
University of Ljubljana

J. Stefan Institute, Ljubljana, Slovenia

Report DP-7267

Transient control by the integration method

Damir Vrančić
Ðani Juričić

September 1995

 1

Table of contents

1. Introduction...2

2. Theoretical evaluation...3

3. Experiments ..18

4. Conclusions...33

References...34

 2

1. Introduction

Each closed-loop control system must execute at least two tasks: to provide good control and
tracking performance. There are many different types of controllers available to fulfil such
tasks like PID types of controllers, state-space controllers, controllers with rational transfer
functions, fuzzy and neural network controllers, etc. However, frequently happens that it is not
easy to find such controller parameters that will satisfy given performances.

In this report we will give some guidelines for designing feed-forward controller for changing
the process set-point. After transition is completed, the original closed-loop controller has to
be switched on again. The advantages of such feed-forward controller (algorithm) is in its
simplicity and quite interesting performance (overshoot for most usual processes equals to
zero). The drawbacks are in feed-forward structure and unstable properties, so it must be
switched again to closed-loop when process approaches new set-point.

For evaluating the feed-forward algorithm we used the idea of [Strejc, 1959]. He expressed
the surface between process input and process output (method of multiple integration). The
aim of the method was to identify process model on stepwise change at process input [R.
Isermann, 1971] [R. Isermann, 1974] [R. Isermann, 1988] [H. Rake, 1987]. The method is
specially useful for processes running in noisy environments. Drawback of the method lays in
a fact that the process model is usually not described well for higher frequencies (more than
three multiple integrations are not recommended) [R. Isermann, 1971].

In our evaluation, we used only first integration and showed that the same surface between
process input and process output appears in a closed-loop systems. Based on this fact, a new
feed-forward algorithm for process transient is proposed.

 3

2. Theoretical evaluation

Consider a stable and linear process given by Fig. 1 and equation (1).

Fig. 1. A stable and linear process

 ()G s b s b s b s
a s a s a s

ePR
m

m

n
n

sTd= + + + +
+ + + +

−1
1

1 2
2

1 2
2
m

m

 (1)

From (1), process output can be expressed as

 () ()Y s b s b s b s
a s a s a s

e U sm
m

n
n

sTd= + + + +
+ + + +

−1
1

1 2
2

1 2
2
m

m

 (2)

where Y(s) and U(s) represent Laplace transforms of process output and process input,
respectively. Typical process output response on unity-gain step function at process input is
shown in Fig. 2.

y(t)

u(t)

A1

t

1

Fig. 2. Typical process response on unity-gain step function of u

 4

where A1 denotes the surface between u(t) and y(t):

 () ()[]A u t y t dt1
0

= −
∞

∫ (3)

Equation (3) can be expressed by Laplace transforms U(s) and Y(s) in another way:

 () ()[] ()() ()[]A
s

U s Y s
s

G s U sPR1 0 0
1=

→
− =

→
−lim lim (4)

When taking into account that u(t) is the unity-gain step function

 ()U s
s

= 1 (5)

and that delay can be expressed by Taylor series as

 e sT s TsT
d

dd− = − + −1
2

2 2

!
m , (6)

A1 becomes

A

s
b s b s b s
a s a s a s

sT s T
s

a b T

m
m

n
n d

d

d

1
1 2

2

1 2
2

2 2

1 1

0
1 1

1
1

2
1=

→
− + + + +

+ + + +
− + −



































=

= − +

lim
!

m

m

m

 (7)

If GPR(s) is expressed in zero-pole representation,

 () ()() ()
()() ()G s

sT sT sT
sT sT sT

ePR
z z zm

p p pn

sTd=
+ + +
+ + +

−1 1 1
1 1 1

1 2

1 2

�

�

, (8)

and when asserting (1) and (8) equal, we can see that

b T T T T

a T T T T

z z zm zi
i

m

p p pn pi
i

n

1 1 2
1

1 1 2
1

= + + + =

= + + + =

=

=

∑

∑

l

l

 (9)

 5

From (7) and (9), the surface A1 (see Fig. 2) can be expressed as

 A T T Tpi
i

n

zi d
i

m

1
1 1

= − +
= =
∑ ∑ (10)

Now, consider a stable closed-loop system (see Fig. 3)

Fig. 3. Process and controller in closed-loop

where w, e and GC are reference (set-point), control error and controller transfer function,
respectively. GPR(s) is described in (1) and (8). Let the controller transfer function equals to

 ()G s
d d s d s
c c s c sc

q
q

p
p=

+ + +
+ + +

0 1

0 1

�

�

 (11)

and consider the unity gain step function as a reference signal

 ()W s
s

= 1 (12)

Typical system response would be as shown in Fig. 4.

