
University of Ljubljana

J. Stefan Institute, Ljubljana, Slovenia

IJS Delovno poročilo
Report DP-7054

AMPLITUDE AND PHASE MARGIN DETECTION WITH ON-

LINE PID CONTROLLER

Damir Vrančić
Youbin Peng*

August, 1994

*Department of Control Engineering
Free University of Brussels

Belgium

 Report

 1

Table of Contents

1. Introduction .. 2

2. Tuning methods .. 7
2.1 Direct method ... 7
2.2 Successive change of Ti..10
2.3 Correlation compensation method..12

3. Detection of Nyquist curve by relay excitation .. 16
3.1 Amplitude and phase computation ...16
3.2 Errors ..19

4. References.. 21

5. Appendix ... 22

 Report

 2

1. Introduction

The goal of this report was to find such controller parameters that amplitude margin (Am) and
phase margin (φm) of the controlled system will be as desired so that, if process have transfer
function GP(s), we want to find such controller GC(s) to reach desired points A and B on the
Nyquist curve in Fig. 1.

Fig. 1. Nyquist plot of the process (GP(s)) and process with a controller (GP(s)GC(s))

Fig. 2. Bode plot of the process with a controller

 Report

 3

Full line (see Fig. 1) represents process’ Nyquist curve and dashed line represents correction
of the curve made by controller. Fig. 2 shows representation of the amplitude and phase
margin in Bode plot.

Points A and B (see fig. 1) can be detected by many ways. One of the most practical way to do
that is to use the relay feedback method [1]. In this method, relay is connected in closed-loop
with a process as shown in Fig. 3.

Fig. 3. Relay feedback method

Characteristics of the used relay is as follows:

Fig. 4. Relay characteristics

where ε represents hysteresis of the relay and d is an output value. Describing function of such
relay is represented in Fig. 5.

Fig. 5. Describing function of the relay

 Report

 4

where -1/N(a) is

 − = − − −1
4 4

2 2

N a d
a i

d()
π ε πε (1)

The system in Fig. 3 will oscillate at the point where GP(jω) intersects the relay describing
function. To detect point A (see Fig. 1), relay without hysteresis (ε=0) should be used. In that
case, imaginary part in (1) will be 0 and GP(jω) and relay describing function will intersect on
real axis as shown in Fig. 6.

Fig. 6. Detection of the amplitude margin

P is an intersection point and it represents the point at which system described in Fig. 3
oscillates. With detected point P we can calculate amplitude margin as shown in Fig. 1.

To detect phase margin, we have to change hysteresis of used relay such that describing
function will intersect desired phase margin (see Fig. 7).

Fig. 7. Detection of the phase margin

 Report

 5

From (1) and Fig. 7, we can calculate ε:

 ε
π

φ= 4d
msin (2)

If process phase margin is bigger than desired, GP(jω) and describing function will intersect at
point D1 and if process phase margin is smaller than desired, intersection point would be D2
(see Fig. 8).

Fig. 8. __ System with too small phase margin, -- system with too big phase margin

From intersection point position we can calculate controller parameters to achieve desired
amplitude or phase margin. Then we can change the position of the switch in Fig. 3 from A to
B and push the controller into closed-loop configuration. If our goal is to satisfy amplitude
and phase margin as well, we have to detect more points on the Nyquist curve, usually by
changing relay hysteresis or adding some additional function blocks in line with relay [2, 3].

The idea, presented here, is to use modified relay feedback method as shown in Fig. 9.

By this method, controller is always connected in line with the process. It solves some
problems related with classical relay feedback method:

• We doesn’t have to add offset signal at the process input to achieve desired set-point (see
Fig. 3)

• In classical method, if the process is low-order, we have to use some additional blocks (like
integrator [3]) in line with tested process to achieve oscillation, while in new scheme the
controller already does it.

 Report

 6

• In classical method we can’t take into account some controller specialities like input filter
(analog or/and digital), delayed output, sampling time, ... or if we can do so, the
computation would be too complex. Usually fine tuning is required afterwards. In
presented method, the controller is all the time in line with a process, so when switching
from A to B (see Fig. 9), no fine tuning is required.

Fig. 9. Modified scheme of the relay tuning method

 Report

 7

2. Tuning methods

Here some tuning methods to achieve amplitude and phase margin will be shown. To simplify
presentation, we will use PI controller. PID controller can be used as well with some
modifications [1, 2, 3]. Actual amplitude and phase margin will be detected as described in
previous section (Fig. 6 and 7). Supported simulations are simplified in the way we calculated
intersection points from Nyquist curve of GP(jω)GC(jω) obtained in program package
MATLAB. Next section (3.) describes how to use tuning methods with a relay.

