University of Ljubljana

J. Stefan Institute, Ljubljana, Slovenia

IJS Delovno porocilo
Report DP-7054

AMPLITUDE AND PHASE MARGIN DETECTION WITH ON-
LINE PID CONTROLLER

Damir Vranci¢
. *
Youbin Peng

August, 1994

"Department of Control Engineering
Free University of Brussels
Belgium

Report

Table of Contents

1. INErOAUCTION cuueeeecnneeeinnieinieesinnecssnnecsssnecssnnesssnessssnessssesssssesssssesssssessssssssssssssssasssssesssssssssssnssss 2

2. TuNING METROMAS ..cuuverriiiivrnniicsissnnricssssnniecssssssiesssssssesssans 7
2.1 DIT€Ct MELhOM ...ttt st 7
2.2 Successive Chan@e Of Ti....cccuiiiciiiciieeiie et 10
2.3 Correlation compensation MEthod...........cccvieiiiieiiiieiiiecee e 12

3. Detection of Nyquist curve by relay eXcCitationcooceeeccccseerccsssnnrecsssnrecssssssecssnssscsans 16
3.1 Amplitude and phase COMPULALIONcccuvieriiiieiiieeiiee et e e 16
B2 EITOTS ..ttt ettt et e et e et e ettt e e bt e e et e et eeebaeeeneee s 19

4. ReEFCICIICES..cuuueeiineriineecsnenisniessnnecssneecsssnecsssnessssnesssnesssssesssssessssesssssesssssessssssssssssssssssssssasssnes 21

5. APPENAIX cocieuunniiiiiisnricssssnnicsssnsisssesss 22

Report

1. Introduction

The goal of this report was to find such controller parameters that amplitude margin (Ap,) and
phase margin (0n,) of the controlled system will be as desired so that, if process have transfer
function Gp(s), we want to find such controller G¢(s) to reach desired points A and B on the
Nyquist curve in Fig. 1.

>
»

Re

A\

Gp(jo)G(jo)

Gp(jo)

Fig. 1. Nyquist plot of the process (Gp(s)) and process with a controller (Gp(s)Gc(s))

A -
162 [-]
0 Y
10 0dB A,
A
107 | 1
10-4 I I
10° 10" 10’ 10’
0 ¢ [°]
100 F . 1
. O
-200 - -180° } 1
-300 L
10° 10" 10’ 10’

Fig. 2. Bode plot of the process with a controller

Report

Full line (see Fig. 1) represents process’ Nyquist curve and dashed line represents correction
of the curve made by controller. Fig. 2 shows representation of the amplitude and phase
margin in Bode plot.

Points A and B (see fig. 1) can be detected by many ways. One of the most practical way to do
that is to use the relay feedback method [1]. In this method, relay is connected in closed-loop
with a process as shown in Fig. 3.

Relay

Offset

u Yy
ﬁé—' Process

Controller [—

Y

Fig. 3. Relay feedback method

Characteristics of the used relay is as follows:

Y

Fig. 4. Relay characteristics

where € represents hysteresis of the relay and d is an output value. Describing function of such
relay is represented in Fig. 5.

" N(a) e

A

Fig. 5. Describing function of the relay

Report

where -1/N(a) is

N(a):_ﬁ B _l_ M

The system in Fig. 3 will oscillate at the point where Gp(j®) intersects the relay describing
function. To detect point A (see Fig. 1), relay without hysteresis (¢=0) should be used. In that
case, imaginary part in (1) will be 0 and Gp(j®) and relay describing function will intersect on
real axis as shown in Fig. 6.

Im
-1/N(a) p Re

Y

Gi(jo)
Fig. 6. Detection of the amplitude margin

P is an intersection point and it represents the point at which system described in Fig. 3
oscillates. With detected point P we can calculate amplitude margin as shown in Fig. 1.

To detect phase margin, we have to change hysteresis of used relay such that describing
function will intersect desired phase margin (see Fig. 7).

\J

-1/N(a)

-sin(¢,,)

Fig. 7. Detection of the phase margin

Report

From (1) and Fig. 7, we can calculate €:

£= ﬂsin 9, (2)
/4

If process phase margin is bigger than desired, Gp(jw) and describing function will intersect at
point D; and if process phase margin is smaller than desired, intersection point would be D,
(see Fig. 8).

>
»

Re

/
/

N
D, B ,’D1
ING) / /\,T\
|
Gp,(jw) :
Gy, (jo)

Fig. 8. System with too small phase margin, -- system with too big phase margin

From intersection point position we can calculate controller parameters to achieve desired
amplitude or phase margin. Then we can change the position of the switch in Fig. 3 from A to
B and push the controller into closed-loop configuration. If our goal is to satisfy amplitude
and phase margin as well, we have to detect more points on the Nyquist curve, usually by
changing relay hysteresis or adding some additional function blocks in line with relay [2, 3].

The idea, presented here, is to use modified relay feedback method as shown in Fig. 9.

By this method, controller is always connected in line with the process. It solves some
problems related with classical relay feedback method:

e We doesn’t have to add offset signal at the process input to achieve desired set-point (see
Fig. 3)

e In classical method, if the process is low-order, we have to use some additional blocks (like
integrator [3]) in line with tested process to achieve oscillation, while in new scheme the
controller already does it.

