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4. Notion of Realisable Reference 

The term realisable reference (wr) was first mentioned in chapter 3.1.1.2. In this chapter 
we will show how powerful tool the realisable reference is when comparing different 
anti-windup methods. Realisable reference is also useful when trying to understand 
windup and how to avoid it. We will show how to calculate the realisable reference for 
every mentioned controller and will also make some examples to illustrate the proposed 
anti-windup structures. 

 

 

4.1. Realisable Reference for PID Controllers 

4.1.1. Realisable Reference for AW Methods 

To see the difference between AW methods clearly, the realisable reference signal (wr) 
is introduced (see section 3.1.1.2). Let us consider to have such reference wr instead of 
w that resulting controller output u would be the same as realised control variable ur 
when using reference w. Such reference is called realisable reference (wr). 

To illustrate the above definition, we have used an example shown in Fig 4.2. Dashed 
line represents u and full line represents ur when using reference w (see Fig. 4.1).  Fig. 
4.3 shows u and ur when wr is applied to controller input. We can see u and ur become 
the same and equal to ur in Fig. 4.2. 

When using wr, ur would stay the same as when using w, so also the process output (y) 
would not change. The consequence of equal u and ur when using the reference wr is 
that we can remove the limitation LIM. Fig. 4.4 represents the equivalent of Fig 4.1 
when using wr instead of w. 

Note that the realisable reference (wr) can not be computed a priori, but only a 
posteriori. Therefore it is only a tool which helps us to understand different anti-windup 
techniques. 

As it was mentioned, ur and y in Fig 4.1 are the same as in Fig. 4.4, respectively. 
Moreover, Fig 4.4 does not include any implicit limitation. The limitation is hidden in 
the realisable reference wr. Because the second scheme has no limitation (it is linear), it 
can be supposed that y tracks wr instead of w. 
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Fig. 4.1. PID controller with anti-windup 
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Fig. 4.2. The reference w at controller input; 

__ Process input (ur), -- Controller output (u) 
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Fig. 4.3. The realisable reference wr at controller input; 

__ Process input (ur), -- Controller output (u) 

 

 

 
 

Fig. 4.4. The equivalent scheme of Fig. 4.3. from process’ viewpoint 
 

 

Originally, our goal is to make y to track w, but y actually tracks wr due to the input 
limitations. Thus, we would like to have such a realisable reference wr that it will be as 
close as possible to w. 

From the definition of the realisable reference (see Fig. 4.4), we have 
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During the limitation, ur is the same whatever anti-windup method is used. It is valid 
also for y if the initial conditions are the same. Hence, from equation 4.2 it can be seen 
that during limitation, wr is the same for all anti-windup (also for bumpless and 
conditioned transfer) methods (the same for whatever Ka). From the linear feedback 
anti-windup scheme (Fig. 4.1), we have: 
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Subtracting u (4.3) from ur (4.1), we can calculate wr as 
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Now, w-wr is expressed as a function of u-ur. Normally, Gw is a dynamic transfer 
function with one pole and zero. So wr will not become the same as w at the moment 
when the controller leaves the limitation (ur=u). We would like to have wr as close as 
possible to w. That can be done by tuning Ka. In the case Ka=K, which corresponds to 
the conditioning technique (see chapter 3.1.1.2), Gw becomes a static gain: 

 G
Kw = 1  (4.5) 

and we obtain 
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 w w u u
K

r
r

= + −  .  (4.6) 

Therefore at the instant when controller leaves the limitation (ur=u), wr becomes w.  

Another important conclusion can be made from the last statement. It means, process 
output (y) will follow the reference (w) at the instant when system comes out of the 
limitation. It also means system will actually feel no consequences related to the 
limitation after it leaves it. 

All other methods (Ka≠K) give such wr that will not become the same as w at the instant 
when system comes out of the limitation. It means, process (y) will not follow the 
reference (w) after system leaves the limitation. Consequently such anti-windup system 
feels the consequences related to the limitation also when it is no more present and 
therefore the effect of windup was not reduced totally. If Ka<K, during the limitation, 
the integrator is “braked” too much and the opposite is valid if Ka>K. 