Basic idea of tuning PI controller is to satisfy both, amplitude and phase margin (Am and φm
respectively) by iteratively changing Ka and Ti. Three different methods of tuning are
presented.

2.1 Direct method

Fig. 10 shows typical situation during tuning procedure. Points C and D are actually detected
and our goal is to move them toward points A and B respectively.

Fig. 10. Tuning procedure: moving point C toward A and point D toward B

 Report

 8

To move point C toward A, we can change controller proportional gain KP:

 K K A
AP P

a

m

= , (3)

where Aa is measured amplitude margin and Am is a desired one. KP on the right side is the
previous (old) one.

Now, Nyquist curve changes the shape:

Fig. 11. Nyquist curve after changing KP

Point C moved to point A. But point D can not move directly to point B. With Ti of the
controller we can rotate point D from φa to φm. But if we would like to move rotated point D
directly to B, we would have to change KP and point C will move out from A. So, in that
method we will only rotate point D to angle φm with integral time constant Ti of controller.

Controller transfer function is:

 ()G j K
TC P

i

ω
ω

= +1 1
2 2 (4)

 Report

 9

 ()φ ω
ωC

i

j
T

= −

arctan 1 , (5)

where φC(ω) represents controller’s phase shift. To rotate point D from angle φa to φm, Ti have
to be changed:

 T

T

i

D
D i

a m

=

 + −

1
1ω

ω
φ φtan arctan

 , (6)

where ωD represents ultimate frequency at point D and Ti on the right side of equation
represents old value of Ti. In the same time change of Ti will cause change of absolute gain at
point C (4). Intersection point will move out from the point A and procedure have to be
repeated.

The result of tuning with presented method is shown in Fig. 12. X axis represents number of
iterations, where one iteration means calculating a new pair of KP and Ti. Dashed line
represents the phase error in degrees. It can be seen that procedure converges, but slowly and
practically can’t be used successfully.

0 2 4 6 8 10 12
10

0

10
1

10
2

10
3

Ti [s]

0 2 4 6 8 10 12
-10

-5

0

5

10

Iterations

__ Kp, -- f [deg]

Fig. 12. Tuning procedure: proportional gain (KP), integration constant (Ti) and difference
between actual and desired phase margin (f) for direct method

 Report

 10

In all presented simulations we used the same process:

() ()

G
s s

P =
+ +

1
1 1 22 (7)

and desired amplitude and phase margin:

Am

m

=
= °

3
36φ

 (8)

Proportional constant (KP) at the beginning is 1 and integral constant (Ti) is 120s.

All used programs (in MATLAB) are printed in appendix.

2.2 Successive change of Ti

The method is relatively simple. At first we detect point C on Nyquist curve (see Fig. 10) and
with KP we can move it to point A (3). Then we detect point D. If φa>φm and there exist no
previous Ti such that φa<φm, then divide Ti by 2:

 T T
i

i=
2

 (9)

If φa<φm and there exist no previous Ti such that φa>φm, then multiply Ti by 2:

 T Ti i= 2 (10)

In other case calculate Ti as:

 T T Ti i i= 1 2 (11)

where Ti1 means the last Ti which caused φa<φm and Ti2 is the last Ti when φa>φm.

The result of presented method is shown in Fig. 13. We can see, this time algorithm converges
faster than previous one, but still slow. It also needs some time to find appropriate range of Ti
(from ≈ 102 s to about 100 s).

 Report

 11

0 2 4 6 8 10 12
10

0

10
1

10
2

10
3

Ti [s]

0 2 4 6 8 10 12
-10

-5

0

5

10

Iterations

__ Kp, -- f [deg]

Fig. 13. Tuning procedure: proportional gain (KP), integration constant (Ti) and difference
between actual and desired phase margin (f) for successive change method

That leads us to modify the algorithm. The first step is to find point C and move it toward
point A (see Fig. 10 and eq. 3), then (with new KP) we find point D and calculate new Ti using
equation 6 in section 2.1. If new (calculated) Ti is more than two times bigger or more than
two times smaller than old one, new Ti would be as calculated (6). Otherwise procedure
would be the same as detected by equations 9 and 10.

To speed up the optimisation method when error of phase margin changes the sign, (11) have
to be changed:

 T T T
Ti i

i

i

m

=

−
−

1
2

1

1

1 2

φ φ
φ φ

 (12)

where Ti1 represents last Ti for which φa>φm, Ti2 represents last Ti for which φa<φm and φ1 and
φ2 represents φa obtained when using Ti1 and Ti2 respectively.