Report

e In classical method we can’t take into account some controller specialities like input filter
(analog or/and digital), delayed output, sampling time, ... or if we can do so, the
computation would be too complex. Usually fine tuning is required afterwards. In
presented method, the controller is all the time in line with a process, so when switching
from A to B (see Fig. 9), no fine tuning is required.

Relay

Controller Process >

Fig. 9. Modified scheme of the relay tuning method

Report

2. Tuning methods

Here some tuning methods to achieve amplitude and phase margin will be shown. To simplify
presentation, we will use PI controller. PID controller can be used as well with some
modifications [1, 2, 3]. Actual amplitude and phase margin will be detected as described in
previous section (Fig. 6 and 7). Supported simulations are simplified in the way we calculated
intersection points from Nyquist curve of Gp(jw)Gc(jw) obtained in program package
MATLAB. Next section (3.) describes how to use tuning methods with a relay.

Basic idea of tuning PI controller is to satisfy both, amplitude and phase margin (A, and ¢,
respectively) by iteratively changing K, and T;. Three different methods of tuning are
presented.

2.1 Direct method

Fig. 10 shows typical situation during tuning procedure. Points C and D are actually detected
and our goal is to move them toward points A and B respectively.

Im

Re

A\

Gp(j0)G(jw)

Fig. 10. Tuning procedure: moving point C toward A and point D toward B

Report

To move point C toward A, we can change controller proportional gain Kp:

K,=K,—*, 3)

where A, 1s measured amplitude margin and A, is a desired one. Kp on the right side is the
previous (old) one.

Now, Nyquist curve changes the shape:

Re

A\

Gp(j@)Gc(o)

Fig. 11. Nyquist curve after changing Kp

Point C moved to point A. But point D can not move directly to point B. With T; of the
controller we can rotate point D from ¢, to ¢n,. But if we would like to move rotated point D
directly to B, we would have to change Kp and point C will move out from A. So, in that
method we will only rotate point D to angle ¢, with integral time constant T; of controller.

Controller transfer function is:

1
@’T

1

Geljo)| =K, [1+— @)

) = L
¢)C(]a))—arctan(Tj’

Wi,

Report

()

where ¢c(m) represents controller’s phase shift. To rotate point D from angle ¢, to ¢m, T; have

to be changed:

1

7;:

, tan{arctan(

1 b
a)D]:j +¢u _¢mj|

(6)

where mp represents ultimate frequency at point D and T; on the right side of equation
represents old value of T;. In the same time change of T; will cause change of absolute gain at
point C (4). Intersection point will move out from the point A and procedure have to be

repeated.

The result of tuning with presented method is shown in Fig. 12. X axis represents number of
iterations, where one iteration means calculating a new pair of Kp and T;. Dashed line
represents the phase error in degrees. It can be seen that procedure converges, but slowly and
practically can’t be used successfully.

Ti[s]

10

10

10°E

0

10

12

10

-10
0

Iterations

12

Fig. 12. Tuning procedure: proportional gain (Kp), integration constant (T;) and difference

between actual and desired phase margin (f) for direct method

Report

In all presented simulations we used the same process:
1

G,=—F5— (7)
T (149) (1425)
and desired amplitude and phase margin:
Am = 3 (8)
9, =36

Proportional constant (Kp) at the beginning is 1 and integral constant (T;) is 120s.

All used programs (in MATLAB) are printed in appendix.

2.2 Successive change of Ti

The method is relatively simple. At first we detect point C on Nyquist curve (see Fig. 10) and
with Kp we can move it to point A (3). Then we detect point D. If ¢,>0,, and there exist no
previous T; such that ¢,<¢n, then divide T; by 2:

T
T =-—L 9
=3 ©)
If $,<¢, and there exist no previous T; such that ¢,>¢n, then multiply T; by 2:
T=2T, (10)

In other case calculate T; as:

7;:\/7;17;2 (1T)

where Tj; means the last T; which caused ¢,<¢,, and Tj; is the last T; when ¢;>0y,.

The result of presented method is shown in Fig. 13. We can see, this time algorithm converges
faster than previous one, but still slow. It also needs some time to find appropriate range of T;
(from = 10% s to about 10° s).

10

Report

Ti[s]

-10 ! I
0 2 4 6 8 10

12
Iterations

Fig. 13. Tuning procedure: proportional gain (Kp), integration constant (T;) and difference
between actual and desired phase margin (f) for successive change method

That leads us to modify the algorithm. The first step is to find point C and move it toward
point A (see Fig. 10 and eq. 3), then (with new Kp) we find point D and calculate new T; using
equation 6 in section 2.1. If new (calculated) T; is more than two times bigger or more than
two times smaller than old one, new T; would be as calculated (6). Otherwise procedure
would be the same as detected by equations 9 and 10.

To speed up the optimisation method when error of phase margin changes the sign, (11) have
to be changed:

T = Tﬂ[? (12)

where T;; represents last T; for which ¢,;>0y,, Ti» represents last T; for which ¢,<¢, and ¢; and
O, represents ¢, obtained when using Tj; and Tj, respectively.