Therefore, the suitable solution for anti-windup is to choose Ka=K. 

The non-linear AW method (conditional integration), if using PI controller, can be 
translated into a linear form by replacing (see chapter 3.1.2): 
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 (4.7) 

If the initial condition of the integral term is zero and we suppose only one (e.g. upper) 
limitation happens, we can calculate Ka. When reference changes, process goes toward 
limitation and input of the integral term becomes zero. From that instant on (till process 
is limited), a controller has only proportional part: 

 u Ke=  (4.8) 

During limitation, expressions (4.7) and (4.8) give 

 K u u
e

K u
ea

r r

= − = −  (4.9) 

what leads to  
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 0 < <K Ka  (4.10) 

We can expect that the response of conditional integration would lay between the 
incremental algorithm and conditioning technique during the limitation if the initial 
condition of the integral term would be zero and only one limitation happens. 

For PID controller, the situation is more complicated because of derivative term. If 
supposing the same constraints in calculating Ka (initial condition of the integral term is 
zero and limitation happens only once), we can see that during limitation u becomes: 

 u Ke yd= −  (4.11) 

Because ur is limited, it is absolutely smaller than u and can be calculated as 

 ( )u LIM u ur = = < ≤α α    ; 0 1  (4.12) 

When inserting (4.11) and (4.12) into (4.7), we obtain 

 ( )K u u
e

K y
ea

r
d= − = −






 −1 α  (4.13) 

During limitation if system fits expression 

 y Ked > −
−
α

α1
 (4.14) 

what is valid for all minimal phase and some non-minimal phase processes when 
process is limited (process input ur is constant or is constantly increasing). Than, if 
inserting (4.14) into (4.13), we have 

 0 < <K Ka  (4.15) 

If we take into account that during limitation u is positive, and inserting (4.11) into 
(4.13), we can get the expression which is valid for all processes and PID controllers if 
initial condition of the integral term is zero and only one limitation happens: 
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 Ka > 0  (4.16) 

 

 
 

Fig. 4.5. Linear representation of the non-linear scheme (Fig. 3.6) 

 
 

Hence, the response of the conditional integration will usually lay between the response 
of incremental algorithm and conditioning technique (4.15) if initial condition of the 
integral term is zero and one limitation happens. In general, Ka is variable with 
unpredicted value (see Fig. 4.5). 

To compare mentioned AW algorithms, we make a simulation with process 

 ( )( )G
s sPR =

+ +
1

1 8 1 4
 (4.17) 

and controller 

 K T s T s T si d f= = = =20 30 1 01, , , .       (4.18) 

The input is subjected to the following limits: 

 U Umax min,= =2 0  (4.19) 
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Fig. 4.6. Realisable reference (wr):  __ Conditioning technique, 

-- Without AW, -.- Incremental algorithm, ... Conditional integration 
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Fig. 4.7. Process output (y): __ Conditioning technique, 

-- Without AW, -.- Incremental algorithm, ... Conditional integration 

 

 
Figures 4.6 and 4.7 show the difference between the described anti-windup algorithms. 
The reference w goes from 0 to 1 at the time origin. It is clearly seen from Fig. 4.6 that 
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the conditioning technique gives a wr which is the closest to w. Fig. 4.7 demonstrates 
that process output (y) tracks wr instead of w. It is also seen that the response of the 
conditional integration lays between the responses obtained with incremental algorithm 
and with the conditioning technique. 

 

 

4.1.2. Realisable Reference for BT and CT Methods 

The realisable reference (wr) for bumpless transfer (BT) and conditioned transfer (CT) 
methods is defined in the same way as in section 4.1.1. So Figures 4.8 and 4.9 represent 
the equivalent schemes from the process viewpoint. Note that the realisable reference is 
defined for all time (before and after switching). It means that applying wr to controller 
instead of w causes the controller output u to be the same as ur.  