Results using such improved method is shown in Fig. 14. Improved method converges faster.

 Report

 12

0 2 4 6 8 10 12
10

0

10
1

10
2

10
3

Ti [s]

0 2 4 6 8 10 12
-10

-5

0

5

10

Iterations

__ Kp, -- f [deg]

Fig. 14. Tuning procedure: proportional gain (KP), integration constant (Ti) and difference
between actual and desired phase margin (f) for improved successive change method

2.3 Correlation compensation method

The method is based on correlation between amplitude and phase margin. Change of
amplitude margin when changing phase margin can be measured and vice versa. Then we can
predict Ti for which both, amplitude and phase margin, will be fulfilled.

At first we determine KP as shown in section 2.1 (see Fig. 10 and eq. 3). We could have the
situation as shown with solid line in Fig. 15.

If we rotate point D for the angle ∆φ, Nyquist curve intersects describing function at point D1
instead of B (dashed line). Actually, the curve rotates the angle ∆φ1:

 ∆ ∆φ φ1 1= k (13)

where k1 is a gain factor between ∆φ and ∆φ1:

 k1 1= ∆
∆
φ
φ

 (14)

 Report

 13

Fig. 15. Change of Ti changes desired amplitude margin

In Fig. 15 we can also see that change of Ti also causes change of amplitude margin. It
changes from Am to A1:

 A k Am1 2 1= ∆φ (15)

where k2 represents correlation factor from phase to amplitude margin:

 k A
Am

2
1

=
∆φ

 (16)

To correct amplitude margin, we have to calculate KP again (see Fig. 10 and eq. 3). This
correction changes phase margin (see Fig. 16).

 Report

 14

Fig. 16. Correction of amplitude margin changes phase margin (lower Figure is magnified
part of upper Nyquist diagram)

Intersection point with describing function changes from D1 to D2. Phase margin increases for
the angle ∆φ2:

 ∆ ∆φ φ2 3 1 1= −

k A

Am

 (17)

where k3 is a correlation factor from amplitude to phase margin:

 k A
Am

3
1

2

1

1= −

−
∆
∆

φ
φ

 (18)

 Report

 15

If we want to correct the phase margin exactly from D to B, angles ∆φ1 and ∆φ2 have to be
such that

 ∆ ∆φ φ φ1 2− = DOB (19)

where φDOB represents angle DOB (in Fig. 15 marked as ∆φ). From (13) to (18) we can
calculate such ∆φ which will satisfy (19):

()

∆φ
φ

=
− ± − +k k k k

k k k
DOB3 3

2
2 3

1 2 3

1 1 4
2

 (20)

From (6), if we substitute φa-φm = ∆φ, we can calculate and change Ti and start again new
iteration with determining KP.

Results of described algorithm are shown in Fig. 17. We can see the method is the fastest one.
Drawback of such method is, when we are close to desired amplitude and phase margin, ∆φ
and related ∆φ1 and ∆φ2 become small and factors k1, k2 and k3 (14, 16 and 18) become
inaccurate. Then we should stop this method and continue with e.g. successive change of Ti
method (chapter 2.2).

0 2 4 6 8 10 12
10

0

10
1

10
2

10
3

Ti [s]

0 2 4 6 8 10 12
-10

-5

0

5

10

Iterations

__ Kp, -- f [deg]

Fig. 17. Tuning procedure: proportional gain (KP), integration constant (Ti) and difference
between actual and desired phase margin (f) for the correlation compensation method

 Report

 16

3. Detection of Nyquist curve by relay excitation

In previous chapter, some methods of tuning PI controller according to detected Nyquist
points were discussed. Here, a procedure how to detect points on Nyquist curve by relay
method (chapter 1) is presented.

3.1 Amplitude and phase computation

Limit cycle (oscillation) appears at the point where transfer function GP(jω)GC(jω) crosses
describing function of relay (-1/N(a)). From relay and process output (see Fig. 9) we can
calculate amplitude and phase of our system (GP(jω)GC(jω)). Fig. 18 shows typical time
response.