Results using such improved method is shown in Fig. 14. Improved method converges faster.

11

Report

Ti[s]

10

10E E

10

10 T

-10
12

o
N
»
(2]
o -
S

Iterations

Fig. 14. Tuning procedure: proportional gain (Kp), integration constant (T;) and difference
between actual and desired phase margin (f) for improved successive change method

2.3 Correlation compensation method

The method is based on correlation between amplitude and phase margin. Change of
amplitude margin when changing phase margin can be measured and vice versa. Then we can
predict T; for which both, amplitude and phase margin, will be fulfilled.

At first we determine Kp as shown in section 2.1 (see Fig. 10 and eq. 3). We could have the
situation as shown with solid line in Fig. 15.

If we rotate point D for the angle A9, Nyquist curve intersects describing function at point D,
instead of B (dashed line). Actually, the curve rotates the angle Ad;:

Ag, =k A (13)

where k; is a gain factor between Ad and Ad;:

k=20 (14)

12

Report

Re

A\

Gp(jo)Ge(jo)

Fig. 15. Change of T; changes desired amplitude margin

In Fig. 15 we can also see that change of T; also causes change of amplitude margin. It
changes from A, to A;:

A =k,A AQ, (15)

where k; represents correlation factor from phase to amplitude margin:

A
k=g (16)

m

To correct amplitude margin, we have to calculate Kp again (see Fig. 10 and eq. 3). This
correction changes phase margin (see Fig. 16).

13

Report

>
»

A\

' Gyj)Geo)

Fig. 16. Correction of amplitude margin changes phase margin (lower Figure is magnified
part of upper Nyquist diagram)

Intersection point with describing function changes from D, to D,. Phase margin increases for
the angle Ad;:

A
Ag, = k;MI(l—A—j (17)

m

where kj is a correlation factor from amplitude to phase margin:

AR
k3_A¢2 (1] (18)

14

Report

If we want to correct the phase margin exactly from D to B, angles A¢; and Ad, have to be
such that

AP, — A, =P (19)

where Opos represents angle DOB (in Fig. 15 marked as A¢). From (13) to (18) we can
calculate such A¢ which will satisfy (19):

ey =13 (ks = 1)’ + 4y,
2k ko,

Agp= (20)

From (6), if we substitute ¢,-¢, = Ad, we can calculate and change T; and start again new
iteration with determining Kp.

Results of described algorithm are shown in Fig. 17. We can see the method is the fastest one.
Drawback of such method is, when we are close to desired amplitude and phase margin, A
and related A¢; and Ad, become small and factors ki, k, and k3 (14, 16 and 18) become
inaccurate. Then we should stop this method and continue with e.g. successive change of T;
method (chapter 2.2).

Ti[s]

10

10

10 T

-10 I I
12

o
N
N
(2]
o -
S

Iterations

Fig. 17. Tuning procedure: proportional gain (Kp), integration constant (T;) and difference
between actual and desired phase margin (f) for the correlation compensation method

15

Report

3. Detection of Nyquist curve by relay excitation

In previous chapter, some methods of tuning PI controller according to detected Nyquist
points were discussed. Here, a procedure how to detect points on Nyquist curve by relay
method (chapter 1) is presented.

3.1 Amplitude and phase computation

Limit cycle (oscillation) appears at the point where transfer function Gp(jw)Gc(jw) crosses
describing function of relay (-1/N(a)). From relay and process output (see Fig. 9) we can
calculate amplitude and phase of our system (Gp(jw)Gc(jw)). Fig. 18 shows typical time
response.

(0

Y

y(®

Y

Fig. 18. Time response of relay output (u;) and process output (y)

System input is therefore square wave signal which consists of main harmonic component at
frequency wy = 27/Tp and other higher harmonic components:

dd 1. ad| . 1.
u(t)y=— sin((2n+1)w t)=—1| sinw ¢t +—sin3w, t+... 21
0= 2y sinl(2e+ Do) ﬂ[ot +3sin30, } 1)

So, process output (y) contains response on all harmonic components of the input signal. To
detect the first (main) harmonic (n=0), we have to use “filter” which is in fact Fourier
transformation of y at the main frequency (wy):

16

Report

Tp
A, = 2 [y sin(w,t)dt (22a)
TP 0
2
A4, === [y(t)cos(w,t)dt (22b)
T, ;
A=A +4,° (22¢)
e arctan% (22d)

re

where A;. and Aj, are real and imaginary component of amplitude respectively, A is an
amplitude of the first harmonic and ¢ is a phase shift of the first harmonic signal. To compute
a gain of Gp(jwy)Gc(joy), we have to divide A (22¢) with the amplitude of the input signal.
Amplitude and phase became:

A = % (23a)
=90

9, (23b)

where in (22d) we used two quadrant function atan. If we use function atan in all 4 quadrants
(e.g. function atan2 in MATLAB), we have to change (23b) into:

o, =n+¢ (24)

Algorithm for detection amplitude and phase is digital, so we changed equations 22a and 22b
into next form:

A, = % 3 [y(k)sin(kTyw,)+ y(k + Dsin((k + 1)1;%)] (25a)
4, = % 3 |y (k) cos(kTym,)+ y(k +) cos((k+ 1) Ty,) (25b)

Ts 1s sampling time, y(k) means k-th sample of y and y(n) represents the last sample (y(Tp)).