 

 

 

 

Fig. 4.8. Switching between manual and automatic mode; 
the reference w at controller input 

 
 
Conditioned transfer means that switching from manual to automatic control will cause 
the controller to make y to follow reference w with the same dynamics as for the closed-
loop step response, but y in fact tracks wr (Figure 4.9). After switching from manual to 
automatic mode (ur=u), we want wr=w. The only way to do that at the instant of 
switching is to use the conditioning technique (Ka=K) (4.6). So the best conditioned 
transfer is achieved. It also means that controller will not feel the consequences of 
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manual mode when it switches again to automatic mode. If using other anti-windup 
methods (Ka≠K), process (y) will not follow the reference w after switching to manual 
mode. System feels the consequences of manual mode and problems are not reduced 
totally. 

 

 

 
 

Fig. 4.9. Switching between manual and automatic mode; 
the realisable reference wr at controller input 

 

 

Now, we can see, the only anti-windup (conditioned transfer) method which assures no 
consequences of manual mode when switching back to automatic mode is that which 
has a static relation between w-wr and u-ur. This method is a conditioning technique, 
which gives the relation represented by equation 4.6. 

Therefore, derivation of conditioned transfer methods for other kind of controllers will 
not be realised separately. The solution is always such kind of anti-windup method, 
which assures a static relation between w-wr and u-ur. It means, when switching to 
automatic mode, ur becomes equal to u what results in wr is the same as w. Process (y) 
will follow the reference w from the instant of switching to automatic mode. 

Usually, conditioned transfer using the conditioning technique will produce a jump at 
the input of the process, because wr will jump to w when the switching occurs. This is 
normal, as a jump always occurs when the reference has a step change.  

In practice, as in theoretical work, it is often considered that the best solution is to use 
bumpless methods because of their effect of bump transfer (see chapter 2.4). The goal is 
often, because of our fear against bump, to reduce the change at process input to the 
minimum when switching from manual to automatic mode. In most cases that kind of 
solution is not optimal, because it produces inferior tracking performance (long settling 
time of the process). If we want that, when in automatic mode, process tracks reference 
w, let controller do that by using conditioning technique. 
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Fig. 4.10. Conditioned transfer with bumpless feature  

 

 

Yet if a jump is not tolerable, we can either switch from manual to automatic when u is 
close to um (by driving y close to w before switching) or add the rate limitation at the 
process input (Fig. 4.10). 

Incremental algorithm (Ka→0) will not produce a jump of ur (bump) at the time of 
switching (bumpless transfer), because u is equal to ur (section 3.1.1.3). However, the 
resulting tracking performance will not be as good as that produced by the conditioned 
transfer. 

To support the above arguments, we have made a simulation with process 

 
( )

G
sPR =

+
1

1 10 2 , (4.20) 

controller 1: 

 K T s T s T si d f= = = =20 40 8 116 0116, . , . , .       (4.21) 

and controller 2: 

 K T s T s T si d f= = = =10 40 1 01, , , .       (4.22) 
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At t=0s, we switch from controller 1 (with reference w1=0) to controller 2 (with 
reference w2=0.1) (see Fig. 4.11). At t=40s controller 1 is switched into closed-loop 
again. Figures 4.12 to 4.14 show the results obtained when switching between two 
different controllers with different references. 

 

 

 

 
Fig. 4.11. Switching between two controllers 
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Fig. 4.12. Process output (y);  
__ Conditioning technique, -- Incremental algorithm, -.- Without protection 
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Fig. 4.13. Process input (ur);  
__ Conditioning technique, -- Incremental algorithm, -.- Without protection 
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Fig. 4.14. Realisable reference (wr);  
__ Conditioning technique, -- Incremental algorithm, -.- Without protection 

 

 

We can see that the conditioning technique gives the best tracking performance. Figures 
4.15 and 4.16 show the results obtained when using a rate limitation at the process 
input. In this case, the conditioning technique produces no bump at the process input.  
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Fig. 4.15. Process output (y) for conditioned transfer with the rate limitation  
(vmax= 0.2, vmin= -0.2) (see Fig. 4.10) 
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Fig. 4.16. Process input (ur) for conditioned transfer with the rate limitation  
(vmax= 0.2, vmin= -0.2) (see Fig. 4.10) 