Fig. 18. Time response of relay output (ui) and process output (y)

System input is therefore square wave signal which consists of main harmonic component at
frequency ω0 = 2π/TP and other higher harmonic components:

 ()()u t d
n

n t d t ti
n

() sin sin sin ...=
+

+ = + +

=

∞

∑
4 1

2 1
2 1 4 1

3
30

0
0 0π

ω
π

ω ω (21)

So, process output (y) contains response on all harmonic components of the input signal. To
detect the first (main) harmonic (n=0), we have to use “filter” which is in fact Fourier
transformation of y at the main frequency (ω0):

 Report

 17

 ()A
T

y t t dtre
P

TP

= ∫
2

0
0

()sin ω (22a)

 ()A
T

y t t dtim
P

TP

= ∫
2

0
0

()cos ω (22b)

 A A Are im= +2 2 (22c)

 φ = arctan A
A

im

re

 (22d)

where Are and Aim are real and imaginary component of amplitude respectively, A is an
amplitude of the first harmonic and φ is a phase shift of the first harmonic signal. To compute
a gain of GP(jω0)GC(jω0), we have to divide A (22c) with the amplitude of the input signal.
Amplitude and phase became:

 A d
Aa = 4

π
 (23a)

 φ φa = (23b)

where in (22d) we used two quadrant function atan. If we use function atan in all 4 quadrants
(e.g. function atan2 in MATLAB), we have to change (23b) into:

 φ π φa = + (24)

Algorithm for detection amplitude and phase is digital, so we changed equations 22a and 22b
into next form:

 () ()()[]A T
T

y k kT y k k Tre
S

P
S S

k

n

= + + +
=

−

∑ ()sin ()sinω ω0 0
0

1

1 1 (25a)

 () ()()[]A T
T

y k kT y k k Tim
S

P
S S

k

n

= + + +
=

−

∑ ()cos ()cosω ω0 0
0

1

1 1 (25b)

TS is sampling time, y(k) means k-th sample of y and y(n) represents the last sample (y(TP)).

Actual phase margin can be calculated directly from detected amplitude margin if relay
hysteresis is set as in (2):

 ()φ φa a mA= arcsin sin (26)

 Report

 18

Fig. 19. Calculating phase margin from amplitude margin

To improve accuracy of the calculated phase margin, we can calculate it as a mean value of
(22d) and (26):

()

φ
φ

a

im

re
a m

A
A

A
=

 +arctan arcsin sin

2
 (27)

Fig. 20 shows tuning procedure when using relay excitation instead of Nyquist curve. We
used improved successive change method (chapter 2.2). We can see, comparing with Fig. 14,
the relay excitation method converges slower. The reason lays in errors when detecting
characteristic Nyquist points.

 Report

 19

0 2 4 6 8 10 12
10

0

10
1

10
2

10
3

Ti [s]

0 2 4 6 8 10 12
-10

-5

0

5

10

Iterations

__ Kp, -- f [deg]

Fig. 20. Tuning procedure: proportional gain (KP), integration constant (Ti) and difference
between actual and desired phase margin (f) for relay excitation and improved successive

change method

3.2 Errors

Some error can appear when calculating Aa and φa (23a and 27) because of time discretisation.
If detected period from t=0 to t=TP consists of n equidistant sampling intervals, then phase
margin can not be detected more accurate than:

 ∆φ = ± °360
n

 (28)

Period of the oscillation (TP) can also be inaccurate in a range:

 ∆T T
nP
P= ±2 (29)

what leads to inaccuracy of amplitude margin:

 Report

 20

 ∆A A
na

a= (30)

when n is relatively big.

Noise in the system can also have strong influence on result, specially when hysteresis of used
relay is small or equal to zero. In that case we could add a filter at the relay input and leave
some hysteresis. Then, from the first (main) harmonic and higher harmonics, we can find an
approximation of the position of the point C (see fig. 10).

 Report

 21

4. References

[1] K. J. Åström and T. Hägglund: “Automatic Tuning of Simple Regulators with
Specifications on Phase and Amplitude Margins”, Automatica, Vol. 20, No. 5, pp.
645-651, 1984.

[2] W. K. Ho, C. C. Hang and L. S. Cao: “Tuning of PID Controllers Based on Gain and
Phase Margin Specifications”, 12th world congress IFAC, Sydney, Vol. 5, pp 267-270,
1993.

[3] A. Leva: “PID autotuning algorithm based on relay feedback”, IEE Proceedings, Part
D, Vol. 140, No. 5, September 1993.