Actual phase margin can be calculated directly from detected amplitude margin if relay
hysteresis is set as in (2):

¢, =arcsin(4, sing,) (26)

17

Report

Im

1/A,

-1/N(a)

Gp(jﬂ))Gc(.jw)

Fig. 19. Calculating phase margin from amplitude margin

To improve accuracy of the calculated phase margin, we can calculate it as a mean value of
(22d) and (26):

4 . .
arctan(””j + arcsm(A, sin ¢)m)

_ Are 27)
¢, = 2 (

Fig. 20 shows tuning procedure when using relay excitation instead of Nyquist curve. We
used improved successive change method (chapter 2.2). We can see, comparing with Fig. 14,
the relay excitation method converges slower. The reason lays in errors when detecting
characteristic Nyquist points.

18

Report

Ti[s]
10° ;
10 : 4
10': .
100 1 I I I I
0 2 4 6 8 10 12
Kp, -- f [deq]
10 T
50 N |
! N
T == N / h N —
of ! S : T e 8
| > !
N /
-5 ! \ 1 1
I \ ;
I \
-10 ! L \ ' I L |
0 2 4 6 8 10 12

Iterations

Fig. 20. Tuning procedure: proportional gain (Kp), integration constant (T;) and difference
between actual and desired phase margin (f) for relay excitation and improved successive
change method

3.2 Errors

Some error can appear when calculating A, and ¢, (23a and 27) because of time discretisation.
If detected period from t=0 to t=Tp consists of n equidistant sampling intervals, then phase
margin can not be detected more accurate than:

+ (o]
Ag= £360 (28)
n
Period of the oscillation (Tp) can also be inaccurate in a range:
AT, = J_r2£ (29)
n

what leads to inaccuracy of amplitude margin:

19

Report

A4, =2 (30)

when n is relatively big.

Noise in the system can also have strong influence on result, specially when hysteresis of used
relay is small or equal to zero. In that case we could add a filter at the relay input and leave
some hysteresis. Then, from the first (main) harmonic and higher harmonics, we can find an
approximation of the position of the point C (see fig. 10).

20

Report

4. References

[1] K. J. Astrém and T. Higglund: “Automatic Tuning of Simple Regulators with
Specifications on Phase and Amplitude Margins”, Automatica, Vol. 20, No. 5, pp.
645-651, 1984.

[2] W. K. Ho, C. C. Hang and L. S. Cao: “Tuning of PID Controllers Based on Gain and
Phase Margin Specifications”, 12" world congress IFAC, Sydney, Vol. 5, pp 267-270,
1993.

[3] A. Leva: “PID autotuning algorithm based on relay feedback”, IEE Proceedings, Part
D, Vol. 140, No. 5, September 1993.

21

Report

5. Appendix

Program in MATLAB for tuning with direct method (section 2.1)

imag = sqrt(-1);
w = logspace (-2,1,200)+0.001;
£i=0:0.05*pi:2*pi;

re = cos(fi);

im = sin (fi);
pointsl = re+imag*im;
fml = pi+fm;

rez = [];

Kptmp = Kp;

Titmp = Ti;

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti 5*Ti 4*Ti Ti 0] ,w);

points = re+imag*im;
plot (points) ;
hold on;

plot (pointsl) ;

plot ([-1/Am+1.5*imag -1/Am-1.5*imag]) ;

plot ([cos (fml) +imag*sin (fml) 0]) ;

plot ([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);

grid

hold off;

pause (1) ;

w=w';
i=1;
while (im(i+1l) < -sin(fm))
i = 1i+1;
end
rexl = re(i)+(re(i+1l)-re(i))*(sin(fm)+im(i))/ (im(i)-im(i+1)) ;

f02 = atan(sin(fm)/ (-rexl)) ;

for 1=1:12,
rez = [rez; Kp Ti (£02-fm)*180/pi];

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti 5*Ti 4*Ti Ti 0] ,w);

points = re+imag*im;
plot (points) ;
hold on;

plot (pointsl) ;

plot ([-1/Am+1.5*imag -1/Am-1.5*imag]) ;

plot ([cos (fml) +imag*sin (fml) 0]) ;

plot ([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]) ;
axis([-1.5 1.5 -1.5 1.5]);

grid

hold off;

pause (1) ;

i=1;
while (im(i+1) < 0)
i = 1i+1;
end
rex2 = re(i)+(re(i+1l)-re(i))* (im(i))/ (im(1i) -im(i+1)) ;
w0l = w(i)+(w(i+1l)-w(i))*(dim(i))/(im(i) -im(i+1)) ;
AQl = -rex2;

Kp = Kp/ (Am*A01) ;

22

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;

plot (points) ;

hold on;

plot (pointsl) ;

plot ([-1/Am+1.5*imag -1/Am-1.5*imag]) ;

plot ([cos (fml) +imag*sin (fml) 0]) ;

plot ([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);

grid

hold off;

pause (1) ;

w=w';
i=1;
while (im(i+1l) < -sin(fm))
i = 1i+1;
end
rexl = re(i)+(re(i+1l)-re(i))*(sin(fm)+im(i))/ (im(i)-im(i+1)) ;
f02 = atan(sin(fm)/(-rexl)) ;
w02 = w(i)+(w(i+1l)-w(i))*(sin(fm)+im(i))/(im(i) -im(i+1)) ;