 
 
 

 

4.2. Realisable Reference for Generalised PID Controllers 

Generalised PID controller with anti-windup is expressed by equation (3.24) (see 
chapter 3.2) 
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From the definition of the realisable reference (wr) (see chapters 3.1.1.2 and 4.1.1), we 
can define Ur as 
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Subtracting (4.24) from (4.23), we obtain 
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Realisable reference can be expressed from (4.25) as 
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 (4.26) 

Anti-windup system should behave such that realisable reference will be the same as the 
actual reference (w) at the instant when process comes out of the limitation (see chapters 
4.1.1 and 4.1.2). That can happen only if GWr is a static gain. From (4.26) we can see 
that it happens in the case when 

 K K K w w u u
Ka a

r
r

1 2= = ⇒ = + −β
β

     (4.27) 

The graphical representation of expression (4.23) and solution (4.27) is presented in Fig. 
4.17. 

 
 

 
 

Fig. 4.17. The solution of AW for generalised PID controller. 
Not useful in digital implementation. 
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From Fig. 4.17 we can see that some kind of algebraic loop can exist through derivative 
(D) part and anti-windup feedback compensator. In analog controller this phenomenon 
does not exist, but can be problematic when making digital simulations in SIMULINK. 

However, there exist solution of Ka1 and Ka2 which does not cause algebraic loop: 
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 (4.28) 

This solution corresponds to conditioning technique. 

The graphical representation of expression (4.28) is presented in Fig 4.18. 

 

 

 
 

Fig. 4.18. The solution of AW for generalised PID controller (conditioning technique) 
useful for analog and digital implementation. 

 

 

To depict above solution, we made a simulation with process 
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 ( )( )( )G
s s sPR =

+ + +
1

1 10 1 4 1 2
 (4.29) 

and controller 

 K T s T s T si d f= = = = = =10 6 2 0 2 0 5 0 2, , , . , . , .          β γ  (4.30) 

The input was subjected to the following limits: 

 U U v s v smax min max min, , ,= = − = = −− −2 2 2 21 1       (4.31) 

The resulting system response is shown in Figures 4.19 to 4.21. 
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Fig. 4.19. Process output (y);  
__ Conditioning technique,  
-- Incremental algorithm,  

-.- No protection against windup,  
... Unlimited response  
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Fig. 4.20. Process input (ur);  
__ Conditioning technique,  
-- Incremental algorithm,  

-.- No protection against windup,  
... Unlimited response  
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Fig. 4.21. Realisable reference (wr);  
__ Conditioning technique,  
-- Incremental algorithm,  

-.- No protection against windup,  
... Unlimited response  
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4.3. Realisable Reference for Controllers With General Rational 
Transfer Function 

Controller with general rational transfer function with anti-windup is described by 
equation (3.25) in chapter 3.3. 

 ( )
( )

( )
( )

( )
( ) ( )U

N s
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W
N s
D s

Y
N s
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 (4.32) 

where N3(s)/D3(s) denote the anti-windup feedback transfer function. From the 
definition of realisable reference (see chapters 4.1.1 and 4.1.2), we can express Ur as 
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Fig. 4.22. Controller with general rational transfer function and AW 
 

 

Subtracting (4.33) from (4.32) we can express the realisable reference 
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When process comes out of the limitation, wr should be the same as w to have no 
windup effect. Therefore transfer function GWr should be a static gain: 

 ( )G s Kwr = *  (4.35) 

where K * represents the constant gain. Inserting (4.35) into (4.34) we get the following 
expression: 

 ( )
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( )K

D s
N s

D s N s
D s

* =
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1

3 3

3

 (4.36) 

From equation (4.36) it can be seen that there exist infinite number of solutions for 
D3(s) and N3(s). To simplify equation (4.36), we can choose 

 ( ) ( )D s D s3 1=  (4.37) 