 Report

 22

5. Appendix

Program in MATLAB for tuning with direct method (section 2.1)

imag = sqrt(-1);
w = logspace (-2,1,200)+0.001;
fi=0:0.05*pi:2*pi;
re = cos(fi);
im = sin (fi);
points1 = re+imag*im;
fm1 = pi+fm;
rez = [];
Kptmp = Kp;
Titmp = Ti;

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;
plot(points);
hold on;
plot(points1);
plot([-1/Am+1.5*imag -1/Am-1.5*imag]);
plot([cos(fm1)+imag*sin(fm1) 0]);
plot([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);
grid
hold off;
pause (1);

w=w';
i = 1;
while (im(i+1) < -sin(fm))

i = i+1;
end
rex1 = re(i)+(re(i+1)-re(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
f02 = atan(sin(fm)/(-rex1));

for l=1:12,

rez = [rez; Kp Ti (f02-fm)*180/pi];

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;
plot(points);
hold on;
plot(points1);
plot([-1/Am+1.5*imag -1/Am-1.5*imag]);
plot([cos(fm1)+imag*sin(fm1) 0]);
plot([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);
grid
hold off;
pause (1);

i = 1;
while (im(i+1) < 0)

i = i+1;
end
rex2 = re(i)+(re(i+1)-re(i))*(im(i))/(im(i)-im(i+1));
w01 = w(i)+(w(i+1)-w(i))*(im(i))/(im(i)-im(i+1));
A01 = -rex2;

Kp = Kp/(Am*A01);

 Report

 23

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;
plot(points);
hold on;
plot(points1);
plot([-1/Am+1.5*imag -1/Am-1.5*imag]);
plot([cos(fm1)+imag*sin(fm1) 0]);
plot([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);
grid
hold off;
pause (1);

w=w';
i = 1;
while (im(i+1) < -sin(fm))

i = i+1;
end
rex1 = re(i)+(re(i+1)-re(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
f02 = atan(sin(fm)/(-rex1));
w02 = w(i)+(w(i+1)-w(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
A02 = sqrt(rex1^2 + (sin(fm))^2);

df = f02-fm;
Ti = (w02*tan(atan(1/(w02*Ti))+df))^(-1)

end

Kp = Kptmp;
Ti = Titmp;

subplot(211);
semilogy([0:11],rez(:,2))
grid
title('Ti [s]')
subplot(212)
plot([0:11],rez(:,1),[0:11],rez(:,3),'--')
grid
axis([0,12,-10,10])
title('__ Kp, -- f [deg]')
xlabel('Iterations')

 Report

 24

Program in MATLAB for tuning with successive change method (section 2.2)

imag = sqrt(-1);
w = logspace (-2,1,200)+0.001;
fi=0:0.05*pi:2*pi;
re = cos(fi);
im = sin (fi);
points1 = re+imag*im;
fm1 = pi+fm;
d = 0.1;
rez = [];
more = 0;
less = 0;
Kptmp = Kp;
Titmp = Ti;

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;
plot(points);
hold on;
plot(points1);
plot([-1/Am+1.5*imag -1/Am-1.5*imag]);
plot([cos(fm1)+imag*sin(fm1) 0]);
plot([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);
grid
hold off;
pause (1);

w=w';
i = 1;
while (im(i+1) < -sin(fm))

i = i+1;
end
rex1 = re(i)+(re(i+1)-re(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
f02 = atan(sin(fm)/(-rex1));

for l=1:12,

rez = [rez; Kp Ti (f02-fm)*180/pi];

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;

i = 1;
while (im(i+1) < 0)

i = i+1;
end
rex2 = re(i)+(re(i+1)-re(i))*(im(i))/(im(i)-im(i+1));
w01 = w(i)+(w(i+1)-w(i))*(im(i))/(im(i)-im(i+1));
A01 = -rex2;

Kp = Kp/(Am*A01);

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;
plot(points);
hold on;
plot(points1);
plot([-1/Am+1.5*imag -1/Am-1.5*imag]);
plot([cos(fm1)+imag*sin(fm1) 0]);
plot([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);
grid
hold off;
pause (1);

 Report

 25

w=w';
i = 1;
while (im(i+1) < -sin(fm))

i = i+1;
end
rex1 = re(i)+(re(i+1)-re(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
f02 = atan(sin(fm)/(-rex1));
w02 = w(i)+(w(i+1)-w(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
A02 = sqrt(rex1^2 + (sin(fm))^2);

if (f02 < fm)
less = Ti;
if (more == 0)

Ti = 2*Ti;
else

Ti = sqrt (Ti*more);
end

else
more = Ti;
if (less == 0)

Ti = Ti/2;
else

Ti = sqrt (Ti*less);
end

end

end

Kp = Kptmp;
Ti = Titmp;

subplot(211);
semilogy([0:11],rez(:,2))
grid
title('Ti [s]')
subplot(212)
plot([0:11],rez(:,1),[0:11],rez(:,3),'--')
grid
axis([0,12,-10,10])
title('__ Kp, -- f [deg]')
xlabel('Iterations')