A02 = sgrt(rexl”™2 + (sin(fm))"2);

af fo2-fm;
Ti = (w02*tan(atan(1l/(w02*Ti))+df))”*(-1)

end

Kptmp;
Titmp;

Kp
Ti

subplot (211) ;

semilogy ([0:11] ,rez(:,2))

grid

title('Ti [s]"')

subplot (212)

plot ([0:11] ,rez(:,1),[0:11] ,rez(:,3),"'--")

grid
axis([0,12,-10,10])
title (' Kp, -- £ [degl')

xlabel ('Iterations')

Report

23

Report

Program in MATLAB for tuning with successive change method (section 2.2)

imag = sqrt(-1);
w = logspace (-2,1,200)+0.001;
£i=0:0.05*pi:2*pi;

re = cos(fi);

im = sin (fi);
pointsl = re+imag*im;
fml = pi+fm;

d =0.1;

rez = [];

more = 0;

less = 0;

Kptmp = Kp;

Titmp = Ti;

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti 5*Ti 4*Ti Ti 0],w);

points = re+imag*im;
plot (points) ;
hold on;

plot (pointsl) ;

plot ([-1/Am+1.5*imag -1/Am-1.5*imag]) ;

plot ([cos (fml) +imag*sin (fml) 0]) ;

plot ([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);

grid

hold off;

pause (1) ;

w=w';
i=1;
while (im(i+1l) < -sin(fm))
i = 1i+1;
end
rexl = re(i)+(re(i+1l)-re(i))*(sin(fm)+im(i))/ (im(i)-im(i+1)) ;

f02 = atan(sin(fm)/(-rexl)) ;
for 1=1:12,
rez = [rez; Kp Ti (£02-fm)*180/pi];

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti 5*Ti 4*Ti Ti 0] ,w);

points = re+imag*im;
i=1;
while (im(i+1) < 0)
i = 1i+1;
end
rex2 = re(i)+(re(i+l)-re(i))* (im(i))/ (im (i) -im(i+1)) ;
w0l = w(i)+(w(i+1l)-w(i))*(dim(i))/(im(i)-im(i+1)) ;
AQl = -rex2;

Kp = Kp/ (Am*A01) ;

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti 5*Ti 4*Ti Ti 0] ,w);
points = re+imag*im;

plot (points) ;

hold on;

plot (pointsl) ;

plot ([-1/Am+1.5*imag -1/Am-1.5*imag]) ;

plot ([cos (fml) +imag*sin (fml) 0]) ;

plot ([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);

grid

hold off;

pause (1) ;

24

Report

w=w';
i =1;
while (im(i+1l) < -sin(fm))
i = 1i+41;
end
rexl = re(i)+(re(i+1l)-re(i))*(sin(fm)+im(i))/ (im(i)-im(i+1)) ;

f02 = atan(sin(fm)/ (-rexl)) ;
w02 w(il)+(w(i+1l)-w(i))* (sin(fm)+im(i))/ (im(i)-im(i+1)) ;
A02 sqgrt (rex1™2 + (sin(fm))"*2);

if (f02 < fm)
less = Ti;

if (more == 0)
Ti = 2*Ti;
else
Ti = sqrt (Ti*more) ;
end
else
more = Ti;
if (less == 0)
Ti = Ti/2;
else
Ti = sqrt (Ti*less);
end
end
end
Kp = Kptmp;

Ti = Titmp;

subplot (211) ;

semilogy ([0:11] ,rez(:,2))

grid

title('Ti [s]")

subplot (212)

plot ([0:11],rez(:,1),[0:11],rez(:,3),"'--")

grid
axis([0,12,-10,10])
title (' Kp, -- £ [degl')

xlabel ('Iterations')

25

Report

Program in MATLAB for tuning with improved successive change method (section 2.2)

imag = sqrt(-1);

w = logspace (-2,1,200)+0.001;
£i=0:0.05*pi:2*pi;

re = cos(fi);

im = sin (fi);

pointsl = re+imag*im;

fml = pi+fm;

d =0.1;

rez = [
more =
less
moref
lessft =
Kptmp
Titmp

Il
o o+

0;
0;

Kp;
Ti;

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;

plot (points) ;

hold on;

plot (pointsl) ;

plot ([-1/Am+1.5*imag -1/Am-1.5*imag]) ;

plot ([cos (fml) +imag*sin (fml) 0]) ;

plot ([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);

grid

hold off;

pause (1);

w=w';
i=1;
while (im(i+1l) < -sin(fm))
i = 1i+1;
end
rexl = re(i)+(re(i+l)-re(i))*(sin(fm)+im(i))/ (im(i)-im(i+1)) ;

f02 = atan(sin(fm)/(-rexl)) ;
for 1=1:12,
rez = [rez; Kp Ti (£02-fm)*180/pi];