Now, we can express N3(s) from equations (4.36) and (4.37) as 

 ( ) ( ) ( )N s K N s D s3 1 1= −*  (4.38) 

Inserting the solutions for D3(s) and N3(s) (equations (4.37) and (4.38)) into equation 
(4.32), we obtain the following controller with anti-windup compensator: 
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With rearranging equation (4.39), we derive the following representation: 
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The consequence of equations (4.39) and (4.40) is that there will be no windup for 
arbitrarily chosen K* (wr=w at the instant process comes out of the limitation). Even 
more, the system response will be independent of K*. The only difference will be in 
signal u, which depends of K*. Figures 4.23 and 4.24 show the equivalent realisation of 
AW described by equations (4.39) and (4.40). 

 

 

 
 

Fig. 4.23. The first representation of AW 
 

 

 
 

Fig. 4.24. The second representation of AW 
 

 

Note that in digital implementation, some oscillations could appear when using the anti-
windup solution described by (4.39) (see chapter 4.2). Better solution for digital 
implementation represents equation (4.40). Conditioning technique solves the problem 
of algebraic loop (equation (4.39) and Fig. 4.23) automatically by choosing: 
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with wr: 
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Note that conditioning technique is a special case of anti-windup algorithm where 
algebraic loop does not exist. The value of K* when using conditioning technique is: 
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Two examples have been made to depict chosen anti-windup solution. In the first, the 
process 

 ( )( )G
s sPR =

+ +
1

1 8 1 4
 (4.44) 

and controller 
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 (4.45) 

are used. The limitations of the system are  

 U Umax min. ,= =15 0   (4.46) 
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Two different K* have been used. Figures 4.25 to 4.28 show the results. Full line 
represents the solution when K*=0.2 is used and dashed line the solution for K*=10. We 
can see ur, wr and y are the same for both K*. The difference is only in controller output 
(u) signal. 
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Fig. 4.25. Process output (y); __ K*=0.2, -- K*=10, ... Unlimited response 
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Fig. 4.26. Controller output (u); __ K*=0.2, -- K*=10, ... Unlimited response 
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Fig. 4.27. Process input (ur); __ K*=0.2, -- K*=10, ... Unlimited response 
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Fig. 4.28. Realisable reference (wr); __ K*=0.2, -- K*=10 
 

 

For the second example we chose 

 
( )( )

G s
s sPR = +

+ +
1 0 2

1 4 1 2
.  (4.47) 
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and 

 

N s s
D s s
N N
D D

1
2

1
2

2 1

2 1

8 10 2
0 2

= + +

= +
=
=

.  (4.48) 

The limitations of the system were  

 U U v s v smax min max min. , , ,= = = = −− −15 0 2 21 1        (4.49) 

The resulting responses are shown in Figures 4.29 to 4.32. Full line represents the result 
when using K*=1 and dashed line for the case K*=0.1. Again we can see similar 
situation as before. Resulting process response and realisable reference are quite good. 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40
.........
.
..
.
.
.

.

.
.

.

.

.

.

.

.
.

.

.
.
.
..
..................................

.........................................................................................................................................................................................

Time [s]  
 

Fig. 4.29. Process output (y); __ K*=1, -- K*=0.1, ... Unlimited response 
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Fig. 4.30. Controller output (u); __ K*=1, -- K*=0.1, ... Unlimited response 
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Fig. 4.31. Process input (ur); __ K*=1, -- K*=0.1, ... Unlimited response 
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Fig. 4.32. Realisable reference (wr); __ K*=1, -- K*=0.1 
 

 

 

4.4. Realisable Reference for State-Space Controllers 

Consider the following state-space controller: 

 ( )�x Ax Bw E y G u u

u Cx Dw F y

r= + − + −

= + −
 (4.50) 

where A, B, C, D, E and F denote the matrices of controller given in the state-space 
form and G is an anti-windup feedback matrix from vectors ur and u. After Laplace 
transformation of (4.50) we get 

 
( ) ( )[ ]