 Report

 26

Program in MATLAB for tuning with improved successive change method (section 2.2)

imag = sqrt(-1);
w = logspace (-2,1,200)+0.001;
fi=0:0.05*pi:2*pi;
re = cos(fi);
im = sin (fi);
points1 = re+imag*im;
fm1 = pi+fm;
d = 0.1;
rez = [];
more = 0;
less = 0;
moref = 0;
lessf = 0;
Kptmp = Kp;
Titmp = Ti;

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;
plot(points);
hold on;
plot(points1);
plot([-1/Am+1.5*imag -1/Am-1.5*imag]);
plot([cos(fm1)+imag*sin(fm1) 0]);
plot([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);
grid
hold off;
pause (1);

w=w';
i = 1;
while (im(i+1) < -sin(fm))

i = i+1;
end
rex1 = re(i)+(re(i+1)-re(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
f02 = atan(sin(fm)/(-rex1));

for l=1:12,

rez = [rez; Kp Ti (f02-fm)*180/pi];

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;

i = 1;
while (im(i+1) < 0)

i = i+1;
end
rex2 = re(i)+(re(i+1)-re(i))*(im(i))/(im(i)-im(i+1));
w01 = w(i)+(w(i+1)-w(i))*(im(i))/(im(i)-im(i+1));
A01 = -rex2;

Kp = Kp/(Am*A01);

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;
plot(points);
hold on;
plot(points1);
plot([-1/Am+1.5*imag -1/Am-1.5*imag]);
plot([cos(fm1)+imag*sin(fm1) 0]);
plot([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);
grid
hold off;

 Report

 27

pause (1);

w=w';
i = 1;
while (im(i+1) < -sin(fm))

i = i+1;
end
rex1 = re(i)+(re(i+1)-re(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
f02 = atan(sin(fm)/(-rex1));
w02 = w(i)+(w(i+1)-w(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
A02 = sqrt(rex1^2 + (sin(fm))^2);

Tix = 1/(w02*tan(atan(1/(w02*Ti))+f02-fm));

if ((Tix/Ti > 2) | (Tix/Ti < 0.5))
Ti = Tix;

else

if (f02 < fm)
less = Ti;
lessf = f02;
if (more == 0)

Ti = 2*Ti;
else

a = Ti/more;
Ti = more*a^((moref-fm)/(moref-f02));

end

else
more = Ti;
moref = f02;
if (less == 0)

Ti = Ti/2;
else

a = less/Ti;
Ti = Ti*a^((f02-fm)/(f02-lessf));

end
end

end
end

Kp = Kptmp;
Ti = Titmp;

subplot(211);
semilogy([0:11],rez(:,2))
grid
title('Ti [s]')
subplot(212)
plot([0:11],rez(:,1),[0:11],rez(:,3),'--')
grid
axis([0,12,-10,10])
title('__ Kp, -- f [deg]')
xlabel('Iterations')

 Report

 28

Program in MATLAB for tuning with correlation compensation method (section 2.3)

imag = sqrt(-1);
w = logspace (-2,1,200)+0.001;
fi=0:0.05*pi:2*pi;
re = cos(fi);
im = sin (fi);
points1 = re+imag*im;
fm1 = pi+fm;
d = 0.1;
rez = [];
Kptmp = Kp;
Titmp = Ti;

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;
plot(points);
hold on;
plot(points1);
plot([-1/Am+1.5*imag -1/Am-1.5*imag]);
plot([cos(fm1)+imag*sin(fm1) 0]);
plot([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);
grid
hold off;
pause (1);

w=w';
i = 1;
while (im(i+1) < -sin(fm))

i = i+1;
end
rex1 = re(i)+(re(i+1)-re(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
f02 = atan(sin(fm)/(-rex1));

rez = [rez; Kp Ti (f02-fm)*180/pi];

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;
plot(points);
hold on;
plot(points1);
plot([-1/Am+1.5*imag -1/Am-1.5*imag]);
plot([cos(fm1)+imag*sin(fm1) 0]);
plot([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);
grid
hold off;
pause (1);

i = 1;
while (im(i+1) < 0)

i = i+1;
end
rex2 = re(i)+(re(i+1)-re(i))*(im(i))/(im(i)-im(i+1));
w01 = w(i)+(w(i+1)-w(i))*(im(i))/(im(i)-im(i+1));
A01 = -rex2;

Kp01 = Kp/(Am*A01);
Kp = Kp01;

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;
plot(points);
hold on;
plot(points1);
plot([-1/Am+1.5*imag -1/Am-1.5*imag]);