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti 5*Ti 4*Ti Ti 0],w);

points = re+imag*im;
i=1;
while (im(i+1) < 0)
i = 1i+1;
end
rex2 = re(i)+(re(i+l)-re(i))* (im(i))/ (im(1i) -im(i+1)) ;
w0l = w(i)+(w(i+1l)-w(i))*(dim(i))/(im(i)-im(i+1)) ;
AQl = -rex2;

Kp = Kp/ (Am*A01) ;

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti 5*Ti 4*Ti Ti 0],w);

points = re+imag*im;
plot (points) ;
hold on;

plot (pointsl) ;

plot ([-1/Am+1.5*imag -1/Am-1.5*imag]) ;

plot ([cos (fml) +imag*sin (fml) 0]);

plot ([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);

grid

hold off;

26

pause (1) ;

w=w';
i=1;
while (im(i+1l) < -sin(fm))
i = 1i+41;
end
rexl = re(i)+(re(i+1l)-re(i))*(sin(fm)+im(i))/ (im(i)-im(i+1)) ;
f02 = atan(sin(fm)/(-rexl)) ;
w02 = w(i)+(w(i+1l)-w(i))*(sin(fm)+im(i))/ (im(i) -im(i+1));

A02 = sgrt(rexl”™2 + (sin(fm))"2);

Tix

1/ (w02*tan(atan(1/ (w02*Ti))+£02-fm)) ;

if ((Tix/Ti > 2) | (Tix/Ti < 0.5))
Ti = Tix;

else
if (f02 < fm)

less = Ti;
lessf = f£02;

if (more == 0)
Ti = 2*Ti;
else

a = Ti/more;
Ti = more*a” ((moref-fm)/ (moref-£02)) ;
end

else
more = Ti;
moref = £02;
if (less == 0)
Ti = Ti/2;
else
a = less/Ti;
Ti = Ti*a® ((f02-fm)/ (f02-lessf)) ;
end
end
end
end

Kptmp;
Titmp;

Kp
Ti

subplot (211) ;

semilogy ([0:11] ,rez(:,2))

grid

title('Ti [s]")

subplot (212)

plot([0:11] ,rez(:,1),[0:11] ,rez(:,3),"'--")

grid
axis([0,12,-10,10])
title (' Kp, -- £ [degl')

xlabel ('Iterations')

Report

27

Report

Program in MATLAB for tuning with correlation compensation method (section 2.3)

imag = sqrt(-1);
w = logspace (-2,1,200)+0.001;
£i=0:0.05*pi:2*pi;

re = cos(fi);

im = sin (fi);
pointsl = re+imag*im;
fml = pi+fm;

d =0.1;

rez = [];

Kptmp = Kp;

Titmp = Ti;

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti 5*Ti 4*Ti Ti 0] ,w);

points = re+imag*im;
plot (points) ;
hold on;

plot (pointsl) ;

plot ([-1/Am+1.5*imag -1/Am-1.5*imag]) ;

plot ([cos (fml) +imag*sin (fml) 0]) ;

plot ([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);

grid

hold off;

pause (1) ;

w=w';
i=1;
while (im(i+1l) < -sin(fm))
i = 1i+1;
end
rexl = re(i)+(re(i+1l)-re(i))*(sin(fm)+im(i))/ (im(i)-im(i+1)) ;

f02 = atan(sin(fm)/(-rexl)) ;
rez = [rez; Kp Ti (£02-fm)*180/pi];

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti 5*Ti 4*Ti Ti 0] ,w);

points = re+imag*im;
plot (points) ;
hold on;

plot (pointsl) ;

plot ([-1/Am+1.5*imag -1/Am-1.5*imag]) ;

plot ([cos (fml) +imag*sin (fml) 0]) ;

plot ([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]) ;
axis([-1.5 1.5 -1.5 1.5]);

grid

hold off;

pause (1) ;

i=1;
while (im(i+1) < 0)
i = 1i+1;
end
rex2 = re(i)+(re(i+l)-re(i))* (im(i))/ (im (i) -im(i+1)) ;
w0l = w(i)+(w(i+1l)-w(i))*(dim(i))/(im(i)-im(i+1)) ;
AQl = -rex2;

Kp0l = Kp/ (Am*A01) ;
Kp = KpO1l;

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti 5*Ti 4*Ti Ti 0] ,w);
points = re+imag*im;

plot (points) ;

hold on;

plot (pointsl) ;

plot ([-1/Am+1.5*imag -1/Am-1.5*imag]) ;

28

Report

plot ([cos (fml) +imag*sin (fml) 0]) ;

plot ([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);

grid

hold off;

pause (1) ;

w=w';
i=1;
while (im(i+1l) < -sin(fm))
i = 1i+41;
end
rexl = re(i)+(re(i+1l)-re(i))*(sin(fm)+im(i))/ (im(i)-im(i+1)) ;
f02 = atan(sin(fm)/(-rexl)) ;
w02 = w(i)+(w(i+1l)-w(i))*(sin(fm)+im(i))/(im(i) -im(i+1)) ;

A02 = sgrt(rexl1”™2 + (sin(fm))"2);

fx = £02-fm;

df = fx;
Ti = (w02*tan(atan(l/ (w02*Ti))+(f02-fm)))*(-1);
for 1=1:11,

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti 5*Ti 4*Ti Ti 0],w);

points = re+imag*im;
plot (points) ;
hold on;

plot (pointsl) ;

plot ([-1/Am+1.5*imag -1/Am-1.5*imag]) ;

plot ([cos (fml) +imag*sin (fml) 0]) ;

plot ([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);

grid

hold off;

pause (1);

w=w';
i =1;
while (im(i+1l) < -sin(fm))
i = 1i+1;
end
rexl = re(i)+(re(i+l)-re(i))*(sin(fm)+im(i))/ (im(i)-im(i+1)) ;
f02 = atan(sin(fm)/(-rexl)) ;
w02 = w(i)+(w(i+l)-w(i))*(sin(fm)+im(i))/ (im (i) -im(i+1)) ;

A02 = sgrt(rexl1”™2 + (sin(fm))"2);

fx = £02-fm;
dfl1 = df-fx;
k1l = df1/df;

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti 5*Ti 4*Ti Ti 0] ,w);
points = re+imag*im;

plot (points) ;

hold on;

plot (pointsl) ;

plot ([-1/Am+1.5*imag -1/Am-1.5*imag]) ;

plot ([cos (fml) +imag*sin (fml) 0]) ;

plot ([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]) ;
axis([-1.5 1.5 -1.5 1.5]);

grid

hold off;

pause (1) ;

i=1;

29

while (im(i+1) < 0)

i
end
rex2
w0l
A0l

i+1;

re(i)+(re(i+l)-re(i))*(im(i))/ (im(i) -im(i+1)) ;
w(il)+(w(i+1l)-w(i))* (im(i))/ (im(i)-im(i+1)) ;
-rex2;

k2 = A01/ (Am*df1l) ;
Kp0l = Kp/ (Am*A01) ;
Kp = KpO1l;

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti 5*Ti 4*Ti Ti 0],w);

points = re+imag*im;
plot (points) ;
hold on;

plot (pointsl) ;

plot ([-1/Am+1.5*imag -1/Am-1.5*imag]) ;

plot ([cos (fml) +imag*sin (fml) 0]) ;

plot ([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]) ;
axis([-1.5 1.5 -1.5 1.5]);

grid

hold off;

pause (1) ;

w=w';
i=1;
while (im(i+1l) < -sin(fm))
i = 1i+1;
end
rexl = re(i)+(re(i+1l)-re(i))*(sin(fm)+im(i))/ (im(i)-im(i+1)) ;
f02 = atan(sin(fm)/(-rexl)) ;
w02 = w(i)+(w(i+1l)-w(i))*(sin(fm)+im(i))/(im(i) -im(i+1)) ;
A02 = sgrt(rexl”™2 + (sin(fm))"2);

rez = [rez; Kp Ti (£02-fm)*180/pi];

fx = £f02-fm;
df2 = df-dfi1-fx;
k3 = df2/df1*(1-A02/Am) "~ (-1) ;

dfol = 1/(2*k1*k2*k3)* (1+k3+sqgrt ((1+k3) *2-4*k2*k3*fx))
dfo2 = 1/(2*k1*k2*k3)* (1+k3-sqgrt ((1+k3)*2-4*k2*k3*fx))

if (fx > 0)
if (dfo2 < dfo1l)

df = dfo1;
else
df = dfo2;
end
else
if (dfo2 < dfo1l)
df = dfo2;
else
df = dfo1;
end
end
if (abs(df0l) == abs(dfo02))
break;
else
Ti = (w02*tan(atan(1/(w02*Ti))+df))”"(-1)
end
if (Ti < 0)
Ti = 0.1;
end

Report

30

end

Kp Kptmp;
Ti = Titmp;

subplot (211) ;

semilogy ([0:11] ,rez(:,2))
grid

title('Ti [s]')

subplot (212)

plot ([0:11],rez(:,1),[0:11],rez(:,3),"'--")

grid
axis([0,12,-10,10])
title (! Kp, -- £ [degl')

xlabel ('Iterations')

Report

31

Report

Program in MATLAB for tuning with relay excitation (section 3.1)

imag = sqrt(-1);
w = logspace (-2,1,100)+0.001;
£i=0:0.05*pi:2*pi;

re = cos(fi);

im = sin (fi);
pointsl = re+imag*im;
fml = pi+fm;

d =0.1;

rez = [];

more = 0;

less = 0;

Kptmp = Kp;

Titmp = Ti;

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti 5*Ti 4*Ti Ti 0],w);

points = re+imag*im;
plot (points) ;
hold on;

plot (pointsl) ;

plot ([-1/Am+1.5*imag -1/Am-1.5*imag]) ;

plot ([cos (fml) +imag*sin (fml) 0]) ;

plot ([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);

grid

hold off;

pause (1) ;

w=w';
i=1;
while (im(i+1l) < -sin(fm))
i = 1i+1;
end
rexl = re(i)+(re(i+1l)-re(i))*(sin(fm)+im(i))/ (im(i)-im(i+1)) ;

f02 = atan(sin(fm)/(-rexl)) ;

for i = 1:12,
rez [rez; Kp Ti (f02-fm)*180/pi];

eps = 0;

[t,x,y] = gear ('rele',60,[],[le-3,1le-5,0.01,0,3,0]);
a = size(yout,1);

j = a;

while ((yout(j,3) < 0) | (yout(j-1,3) > 0))
j = 3-1;

end

k =3;

t2 = yout(k,1);

-
U~

hile

£ Q.