( ) ( )[ ]
X sI A BW EY G U U

U C sI A BW EY G U U DW FY

r

r

= − − + −

= − − + − + −

−

−

1

1
 (4.51) 

From the definition of the realisable reference, it follows that when using wr instead of 
w, u becomes the same as ur. According to (4.51) it leads to 
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 ( ) [ ]U C sI A BW EY DW FYr r r= − − + −−1  (4.52) 

Subtracting u from ur (equations 4.51 and 4.52) gives 

 ( ) ( ) ( ) ( ) ( ) ( )C sI A G U U U U C sI A B W W D W Wr r r r− − + − = − − + −− −1 1  (4.53) 

Let us define 

 
∆

∆

U U U

W W W

r

r

= −

= −
 (4.54) 

Equation (4.53) becomes 

 ( ) ( )C sI A G U U C sI A B W D W− + = − +− −1 1∆ ∆ ∆ ∆  (4.55) 

To have no windup, we would like to have such ∆w that will become 0 at the instant 
when process comes out of the saturation (∆u = 0). To achieve that, we must have static 
relation between ∆w and ∆u. 

 ∆ ∆U K W= *  (4.56) 

where K* is a constant matrix. When inserting (4.56) into (4.55) we obtain 

 
( ) ( )

( ) ( )
C sI A GK W K W C sI A B W D W

C sI A GK K C sI A B D

− + = − + ⇒

− + = − +

− −

− −

1 1

1 1

* *

* *

∆ ∆ ∆ ∆
 (4.57) 

The solution of (4.57) is 

 K D* =  (4.58) 
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and 

 GD B=  (4.59) 

Equation (4.56) 

 ∆ ∆U D W=  (4.60) 

With respect to the number of controller inputs and outputs, we have three possibilities: 

 

a)  Number of controller inputs (m) is the same as number of controller outputs (l). D is 
square matrix and from (4.59) G becomes 

 G BD= −1  (4.61) 

 

b)  Number of controller inputs is smaller than number of controller outputs (m < l) 
what means that D is non-square matrix. If we don’t want to have windup in the 
system, equation (4.56) has to be fulfilled. But from (4.60) it is obvious that (l-m) 
elements of the vector ∆u become linearly dependant. In general, it is not the case in 
any controller. 

 The solution of such problem can be to add l-m additional inputs to the controller. 
These inputs (and consequently references for such inputs) should be the same as 
some of already existing inputs. Matrices D and B changes such that their additional 
columns are functions of existed columns. Each column in matrices B and D 
represents one input to the controller. If additional j-th input is connected to existing 
i-th input, then i-th and j-th columns of matrices B and D must change such that 

 
b old b new b
d old d new d

i i j

i i j

( ) ( )
( ) ( )

= +
= +

 (4.62) 

 where bi and di represent i-th column of matrices B and D respectively. In 
expression (4.62) we must carry out that new columns di and dj are not linearly 
dependent to the other columns in matrix D.  
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 Now, matrix D is square with linearly independent new columns and from (4.60) ∆u 
components become independent. So G can be calculated as in expression (4.61). 

 At the end of this chapter, there is an example which depict such controller design 
(restructuring). 

 

c)  Number of controller inputs is bigger than number of controller outputs (m > l). In 
this case number of process inputs is smaller than number of process outputs. 
Process is not controllable and therefore the question of anti-windup solution is 
irrelevant. The solution could be in reducing the number of process outputs which 
are controlled until m=l or in using some kind of least square solution. 

 

 

 
 

Fig. 4.33. State-space anti-windup scheme 
 

 

Realisable reference can be expressed from equations (4.52) and (4.55) as 

 ( )[ ] ( )[ ]( )W C sI A B D U C sI A E F Yr r= − + + − +− − −1 1 1  (4.63) 

 ( )[ ] ( )[ ]( )W W C sI A B D C sI A G I U Ur r= + − + − + −− − −1 1 1  (4.64) 

To depict above derivations, we have made some examples. In the first (results are 
shown in Figures 4.34 to 4.44) we have used the following multivariable process: 



 62

 
( )( ) ( )( )

( )( ) ( )
G

s s s s

s s s

PR =
+ + + +

+ + +



















1
1 1 2

0 2
1 4 1 8

0 2
1 2 1 8

1
1 2

.