 Report

 29

plot([cos(fm1)+imag*sin(fm1) 0]);
plot([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);
grid
hold off;
pause (1);

w=w';
i = 1;
while (im(i+1) < -sin(fm))

i = i+1;
end
rex1 = re(i)+(re(i+1)-re(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
f02 = atan(sin(fm)/(-rex1));
w02 = w(i)+(w(i+1)-w(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
A02 = sqrt(rex1^2 + (sin(fm))^2);

fx = f02-fm;
df = fx;

Ti = (w02*tan(atan(1/(w02*Ti))+(f02-fm)))^(-1);

for l=1:11,

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;
plot(points);
hold on;
plot(points1);
plot([-1/Am+1.5*imag -1/Am-1.5*imag]);
plot([cos(fm1)+imag*sin(fm1) 0]);
plot([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);
grid
hold off;
pause (1);

w=w';
i = 1;
while (im(i+1) < -sin(fm))

i = i+1;
end
rex1 = re(i)+(re(i+1)-re(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
f02 = atan(sin(fm)/(-rex1));
w02 = w(i)+(w(i+1)-w(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
A02 = sqrt(rex1^2 + (sin(fm))^2);

fx = f02-fm;
df1 = df-fx;
k1 = df1/df;

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;
plot(points);
hold on;
plot(points1);
plot([-1/Am+1.5*imag -1/Am-1.5*imag]);
plot([cos(fm1)+imag*sin(fm1) 0]);
plot([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);
grid
hold off;
pause (1);

i = 1;

 Report

 30

while (im(i+1) < 0)
i = i+1;

end
rex2 = re(i)+(re(i+1)-re(i))*(im(i))/(im(i)-im(i+1));
w01 = w(i)+(w(i+1)-w(i))*(im(i))/(im(i)-im(i+1));
A01 = -rex2;

k2 = A01/(Am*df1);
Kp01 = Kp/(Am*A01);
Kp = Kp01;

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;
plot(points);
hold on;
plot(points1);
plot([-1/Am+1.5*imag -1/Am-1.5*imag]);
plot([cos(fm1)+imag*sin(fm1) 0]);
plot([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);
grid
hold off;
pause (1);

w=w';
i = 1;
while (im(i+1) < -sin(fm))

i = i+1;
end
rex1 = re(i)+(re(i+1)-re(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
f02 = atan(sin(fm)/(-rex1));
w02 = w(i)+(w(i+1)-w(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
A02 = sqrt(rex1^2 + (sin(fm))^2);

rez = [rez; Kp Ti (f02-fm)*180/pi];

fx = f02-fm;
df2 = df-df1-fx;
k3 = df2/df1*(1-A02/Am)^(-1);

df01 = 1/(2*k1*k2*k3)*(1+k3+sqrt((1+k3)^2-4*k2*k3*fx))
df02 = 1/(2*k1*k2*k3)*(1+k3-sqrt((1+k3)^2-4*k2*k3*fx))

if (fx > 0)
if (df02 < df01)

df = df01;
else

df = df02;
end

else
if (df02 < df01)

df = df02;
else

df = df01;
end

end

if (abs(df01) == abs(df02))
break;

else
Ti = (w02*tan(atan(1/(w02*Ti))+df))^(-1)

end
if (Ti < 0)

Ti = 0.1;
end

 Report

 31

end

Kp = Kptmp;
Ti = Titmp;

subplot(211);
semilogy([0:11],rez(:,2))
grid
title('Ti [s]')
subplot(212)
plot([0:11],rez(:,1),[0:11],rez(:,3),'--')
grid
axis([0,12,-10,10])
title('__ Kp, -- f [deg]')
xlabel('Iterations')

 Report

 32

Program in MATLAB for tuning with relay excitation (section 3.1)

imag = sqrt(-1);
w = logspace (-2,1,100)+0.001;
fi=0:0.05*pi:2*pi;
re = cos(fi);
im = sin (fi);
points1 = re+imag*im;
fm1 = pi+fm;
d = 0.1;
rez = [];
more = 0;
less = 0;
Kptmp = Kp;
Titmp = Ti;

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;
plot(points);
hold on;
plot(points1);
plot([-1/Am+1.5*imag -1/Am-1.5*imag]);
plot([cos(fm1)+imag*sin(fm1) 0]);
plot([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);
grid
hold off;
pause (1);

w=w';
i = 1;
while (im(i+1) < -sin(fm))

i = i+1;
end
rex1 = re(i)+(re(i+1)-re(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
f02 = atan(sin(fm)/(-rex1));

for i = 1:12,
rez = [rez; Kp Ti (f02-fm)*180/pi];

eps = 0;
[t,x,y] = gear ('rele',60,[],[1e-3,1e-5,0.01,0,3,0]);
a = size(yout,1);
j = a;

while ((yout(j,3) < 0) | (yout(j-1,3) > 0))
j = j-1;

end
k = j;

t2 = yout(k,1);

j = k-1;
while ((yout(j,3) < 0) | (yout(j-1,3) > 0))

j = j-1;
end
l = j;

t1 = yout(l,1);
tp = t2-t1;
w0 = 2*pi/tp;

t = yout(l:k,1)-t1;
y = yout(l:k,2);

rea = 0;