(yout (j,3) < 0) | (yout(j-1,3) > 0))
_li

n

I Q- -l
1]

= O

i

tl = yout(1l,1);

tp = t2-tl;

w0 = 2*pi/tp;

t = yout(l:k,1)-t1;
y = yout(l:k,2);
rea = 0;

32

ima = 0;

for j = 1:k-1,

rea = rea + 0.5%(y(j)*sin(wOo*t (j))+y(j+1)*sin(wO*t (j+1)))*(t(j+1)-t(
ima + 0.5*(y(j)*cos(wO*t (j))+y(j+1)*cos(wO*t (j+1)))*(t(j+1)-t(

ima
end

rea=rea*2/tp;
ima=ima*2/tp;

tplvect (i) = tp;
A0 = sgrt(rea™2+ima”2);
AQlvect (i) = AO0;

Kp = Kp*4*d/ (Am*AO0*pi) ;

Kpvect (i) = Kp;

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti

points = re+imag*im;

plot (points) ;
hold on;
plot (pointsl) ;

plot ([-1/Am+imag -1/Am-imagl) ;
plot ([cos (fml) +imag*sin (fml) 0]) ;

axis([-1 1 -1 1]);
grid

hold off;

pause (1) ;

eps = 4*d*sin(fm) /pi;

[t,x,y] = gear ('rele',60,[],[le-3,1le-5,0.01,0,3,0]);

a = size(yout,1);

j = a;

while ((yout(j,3)
j=3-1;

end

k = 3;

t2 = yout(k,1);

o
SN

hile

£ Q.
Qe e
[

1

n

= O

i
tl = yout(l,1);

tp = t2-tl;
tp2vect (i) = tp;

w0 = 2*pi/tp;

< 0)

t = yout(l:k,1)-t1;

y = yout(l:k,2);

rea = 0;

ima = 0;

for j = 1:k-1,
rea
ima

end

rea=rea*2/tp;
ima=ima*2/tp;
tplvect (i) = tp;

A0 = sgrt(rea™2+ima”2);

(yout (j-1,3)

5*Ti 4*Ti Ti 0],w);

> 0))

(yout (j,3) < 0) | (yout(j-1,3) > 0))
-1

rea + 0.5*%(y(j)*sin(wO*t (j))+y(j+1)*sin(wO*t (j+1)))*(t(j+1)-t(
ima + 0.5*(y(j)*cos(wO*t (j))+y(j+1)*cos(wO*t (j+1)))*(t(j+1)-t(

]
j

]
j

)
)

)
)

)i
)i

)i
)i

Report

33

f2 = atan(ima/rea) ;
f21 = asin (sin (fm)*4*d/A0/pi);
f2 = (f2+£21)/2;

f2vect (i) = £2;

f2nn = pi/2 - asin (sin (fm)/(tan (f2-pi)));
w2 = 2*pi/tp;

Tix = 1/ (w2*tan(atan(1/ (w2*Ti))+£2-fm)) ;

if ((Tix/Ti > 2) | (Tix/Ti < 0.5))
Ti = Tix;

else

if (f2 < fm)
less = Ti;

lessf = £2;
if (more == 0)
Ti = 2*Ti;
else
al = Ti/more;
Ti = more*al” ((moref-fm)/ (moref-£2));
end
else

more = Ti;
moref = £2;

if (less == 0)
Ti = Ti/2;
else
al = less/Ti;
Ti = Ti*al” ((f2-fm)/ (f2-lessf));
end
end

end

[re,im] = nyquist ([Kp*Ti Kpl, [2*Ti 5*Ti 4*Ti Ti

points = re+imag*im;
plot (points) ;
hold on;

plot (pointsl) ;

plot ([-1/Am+1.5*imag -1/Am-1.5*imag]) ;

plot ([cos (fml) +imag*sin (fml) 0]) ;

plot ([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);

grid

hold off;

pause (1) ;

w=w';
i =1;
while (im(i+1l) < -sin(fm))
i = 1i+1;
end
rexl = re(i)+(re(i+l)-re(i))*(sin(fm)+im(i))/ (im(i)-im(i+1)) ;

f02 = atan(sin(fm)/(-rexl)) ;

end
Kp = Kptmp;
Ti = Titmp;

subplot (211) ;
semilogy ([0:11] ,rez(:,2))
grid

Report

34

title('Ti [s]')
subplot (212)

plot ([0:11] ,rez(:,1),[0:11],rez(:,3),"'--")

grid
axis([0,12,-10,10])
title (! Kp, -- £ [degl')

xlabel ('_Iterations ")

where RELE.M represents next scheme in SIMULINK:

Report

Transfer Fend

Transfer Fon

C;
Pl t
ik
TaoWorkspace
Kp*Tis+kp 1 ﬁ L
Tis Zgdeh3de 45+

35