.  (4.65) 

and controller: 

 

A

B

C

D

E B
F D

=










=










=
−

−










=
−

−










=
=

0 0
0 0

1 0
0 1

2 6042 10417
0 5208 5 2083

10 0016 0 0625
0125 50008

. .
. .

. .
. .

 (4.66) 

System limits were: 

 
U U v s v s

U U v s v s
max min max min

max min max min

; ; ;

; ; ;
1 1 1 1

2 2 2 2

2 2 2 2

2 2 5 5

1 1

1 1

= = − = = −

= = − = = −

− −

− −

        

      
 (4.67) 

Anti-windup feedback matrix G was calculated from the expression (4.61): 

 G BD= =










−1 01 0 00125
0 0025 0 2

. .
. .

 (4.68) 

The response of the unlimited system was shown in Figures 4.34 and 4.35. 
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Fig. 4.34. Unlimited response - Process outputs; __ y1, -- y2 
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Fig. 4.35. Unlimited response - Process inputs; __ ur
1 -- ur

2 

 

 

The response when using conditioning technique (feedback matrix G) is shown in 
Figures 4.36 to 4.38. 
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Fig. 4.36. Conditioning technique - Process outputs; __ y1, -- y2 
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Fig. 4.37. Conditioning technique - Process inputs; __ ur
1, -- ur
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Fig. 4.38. Conditioning technique - Realisable references; __ wr
1, -- wr
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The next Figures (4.39 to 4.41) show the experiment made with feedback matrix equal 
to 100*G, what can serve as an approximation of the incremental algorithm. 
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Fig. 4.39. Feedback AW matrix 100*G - Process outputs; __ y1, -- y2 
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Fig. 4.40. Feedback AW matrix 100*G - Process inputs; __ ur
1, -- ur

2 
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Fig. 4.41. Feedback AW matrix 100*G - Realisable references; __ wr
1, -- wr

2 

 

 

The last three Figures (4.42 to 4.44) show the system response if there is no anti-windup 
protection in the system. 
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Fig. 4.42. No AW protection - Process outputs; __ y1, -- y2 
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Fig. 4.43. No AW protection - Process inputs; __ ur
1, -- ur

2 
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Fig. 4.44. No AW protection - Realisable references; __ wr
1, -- wr

2 

 

 

From the results of experiment we can see the effectiveness of anti-windup design when 
using conditioning technique. 

The next example show the solution of anti-windup design if system matrix D is not 
square. As an example, let us have the following process: 

 ( )( ) ( )( )G
s s s sPR =

+ + + +










1
1 1 4

1
1 1 2

 (4.69) 

With two inputs and only one output. Therefore the controller has one input and two 
outputs. 

If two PI controllers are used, the controller system matrices become 
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A

B

C

K
T

K
T

D
K
K

E B
F D

i

i

=










=









=



















=










=
=

0 0
0 0

1
1

0

0

1

2

1

2

1

2

 (4.70) 

where K1, K2, Ti1 and Ti2 represent proportional gains of the first and second controller 
and integration time constants of the first and second controller, respectively. 

As we can see, the inverse of matrix D does not exist, so we have to use the procedure 
being already described in this chapter (equation 4.62) At fist, we have to add additional 
input to the controller. In our case, we doubled the first (and only one) input. So, the 
second controller input is in fact the same as first one. In present example, we changed 
matrices B and D (as derived in (4.62)). We chose: 

 B =










1 0
0 1

 (4.71) 

Note that addition of both columns is the same as the first column in original matrix B. 
With the similar procedure we can change matrix D, which is chosen as 

 D
K

K
=












1

2

0

0
 (4.72) 

To show the result of such design, we used: 

 K K T TP P i i1 2 1 2
5 5 4 2= = = =; ; ;       (4.73) 
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Matrix G became 

 G =










0 2 0
0 0 2
.

.
 (4.74) 

Process limitations were 

 U U U U v s v smax min max min max min; ; ; ; ;
1 1 2 2 2 2

2 0 4 0 2 21 1= = = = = = −− −           (4.75) 

where index 1 stands for the first process input and index 2 for the second process input. 
In the next Figures we will see the result of simulations when both controller references 
go from 0 to 1 at time origin. 

Figures 4.45 and 4.46 show the unlimited response of the mentioned example: 
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Fig. 4.45. Unlimited response - Process output (y) 
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Fig. 4.46. Unlimited response - Process inputs; __ ur
1, -- ur

2 

 

 

Figures 4.47 to 4.49 show results if the system is limited and conditioning technique is 
used. 
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Fig. 4.47. Conditioning technique - Process output (y) 
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Fig. 4.48. Conditioning technique - Process inputs; __ ur
1, -- ur

2 
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Fig. 4.49. Conditioning technique - Realisable references; __ wr
1, -- wr

2 

 

 

The next response is obtained if the feedback anti-windup matrix 10*G (Figures 4.50 to 
4.52) is used. It can serve as an approximation of the incremental algorithm. 
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Fig. 4.50. Feedback matrix 10*G - Process output (y) 
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Fig. 4.51. Feedback matrix 10*G - Process inputs; __ ur
1, -- ur
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Fig. 4.52. Feedback matrix 10*G - Realisable references; __ wr
1, -- wr
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And finally, there is a limited system response if no anti-windup technique is used. 
From figures 4.53 to 4.55 we can see that effect of windup is quite strong. 
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Fig. 4.53. No AW protection - Process output (y) 
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Fig. 4.54. No AW protection - Process inputs; __ ur
1, -- ur

2 
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Fig. 4.55. No AW protection - Realisable references; __ wr
1, -- wr
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Simulation results show that conditioning technique gives superiour system response. 

The next example is based on the same process as in the previous case (equations (4.69), 
(4.73) and (4.75)). The difference is only in the way how to obtain matrices B and D. 
From equation 4.62, we can see that many possible solutions exist. Here we used the 
following values of matrices B and D: 
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 B =










0 6 0 4
0 4 0 6
. .
. .

 (4.76) 

 D
K K
K K

=










0 6 0 4
0 4 0 6

1 1

2 2

. .

. .
 (4.77) 

Note that matrix G did not change from the previous example (4.74). 

The results of such system is shown in Figures 4.56 to 4.66. Unlimited response of the 
system is shown in Figures 4.56 and 4.57. 
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Fig. 4.56. Unlimited response - Process output (y) 
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Fig. 4.57. Unlimited response - Process inputs; __ ur
1, -- ur

2 

 

 

The limited response when using conditioning technique is shown in Figures 4.58 to 
4.60. 
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Fig. 4.58. Conditioning technique - Process output (y) 
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Fig. 4.59. Conditioning technique - Process inputs; __ ur
1, -- ur

2 
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Fig. 4.60. Conditioning technique - Realisable references; __ wr
1, -- wr

2 

 

 

Figures 4.61 to 4.63 show limited response if 10*G anti-windup feedback matrix is 
used. 
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Fig. 4.61. Feedback AW matrix 10*G - Process output (y) 
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Fig. 4.62. Feedback AW matrix 10*G - Process inputs; __ ur
1, -- ur
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Fig. 4.63. Feedback AW matrix 10*G - Realisable references; __ wr
1, -- wr

2 

 

 

And finally the limited response, when using no anti-windup protection, is shown in 
Figures 4.64 to 4.66. 
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Fig. 4.64. No AW protection - Process output (y) 
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Fig. 4.65. No AW protection - Process inputs; __ ur
1, -- ur

2 
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Fig. 4.66. No AW protection - Realisable references; __ wr
1, -- wr

2 

 

 

We can see, the process response did not change from previous case. The difference lays 
only in realisable references. Moreover, the sum of both realisable references (wr

1+wr
2) 

is equivalent in both cases. 
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