From Fig. 3, u can be expressed as

 () ()
() () ()U s

G s
G s G s

W sC

C PR

=
+1

 (13)

Using (4), (9), (12) and (13), we can calculate the surface A2 in Fig. 4 as

 6

()() ()[]

()

A
s

G s U s

d
c d

a b T d
c d

T T T

PR

d pi
i

n

zi d
i

m

2

0

0 0
1 1

0

0 0 1 1

0
1=

→
− =

=
+

− + =
+

− +










= =
∑ ∑

lim

 (14)

To have no steady-state error, controller must have integral character. This yields

 c0 0= (15)

Expression (15), when inserting into (14), gives (7). Surfaces A1 and A2 (see Figs. 2 and 4) are
the same, respectively. To conclude, if we want to move the process output from one steady
state y(0)=0 to another steady state y(∝)=1, the input signal u(t) should be such that

 () ()[]A u t y t dt a b T T T Td pi
i

n

zi d
i

m

= − = − + = − +
= =

∞

∑ ∑∫ 1 1
1 10

 (16)

y(t)

u(t)

t

1 A2

Fig. 4. Typical closed-loop system response

When process is linear (1), we can make further conclusions. If we want to move the process
output from one steady state y(0)=y0 to another steady state y(∝)=y∝, we have to use such
input signal u(t), that

 7

 () ()[] ()() ()A u t y t dt y y a b T y y T T Td pi
i

n

zi d
i

m

= − = − − + = − − +








∞ ∞

= =

∞

∑ ∑∫ 0 1 1 0
1 10

 (17)

Expression (17) is valid if process steady state gain is 1 as expressed in (1). If process steady
state gain is different than 1, we can add a gain in front of the process, to make it equal to 1 as
shown in Fig. 5.

Fig. 5. Compensation of the steady-state process gain

where KS represents a steady state gain of the process GPR:

 ()G s K b s b s b s
a s a s a s

ePR S
m

m

n
n

sTd= + + + +
+ + + +

−1
1

1 2
2

1 2
2
m

m

 (18)

Process with additional zero in the origin needs different approach. Let us have next process
transfer function:

 () ()() ()
()() ()G s s b s b s b s

a s a s a s
e

s sT sT sT
sT sT sT

ePR
m

m

n
n

sT z z zm

p p pn

sTd d= + + + +
+ + + +

=
+ + +

+ + +

+
− −1

2
2

3 1

1 2
2

1 2

1 21
1 1 1
1 1 1

�

�

�

�

 (19)

Now, instead of unity gain step function, we can use the unity ramp signal u:

 ()U s
s

= 1
2 (20)

Fig. 6 shows us typical system response

 8

y(t)

u(t)
u(t)

A2

t

1

Fig. 6. Typical system response on ramp signal at u for processes with zero in origin

where �()u t is time derivation of u(t). A3 represents a surface between �()u t and y(t) as

 () ()[]A u t y t dt3
0

= −
∞

∫ � (21)

With the same derivation as in (4) to (10), we can express A3 as

 A a b T T T Td pi
i

n

zi d
i

m

3 1 1
1 1

= − + = − +
= =
∑ ∑ (22)

The same result (22) would appear in closed-loop system (Fig. 3) if in steady state the process
output y(t)=y∝ would become equal to w=1. As in (17), because the system is linear, we can
make the following assumption. If we want to move the process output from one steady state
y(0)=y0 to another steady state y(∝)=y∝ and process transfer function is described by (19), we
have to use such signal u(t), that

 () ()[] ()() ()A u t y t dt y y a b T y y T T Td pi
i

n

zi d
i

m

3 0 1 1 0
1 10

= − = − − + = − − +








∞ ∞

= =

∞

∑ ∑∫ D (23)

If actual process transfer function has a steady-state gain KS,

 () ()() ()
()() ()G s K s b s b s b s

a s a s a s
e K

s sT sT sT
sT sT sT

ePR S
m

m

n
n

sT
S

z z zm

p p pn

sTd d= + + + +
+ + + +

=
+ + +

+ + +

+
− −1

2
2

3 1

1 2
2

1 2

1 21
1 1 1
1 1 1

m

m

m

m

 (24)

 9

the solution of such problem can be in adding gain 1/KS in front of the process as shown in
Fig. 5.

The last derivation is made for processes with pole in origin:

 () ()() ()
()() ()G s b s b s b s

s a s a s a s
e

sT sT sT
s sT sT sT

ePR
m

m

n
n

sT z z zm

p p pn

sTd d= + + + +
+ + + +

=
+ + +
+ + ++

− −1 1 1 1
1 1 1

1 2
2

1
2

2
3 1

1 2

1 2

m

m

m

m

 (25)

y(t)

u(t)=δ(t)

A4

t

1

Fig. 7. Typical system response on delta signal at u for processes with pole in origin

Typical process response on input delta pulse (u=δ(t)) is shown in Fig. 7, where we are
searching for the surface A4 between the integral of control signal and the process response
y(t).

 () ()A u d y t dt
t

4
00

= −








∫∫

∞

τ τ (26)

With the same derivation as in (4) to (10) and taking into account linear behaviour of the
process, we can express A4 as

 ()() ()A y y a b T y y T T Td pi
i

n

zi d
i

m

4 0 1 1 0
1 1

= − − + = − − +








∞ ∞

= =
∑ ∑ (27)

where y0 and y∝ are steady states at t=0 and t=∝, respectively. Also, if additional process gain
is such that

 10

 () ()() ()
()() ()G s K b s b s b s

s a s a s a s
e K

sT sT sT
s sT sT sT

ePR S
m

m

n
n

sT
S

z z zm

p p pn

sTd d= + + + +
+ + + +

=
+ + +
+ + ++

− −1 1 1 1
1 1 1

1 2
2

1
2

2
3 1

1 2

1 2

m

m

m

m

 (28)

we can add additional gain 1/KS in front of the process as shown in Fig. 5. Process with
additional gain is now the same as expressed in (25).

In praxis, it is not easy to control the surface A4 as given in (26). In general, we should have
infinite range of control signal u that process would be successfully controlled. This is not
possible, due to process input limitations [Vrančić et al., 1995].

Because of integral behaviour of the process, we can move process output from one steady
state y(0)=y0 to another steady state y(∝)=y∝ if using

 ()u t dt y y= −∞

∞

∫
0

0 (29)

Processes with different steady-state gains were introduced in (18), (24) and (28). For
processes without pole or zero in the origin (18), KS can be simply calculated as

 K y y
u uS = −

−
∞

∞

0

0

 (30)

where u∝ and u0 represent steady-state process inputs at t=∝ and t=0, respectively. Another
way is to determine KS with other shape of process input signal u:

 () ()U s U
s

e s= − −0 1 τ (31)

Typical process response on u is as shown in Fig. 8. If using u in (31), KS can be calculated as

 ()K
U

y t dtS =
∞

∫
1
0 0τ

 (32)

 11

y(t)

u(t)

t

U0

KSU0τ

τ

Fig. 8. Typical response for processes without pole or zero in origin

For processes with zero in origin (24), KS can be calculated as

 ()K
U

y t dtS =
∞

∫
1

0 0

 , (33)

where the process input is a step function with amplitude U0:

 ()U s U
s

= 0 (34)

Typical process response is shown in Fig. 9.

For processes with pole in origin, we can determine KS by using the following input signal u:

 () ()[]U s
s

U U U e U es s= − − −− −1
1 2

max max min min
τ τ (35)

Note that

 ()u t dt =
∞

∫ 0
0

 (36)

 12

y(t)

u(t)

t

U0

KSU0

Fig. 9. Typical response of the processes with zero in the origin

From (35) and (36), τ2 can be expressed as

 τ τ2 1= −U U
U

min max

min

 (37)

and KS is expressed as

 () ()K U
U U U

y t dtS =
−

∞

∫
2

1
2

0

min

min max maxτ
 (38)

Typical process response on signal (35) is shown in Fig. 10.

 13

y(t)

u(t)

t

Umax

Umin

τ1 τ2

Fig. 10. Typical response of the processes with pole in the origin

Described feed-forward control has some drawbacks. The first is that system must remain
stable when closing process input and output (it is not suitable for unstable processes). The
second drawback is that process can stay in such closed-loop limited amount of time. Problem
appears if process gain GS is not exactly equal to 1. If this happens, process output will
increase or decrease to uncontrolled values. In this case a special mechanism has to be added
to switch from “feed-forward” to closed-loop in the right moment. The results of some
experiments can be seen in next section.

Due to mentioned drawbacks, we also proposed another method of changing the process set-
point. The integration method can be successfully used in optimal switching procedure. For
the second order process, switching procedure looks as in Fig. 11.

 14

Fig. 11. The optimal switching

For higher order processes, switching procedure need more changes from Umax to Umin (or
some other values of u) and back, so switching times would be at t=t1, t=t2,... t=tn where n
denotes the process order. We will illustrate how to use the knowledge of the surface in
finding switching times t1 and t2 for the second order process. Here, will use the process with
steady-state gain 1, so u∝=y∝.

Usual procedure to find switching times t1 and t2 is to settle u(t2)=u∞ and all time derivatives
of u must be 0 at t=t2

1. Because derivatives are not easy to be obtained directly from (noisy)
processes, we rather used the integral (7) as additional data.

If we want that for t≥t2 process output y(t)=y∝, two conditions have to be fulfilled. First is that
y(t2)=y∝ and the second condition is that surface between input and output becomes equal to

 () ()[] ()u t y t dt y T T
t

p p− = +∫ ∞
0

2

1 2
 (39)

where Tp1 and Tp2 are poles of the second order system.

1 Number of derivatives depends on the process order. For the second order process it is enough to use only the
first derivative (Du (t2)=0).

 15

Fig. 12. The optimal switching for the second order system

Fig. 12 shows second order process response if process steady-state gain is equal to 1, where
p(t) is

 () () ()[]p t u y d
t

= −∫ τ τ τ
0

 (40)

If the process is linear, we can express y(t) when using u(t), shown in Fig. 11 as

 () () () () () ()y t U y t U U y t t U y t t= + − − + − −max min max min1 1 1 1 21 (41)

where y1(t) is a process response on the unity-gain step function. Surface p(t) can be expressed
as

 () () () () () ()p t U p t U U p t t U p t t= + − − + − −max min max min1 1 1 1 21 (42)

where p1(t) is a surface between u and y where u is a unity-gain step function. At t=t2, we
want that process output and the surface between u and y reach the final value.

 16

()
() ()

y t y

p t p y T Tp p

2

2 1 2

=

= = +
∞

∞ ∞

 (43)

where Tp1 and Tp2 represent process time constants (8). From (41) to (43), we can express

 () () ()U y t U U y t t ymax min max1 2 1 2 1+ − − = ∞ (44)

 () () ()U p t U U p t t pmax min max1 2 1 2 1+ − − = ∞ (45)

Multiplying (44) with 1/(y∝Umax) and (45) with 1/(p∝Umax), we get

 () ()y t
y

U U
U

y t t
y U

1 2 1 2 1 1
∞ ∞

+ − −
=min max

max max

 (46)

 () ()p t
p

U U
U

p t t
p U

1 2 1 2 1 1
∞ ∞

+ − −
=min max

max max

 (47)

where y∝ is a new process steady-state. Defining

 () () ()e t
p t
p

y t
y

= −
∞ ∞

1 1 (48)

and asserting (46) and (47) equal, leads to

 () ()e t t U
U U

e t2 1 2− =
−
max

max min

 (49)

Typical time response of e is shown in Fig. 13.

 17

Fig. 13. The difference between the surface p1/p∞ and the process response y1/y∞

Now, we can find appropriate t1 and t2 in the following way. First, we must know the process
response on the step function y1(t). Then we can calculate the surface between u (unity step
function) and y as p1(t). Now, we have to define the change of steady-state process output as
y∝ and choose Umax and Umin. From (48), we can calculate e(t). After that the searching
procedure of t2 and t1 starts such that for different t2 (see Fig. 13) we calculate correspondent
e(t2-t1) (49) and from already calculated e1 we find t2-t1. The result of t2-t1 we put into (44) or
(45) and see if it is fulfilled. The procedure of changing t2 have to be repeated until (44) or
(45) adequate.

Note, t2>t1 and t1>0.

Quicker result can be obtained by calculating the relation between t2 and t1 if the second-order
process time constants are already known. If this is the case, then

 t t T U U

U e y U
t

Tp

1 2 2 2

2

= − −

+ −

















−

∞

ln max min

max min

 (50)

or

 t t T U U

U e y U
t

Tp

1 2 1 2

1

= − −

+ −

















−

∞

ln max min

max min

 (51)

From (50) and (51) we can see that t1 is expressed as a function of t2. The optimisation
procedure which finds appropriate t1 and t2 consists of optimising t2 such that (44) or (45)
adequate (t1 is calculated by (50) or (51)).

 18

3. Experiments

In previous section, an information was given, that to move a process (8) from one to another
steady state, the surface between u and y have to be as expressed in (17). For the same process
and same difference between steady states, the surface between u and y must be always
constant, no matter what kind of u is used. To depict above sentences, we made some
examples.

At first we used such signal u, that is equal to Umax from the time origin to the instant when
integral between u and y become equal to expression (17). Since then, process input u is
connected to process output y, so that expression (17) will be still valid:

 ()
() ()[]

() () ()[]
u t

U u t y t dt a b T

y t u t y t dt a b T

t

d

t

d

=
− < − +

− = − +













∫

∫

max;

;

0
1 1

0
1 1

 (52)

Figures 14 and 15 show results when using process (8) with time constants

 T s T s T sp p p1 2 3
10 2 1= = =, , (53)

and Umax=10.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 14. Process output (y); __ “Feed-forward” response, -- “Step function” response

 19

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 15. Process input (u); __ “Feed-forward” response, -- “Step function” response

We can see that process came into higher steady state without overshoot. Next example (Figs.
16 and 17) show results obtained with the same process, but when using Umax=1.5. In such
case process rise time becomes longer.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 16. Process output (y); __ “Feed-forward” response, -- “Step function” response

 20

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 17. Process input (u); __ “Feed-forward” response, -- “Step function” response

Next example (see Figs. 18 and 19) show simulation results for process with complex poles:

 () ()T i s T i s T sp p p1 2 3
2 3 2 3 1= + = − =, , (54)

and when using Umax=10.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

Time [s]

Fig. 18. Process output (y); __ “Feed-forward” response, -- “Step function” response

 21

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40 45 50

Time [s]

Fig. 19. Process input (u); __ “Feed-forward” response, -- “Step function” response

We can see that “feed-forward” response is again without overshoot. The next two Figures (20
and 21) show results obtained when using process with the following time constants:

 T s T s T s T sp p p z1 2 3 1
10 2 1 15= = = =, , , . (55)

and Umax=10.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 20. Process output (y); __ “Feed-forward” response, -- “Step function” response

 22

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 21. Process input (u); __ “Feed-forward” response, -- “Step function” response

When increasing zero time constant to the value bigger than Tp2, the overshoot appears. Figs.
22 and 23 show results obtained when applying Tz1=3.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 22. Process output (y); __ “Feed-forward” response, -- “Step function” response

 23

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 23. Process input (u); __ “Feed-forward” response, -- “Step function” response

If process has a delay, it can also produce an overshoot using the feed-forward algorithm. For
the system with two poles

 T s T sp p1 2
10 2= =, (56)

and a delay, bigger than smaller time constant (2s), an overshoot can appear. Figures 24 and
25 show process response when applying a delay Td=4s with Umax=10.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 24. Process output (y); __ “Feed-forward” response, -- “Step function” response

 24

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 25. Process input (u); __ “Feed-forward” response, -- “Step function” response

The last example is performed when we have a non-minimal phase process:

 T s T s T s T sp p p z1 2 3 1
10 2 1 2= = = = −, , , (57)

with Umax=10. The result of the simulation are shown in Figs. 23 and 24.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 26. Process output (y); __ “Feed-forward” response, -- “Step function” response

 25

-2

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 27. Process input (u); __ “Feed-forward” response, -- “Step function” response

Next example shows a response of the process with zero in the origin (19). Now, process
input is changed:

 ()
() ()[]

() () ()[]
�

; �

; �

max

u t
U u t y t dt a b T

y t u t y t dt a b T

t

d

t

d

=
− < − +

− = − +













∫

∫

0
1 1

0
1 1

 (58)

We used the process constants

 T s T sp p1 2
10 10= =, (59)

with one zero in origin. The results, when using Umax=10, are shown in Figs. 28 and 29.

 26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 28. Process output (y); __ “Feed-forward” response, -- “Step function” response

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 29. Process input (u); __ “Feed-forward” response, -- “Step function” response

Drawbacks of proposed steady-state changing method are:

a) When closing the loop from process output (y) to process input (u), the system must be
stable.

b) In the case of constant disturbance, process goes toward infinity (±∝). The same happens if
process steady state gain KS is not the same as estimated (in our case KS≠1). The first example

 27

(Figs. 30 and 31) show results when using process with real steady-state gain KS=1.1 (10%
error in estimation of steady-state gain). Process time constants were as in (53) and Umax=10.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 30. Process output (y); __ “Feed-forward” response, -- “Step function” response

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 31. Process input (u); __ “Feed-forward” response, -- “Step function” response

Next example (Figs. 32 and 33) show process response if real steady-state gain equals to
KS=0.9.

 28

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 32. Process output (y); __ “Feed-forward” response, -- “Step function” response

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80

Time [s]

Fig. 33. Process input (u); __ “Feed-forward” response, -- “Step function” response

In both cases we can see process response goes toward infinity or toward zero. It lead us to
conclusion that such kind of “control” can be used only with controller which would “take
control” when process output will be close to desired. The optimal switching algorithm,
adapted for the second order processes, seems to have less drawbacks.

To illustrate the optimal switching algorithm, we prepared two examples. We used the
process:

 29

 ()()G
s sPR =

+ +
1

1 5 1 2
 (60)

and control constants

 U U ymax min, ,= = =∞5 0 1 (61)

Optimisation procedure gave us the following values of t1 and t2:

 t s t s1 2187 4 09= =. , . (62)

System response is shown in Figures 34 to 36.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

Time [s]

Fig. 34. Process output (y); __ Switching procedure, -- “Step function” response

 30

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30

Time [s]

Fig. 35. Process input (u)

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

Time [s]

Fig. 36. p(t); __ Switching procedure, -- “Step function” response

Next example was made with the same process as before (60) and with the following control
constants:

 U U ymax min, , .= = − =∞5 2 0 6 (63)

Optimisation procedure gave us the following values of t1 and t2:

 31

 t s t s1 2145 2 59= =. , . (64)

System response is shown in Figures 37 to 39.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30

Time [s]

Fig. 37. Process output (y); __ Switching procedure, -- “Step function” response

-2

-1

0

1

2

3

4

5

0 5 10 15 20 25 30

Time [s]

Fig. 38. Process input (u)

 32

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

Time [s]

Fig. 39. p(t); __ Switching procedure, -- “Step function” response

 33

4. Conclusions

Results of simulations show advantages and drawbacks of proposed set-point change method.
Advantages are that process model can be unknown. All the information we need is to
integrate the surface between process input and process output during transition and to
determine process gain. Moreover, measurement can be also made in a closed-loop
configuration (if the process is already controlled). The second advantage of the integration
method is that the optimal switching procedure can also be made for noisy processes where
process output derivation does not have to be used. For most usual processes the overshoot
equals to zero.

Drawbacks of proposed method are also several. When closing process input with process
output, system must stay stable. Another problem arises if process gain is not properly
estimated. In such case we must pay more attention to determine right moment to switch from
open-loop (feed-forward) to closed-loop configuration. In this case the optimal switching
procedure can be used. Some difficulties can also arise if some disturbances appear during
transition or if process is non-linear. If the last assumption is true, firstly we have to linearise
the process characteristics and then to design appropriate feed-forward control.

Optimal switching procedure by which process output derivative does not have to be used in
calculations is also proposed. The process output for the second order system can be made
without overshoot.

 34

References

R. Isermann, “Experimentelle analyse der dynamik von regelsystemen (Identifikation 1)”,
1971.

R. Isermann, “Results on the simplification of dynamic process models”, International
Journal of Control, Vol. 19, No. 1, pp. 149-159, 1974.

R. Isermann, “Identifikation dynamischer Systeme”, Band II, Springer-Verlag, 1988.

H. Rake, “Identification: Transient- and Frequency-Response Methods”, Systems &
Control Encyclopedia, Madan G. Singh eds., Vol. 4, pp. 2320-2325, 1987.

V. Strejc, “Näherungsverfrahren für aperiodische Übergangscharakteristiken”,
Regelungstechnik 7, pp. 124-128, 1959.

D. Vrančić, Y. Peng and Ð. Juričić, “Some aspects and Design of Anti-Windup and
Conditioned Transfer”, J. Stefan Institute, Ljubljana, Report DP-7169, 1995.

