al., C&CE, 1989]. 

The realisable reference (wr) is such that when applied to the controller instead of the 
reference (w), it results in the control variable (u) which is equal to the process input (ur) 
and thus the limitation is not activated. 
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By above definition, (3.8) and (3.9) yields 

 Dx w yr= −  (3.11) 

 ( )u K
T

x K w y yr

i

r
d= + − −  (3.12) 

As wr is not available a priori, we have to use w to update u as (3.9). However, we can 
use wr (computed a posteriori) instead of w to update x in order to make controller state 
consistent: 

 Dx w yr= −  (3.13) 
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 u LIM ur = ( ) (3.15) 

thus, by subtracting (3.14) from (3.12), we obtain 

 w w u u
K

r
r

= + −  (3.16) 

When inserting (3.16) into (3.13) to (3.15), we get 

 �x w y u u
K

r

= − + −  (3.17) 
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 u LIM ur = ( ) (3.19) 
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This is a special case of linear feedback anti-windup algorithm with Ka=K (Figure 3.2). 
Some extensions of the conditioning technique are given in [Hanus and Peng, 1992] 
[Hanus and Peng, 1991] [Walgama et al. 1992] [Walgama and Sternby, 1990]. 

 

 

 
 

Fig 3.2. Anti-windup solution when using conditioning technique 

 

 

3.1.1.3. Incremental Algorithm 

The incremental algorithm is very often used to prevent windup [Åström and 
Rundqwist, 1989] [Hanus, 1989]. It is also a relatively simple method to be incorporated 
in a digital controller. Figure 3.3 shows a typical discrete-time implementation. Here 
u(k) is updated as 

 u k u k u kr( ) ( ) ( )= − +1 ∆  (3.20) 

The difference ∆u(k) is normally small (except at the instant of reference change), so u 
tracks ur very quickly. 
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Fig. 3.3. Incremental algorithm (discrete time with sampling time TS) 

 

 

The discrete time realisation of the incremental algorithm can be expressed in another 
way as in Fig. 3.4.  

 

 

 
 

Fig. 3.4. Discrete-time equivalent of the incremental algorithm 
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It can be transformed into its continuous-time equivalent (Fig. 2.12) by decreasing 
sampling time Ts: 
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Thus, the continuous-time realisation can be represented as a special case of the linear 
feedback anti-windup algorithm with Ka→0 (Figure 3.5). 

The difference between all presented linear anti-windup algorithms lays in different 
value of chosen Ka (strength of the feedback from limitation back to integrator). 
Observer approach does not define exact value of Ka, conditioning technique gives 
Ka=K and the result of the incremental algorithm is Ka→0 (small value of Ka). 

 

 

 
 

Fig 3.5. Continuous time equivalent of the incremental algorithm 

 

 

Here we have to point out that in all further experiments continuous-time equivalent of 
incremental algorithm is used (see Fig. 3.5). Value of Ka=0.01 is used except in cases 
where different value of Ka are specially given. Therefore, experiments show results of 
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continuous-time realisation of the incremental algorithm and in some cases results can 
diverge from original discrete-time realisation. 

 

 

3.1.2. Non-Linear Feedback AW Algorithms 

The representatives of this concept are conditional integration methods [Åström and 
Rundqwist, 1989] [Hansson et al. 1993] [Morari, 1993] [Rundqwist, 1990] [Shinskey, 
1988], which can be classified as follows [Hansson et al. 1993]: 

 

a) Stop integrating when the controller saturates 

b) Stop integrating when the control error is large 

c) Stop integrating when controller saturates and the control error has the same sign as 
the control signal 

d) Limit the integrator value 

e) Stop integrating and assign a predetermined or computed value to the integrator 
state when a specified condition is true. 

 

In the framework of this work we chose the case a) which can be represented by Fig. 3.6 
and equation (3.23). In the following text it will be referred to as conditional 
integration method. 

 

 

 
 

Fig. 3.6. Conditional integration AW method 
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The comparator C switches the input of the integral term according to u and ur. If the 
controller works in the linear region (ur=u), the input of the integral term (ei) is 
connected to e, otherwise (ur≠u), the comparator switches ei to 0 (the updating of the 
integral term stops). 

 
 

 

3.2. AW Algorithms for Generalised PID Controllers 

Fig. 3.7. and equation (3.24) represent the solution of anti-windup for generalised PID 
controllers. Note that the difference from linear anti-windup algorithms for PID 
controllers is that anti-windup feedback does not feed only integral term. This is due to 
the fact that D part also contains some kind of “memory” (filter 1+sTf). 

 

 

 
 

Fig. 3.7. AW method for generalised PID controller 
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Note that Ka1 and/or Ka2 can be dynamic transfer function(s). 

 

 

 

3.3. AW for Controllers With General Rational Transfer 
Function 

Fig. 3.8. and equation (3.25) represent the solution of anti-windup for controllers with 
general rational transfer function. To the scheme in Fig. 2.7. (section 2.2) we add an 
anti-windup feedback (transfer function N3(s)/D3(s)) from the limitation to controller 
output. 

 

 

 
 

Fig. 3.8. Anti-windup scheme for controllers with general rational transfer function 
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3.4. AW for State-Space Controllers 

Solutions for state-space controllers are generally covered by observer approach and 
conditioning technique (sections 3.1.1.1 and 3.1.1.2, where we made a derivation for 
PID controller). Originally, both methods describe a design of anti-windup for state-
space controllers. Fig. 3.9 shows the realisation of anti-windup algorithm for the state-
space controller, where matrix G represents an anti-windup feedback from limitation to 
controller states. 

 

 

 
 

Fig. 3.9. Anti-windup for state-space controllers 
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