 Report

 33

ima = 0;

for j = 1:k-l,
rea = rea + 0.5*(y(j)*sin(w0*t(j))+y(j+1)*sin(w0*t(j+1)))*(t(j+1)-t(j));
ima = ima + 0.5*(y(j)*cos(w0*t(j))+y(j+1)*cos(w0*t(j+1)))*(t(j+1)-t(j));

end

rea=rea*2/tp;
ima=ima*2/tp;
tp1vect(i) = tp;
A0 = sqrt(rea^2+ima^2);
A01vect(i) = A0;
Kp = Kp*4*d/(Am*A0*pi);
Kpvect(i) = Kp;

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;
plot(points);
hold on;
plot(points1);
plot([-1/Am+imag -1/Am-imag]);
plot([cos(fm1)+imag*sin(fm1) 0]);
axis([-1 1 -1 1]);
grid
hold off;
pause (1);

eps = 4*d*sin(fm)/pi;

[t,x,y] = gear ('rele',60,[],[1e-3,1e-5,0.01,0,3,0]);
a = size(yout,1);

j = a;
while ((yout(j,3) < 0) | (yout(j-1,3) > 0))

j = j-1;
end
k = j;

t2 = yout(k,1);

j = k-1;
while ((yout(j,3) < 0) | (yout(j-1,3) > 0))

j = j-1;
end
l = j;

t1 = yout(l,1);

tp = t2-t1;
tp2vect(i) = tp;

w0 = 2*pi/tp;

t = yout(l:k,1)-t1;
y = yout(l:k,2);

rea = 0;
ima = 0;

for j = 1:k-l,
rea = rea + 0.5*(y(j)*sin(w0*t(j))+y(j+1)*sin(w0*t(j+1)))*(t(j+1)-t(j));
ima = ima + 0.5*(y(j)*cos(w0*t(j))+y(j+1)*cos(w0*t(j+1)))*(t(j+1)-t(j));

end

rea=rea*2/tp;
ima=ima*2/tp;
tp1vect(i) = tp;
A0 = sqrt(rea^2+ima^2);

 Report

 34

f2 = atan(ima/rea);
f21 = asin (sin (fm)*4*d/A0/pi);
f2 = (f2+f21)/2;

f2vect(i) = f2;
f2nn = pi/2 - asin (sin (fm)/(tan (f2-pi)));
w2 = 2*pi/tp;

Tix = 1/(w2*tan(atan(1/(w2*Ti))+f2-fm));

if ((Tix/Ti > 2) | (Tix/Ti < 0.5))
Ti = Tix;

else

if (f2 < fm)
less = Ti;
lessf = f2;
if (more == 0)

Ti = 2*Ti;
else

a1 = Ti/more;
Ti = more*a1^((moref-fm)/(moref-f2));

end

else
more = Ti;
moref = f2;
if (less == 0)

Ti = Ti/2;
else

a1 = less/Ti;
Ti = Ti*a1^((f2-fm)/(f2-lessf));

end
end

end

[re,im] = nyquist([Kp*Ti Kp],[2*Ti 5*Ti 4*Ti Ti 0],w);
points = re+imag*im;
plot(points);
hold on;
plot(points1);
plot([-1/Am+1.5*imag -1/Am-1.5*imag]);
plot([cos(fm1)+imag*sin(fm1) 0]);
plot([-1.5-imag*sin(fm) 1.5-imag*sin(fm)]);
axis([-1.5 1.5 -1.5 1.5]);
grid
hold off;
pause (1);

w=w';
i = 1;
while (im(i+1) < -sin(fm))

i = i+1;
end
rex1 = re(i)+(re(i+1)-re(i))*(sin(fm)+im(i))/(im(i)-im(i+1));
f02 = atan(sin(fm)/(-rex1));

end

Kp = Kptmp;
Ti = Titmp;

subplot(211);
semilogy([0:11],rez(:,2))
grid

 Report

 35

title('Ti [s]')
subplot(212)
plot([0:11],rez(:,1),[0:11],rez(:,3),'--')
grid
axis([0,12,-10,10])
title('__ Kp, -- f [deg]')
xlabel('Iterations')

where RELE.M represents next scheme in SIMULINK:

