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1. Introduction

Today, the most applied tuning rules for PID types of controllers are ones, based on the
process reaction curve (process step response). Also very popular, but not so widely used, are
the tuning rules based on detection of one particular point on the process Nyquist curve
(usually detecting the process ultimate frequency and amplitude). The best known rules are the
Ziegler-Nichols tuning rules [Astrom and Hégglund, 1995] [Hang and Cao, 1993] [Hang et
al., 1991] [Thomas, 1991]. The reason of such popularity lies in their simplicity. In real plants
it is usually quite easy to obtain a process step response and find the appropriate process lag
and process rise times, which serves as a basis for calculation of PID parameters.

The drawbacks of these tuning methods arise from the lack of information based only on the
process lag and process rise time. There are different processes existing with the same pair of
lag and rise times, but which need different controller tuning. Different problems, arising
when using the Ziegler-Nichols tuning rules, are reported in [Astrom and Hagglund, 1995]
[Hang and Sin, 1991] [Hang and Cao, 1993] [Hang et al., 1991] [Thomas, 1991] [Vranci¢ et
al., 1993] [Vranci¢ et al., 1995]. Some authors suggested the introduction of so-called “set-
point weighting” [Hang et al., 1991] and additional change of tuning rules [Astrom and
Héagglund, 1995]. The improved closed-loop response showed that they were very successful,
but the rules were still based on the process lag and rise time, so their applicability to wide
spectrum of possible processes still stays as an opened question.

Besides the very popular rules, based on the process step response or detecting the process
ultimate point, as e.g. Ziegler-Nichols, Cohen-Coon, Chien-Hrones-Reswick rules, a more
sophisticated approaches are also existing. They are usually based on the detecting more
points on the process Nyquist curve [Astrom and Higglund, 1995] [Ho et al., 1993] [Leva,
1993] [Thomas, 1991] as to extract more information from the process.

Such tuning rules generally give better closed-loop performance at the cost of more extensive
computations with longer and more sophisticated experiments on the testing plant.
Sometimes, the plant must be driven into self-oscillations, that is frequently intolerable.

The scope of this work was to find such tuning rules for PI(D) controller that will use the
positive sides of both approaches. Therefore the aim of this report is to show how the
information from the process reaction curve can be successfully used for finding such
controller parameters (K, 7; and indirectly also 7};) which will satisfy given frequency criterion
(the frequency response method given by [Hanus, 1975]) for wide spectrum of chosen process
types. Moreover, the simple tuning rules will give the exact result for the chosen processes.






2. Background materials

2.1. PI controller and process models

The PI controller is given in (1)

U:K(HLJ(W—Y), (1)

sT

!

where U, W and Y denote the Laplace transforms of the controller output u, set-point w and
the process (plant) output y, respectively. The controller parameters K and 7; denote
proportional gain and integral time constant, respectively. The PI controller in a closed-loop
configuration with a process is shown in Fig. 1.
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Fig. 1. The closed loop system with PI controller

The symbol d in Fig. 1 denotes the disturbance at the process input.

The so-called “frequency response method” was chosen for tuning the PI controller since

e it assures stability conditions for wide spectrum of process models, driven by PI(D) type of
controller

e it gives the greatest proportional gain K which still assures the aperiodic process time
response for the wide spectrum of process models

e the controller parameters can be simply readjusted such as to speed-up or slow-down the
process closed-loop response



The method was tested by [Vranci¢ et al., 1995] and the experimental results showed that the
method gave very good closed-loop responses for variety of tested process models which are
given in Table 1.

Process Range of parameter

Gy(s)= q i‘;T) T'=01s... 10s

Go(s) = T fST)2 T=0ls ... 105
G”(S)z(uTl)(m) T=01s... 10s

Ga(s) = e T=0ls ... 10s

Gps(S)=ﬁ n=2..8

Gpol5) = s ST)(11+ e T=02s... 0.8s
GP7(S)=((11:—‘Z§;) T=015 ... 10s
GPS(S):% T=0ls . Is

L a=01s... s

)= i i)+ o1 =)

Table 1. The tested processes with parameter ranges

Moreover, the processes were not only tested in given range of parameters, as will be outlined
later for processes Gpg(s) and Gpy(s).



2.2. Frequency response method

The main idea of the frequency response method (FRM) is to find such a controller G¢(jw) for
given process Gp(jw) which will drive the frequency response of Gp(f@wGe(jaw toward the
vertical line

5(}/)=—%+j7/ ;/:[—oo...oo], 2)
such as
. . 1
Re{G,(jo)G (jo)} = -5 (3)
Re{GP(O)GC(O)} - _% 4)

The reason for such limitations lies in the fact that in such case the closed-loop response (see
e.g. M circles in [DiStefano et al., 1990]) will have the unchanged gain (M circle is 1) at low
frequencies, and the gain will decrease at higher frequencies (see Fig. 2).

-172

Fig. 2. M circles in the Polar plot

The open-loop Nyquist plot of the process curve, which follows the line M=f, will have the
unchanged closed-loop gain M=f at all frequencies. If the open-loop frequency response
corresponds to conditions (3) and (4), the closed-loop amplitude response will go from M=1 at
lower frequencies to M<1 at higher frequencies (see Fig. 2). Therefore, there will be no

7



resonance peak in closed-loop amplitude frequency response, so the system will be critically
damped [DiStefano et al., 1990] [Boucher and Tanguy, 1976] and no oscillations will exist in
closed-loop time response.

A typical process Nyquist curve Gp(j@) is shown in Fig. 3.
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Fig. 3. Typical process Nyquist curve Gy(j @)

The frequency response method should therefore find such controller which will satisfy
expressions (3) and (4), that the Nyquist curve will be such as shown in Fig. 4.

The frequency response method has another advantage. The given frequency limitations will
also assure the system stability. The amplitude margin will always be greater than or equal to
2 (A»=2) and the phase margin greater than or equal to 60 degrees (¢,=>60°) (see (3)).

Moreover, by changing the position of the vertical line d(y) from position Re{6}=-1/2 toward
higher or toward lower negative values, we can obtain faster or more sluggish process closed-
loop time response, respectively.

Controller parameters can be adjusted in different ways. One of the possible concepts is using
the optimisation and the second one is the analytical concept. While in this report we are
interested in analytical results, we will develop the appropriate K and 7; analytically. In
[Vranci¢ et al., 1995] the controller parameters, for given processes in Table 1, were obtained
by the optimisation. Finally, the analytical solutions will be compared with the optimisation
results.
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Fig. 4. The Nyquist curve of G,(j@) *G.(jw)
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3. Theoretical evaluation

Let us have the following process transfer function:

G,(s) 1+bs+b,s’ +b,s +..+b,s"
S)=
P
l+as+a,s +a,s +.+a,s"

)

The static process gain is assumed to be equal to 1. In further evaluation will be suggested
how to handle processes with the static gain which is different from 1.

When using the PI controller, given by (1), we gain the following open-loop system transfer
function:

dy+ds+d,s’ +dys*+.. +d, s’

G, (S)G » (s) (6)

Cestest o8 oSt e s
CS+ ¢S+ 08" + o8 +.L4e,s

where Ge(s)Gp(s) must be a strictly proper function. Constants ¢; and d; in (6) can be
calculated by inserting (1) and (5) into (6):

G =1
a=al;
6 =a,1;
¢ =al;
d,=K )
dy=K(b + 1)
d, = K(b, +b7T)
d; = K(b, +b,T)
With the substitution of s by jwin (6), the frequency response can be obtained:
d,—d,o +.. +jold, —d,o +...
G (jo)Gy(jo)=——— (4 ~do’.) 8)

—c0° +cw'—.. .+joo(c0 — 0 +.. )

The real part of (8) comes to
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Re{GC(ja))GP(ja))} =

(do ~d,w’+.. .)(—cla)2 +ewt—.. ) + a)z(d1 ~d,o’+.. .)(co -, +.. ) o)
- a -

2
(—cla)2 +emt—.. ) + w2(00 -, +.. )

_¢dy —od, + a)2(c3d0 +c¢d, —c,d; — c2d1)+...

cO2 + a)z(cl2 - 2¢,6, )—. ..
When inserting (4) into (9), we get:

d —cd 1
Re{G, (j0)G,(jO)f = <757 =~ (10)
0

It is somehow more tough task to satisfy condition (3). The solution could be in setting the
next set of equations [Boucher and Tanguy, 1976]:

é’Re{GC (j@)G,(J a))}| =0
Jw o0
& Re{G.(jo)G,(jo)| ~0
Ow? o0 ’ (b
ot Re{G(;(ja’)GP(ja’)H -0

-1
on"

w=0

where n determines the order of differential equations in (6). Let us now calculate the first
derivative:

ORe{G,.(jo)G,(jo)}
ow
2a)(c02[c3d0 +cd, —c,d; — czdl] - coclzd1 + 613d0 + 2c02c2a’1 - 2coclczd0) (12)

[co2 + a)z(cl2 - 2¢y0, )]2

From expression (12), it can be seen that the first expression in (11) is already satisfied, when
inserting w=0. The second derivative equals to:

12



Z Re{G,(jo)G,(jo)}
oo’
Z(C(IZ[csd(l + cldz - Cud3 - Czdl ] - cl)clzdl + clsdo + 2ct)zczd1 - 201)610261(»)[002 +o’ (Clz - 20(102 )]2

) [c(,z +a)2<c12 —ZCOCZ)]4 ) (13)

4o’ [c(,z + a)z<cl2 —2¢,c, )](012 —2c,c, )((:02[(:361’0 +cd, —cyd; — czdl] - coclza’l + cfa’0 + 20020261’l - 200c102d(,)

2 2 2 +
[c') +@® (c, —20002)]

2 2 3 2
2(00 [c‘gd0 +cd, —c,d;— czdl]— ¢, dy+e dy+2¢, c,d, - 20(,clczd0)

T
2 2
[co +a)z(cl —20(,(:2)]

.([coz + a)z(clz —2¢,c, )]2 - 4(02[0(,2 + a)z(clz —2¢,¢, )](clz —-2¢,c, ))

It can be seen that expression (13) becomes zero, when

002[c3d0 +c¢d, —c,d; — czdl] —cycld + ¢ dy +2¢, cyd, —2c,c,6,dy = 0. (14)

If (14) is satisfied, then the higher derivatives in (11) also equal to zero, so (11) is completely
fulfilled.

To satisfy conditions (10) and (14), the whole process model has to be known (at least
elements ¢y to c¢; and dj to ds). As it is usually quite difficult to obtain whole process model,
we tried to find the solution by using the concept of multiple integration method [Strejc,
1959].

Consider the process step response as shown in Fig. 5.

Let us define a function y,(?) as:

!

w(1)= I (1= y(t))ar (15)

A variable 4; denotes the surface between process input # and process output y, if process
steady-state gain equals to 1:

A =y (0) = |(1= p(0))dr = 1im1(1 ~G,(s))=a,—b, (16)

s—>0 ¢

S S

Some additional information about the process transfer function can be obtained by
calculating the surface 4, (17), shown in Fig. 6.

A, = ()= [(4 -y (r))t = nml(Al —1(1 - GP(S))) =b, —a, + Aa,, (17)

s—0 ¢ Ky

S8

13



where y,(t) equals to

14

J/2(t) - (;'.(Al _yl(t))dt

u(t)

ARRRRRRRRSS

N

\\\\\

(18)

Fig. 5. Typical process response on a unity-gain step function u(t). The area A; denotes the

surface between u(t) and y(t)

Fig. 6. The area between the A; and the y,(t)



The similar can be derived for the third integral:

O -~ (19)

s—>0 ¢ Ky

4y = yy(0) = :[(Az = yy(t))dt = 1im1[Az - l(Al - %(1 - GP(S))D =a, —b, + d,a,— Aa,, (20)

which is shown in Fig. 7.

Fig. 7. The area between the A, and the y(t)

Here, we have to be aware of the fact that the values 4;, 4, and 4; can be obtained quite easily
from the process step response. Now, it will be shown that these values can be used in
controller parameters calculation. When inserting (7) into (10), we can see that

r-4-h e

1

1+—

2K

Inserting (16) into (21) lead us to the following expression:

yp— (22)

1

I+—

2K
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Therefore, controller constants K and 7; are related through the surface 4; if (4) is satisfied.
Note that also the first derivative in (11) equals to 0, as given in (12).

Expression (22) is very important due to its interesting behaviour. If we choose one of the
controller constants (e.g. K), the other (7)) can be calculated by considering expression (22). It
will be explained later how process response can be significantly improved by using such
approach (e.g. undershoots vanish, etc.).

To calculate both parameters for the PI controller, expression (7) is inserted into (14):
KTf[a3 +a (b, +bT)=b,—b,T—a] (b +T)+a +a, (b +T)- Za,az] =0 (23)

The expression inside the brackets in (23) must equal to 0. The controller integral time
constant can be calculated from (23) as

2 3
T —ay—ab, +b, +a,’b—a; —a,b +2aa,
"= =

2
ab —b,—a +a,

—[a3 - b, + al(b2 -a, + al(al - bl)) - az(a1 - bl)]
_[b2 -a, +a (a1 - b )]

24)

When comparing (24) to (16), (17) and (20), we can see, that the controller integral constant
becomes equal to the ratio of two surfaces (integrals):

T- % (25)

2

Expression (25) therefore gives the solution for the integral time constant 7}, while K can be
calculated from (22).

Now, let us imagine that 7; would be tuned from (25) and K would be 1 [Vranci¢ et al., 1995].
Then

Re{G,.(0)G,(0)} = - (26)

To scale the Nyquist curve such to satisfy the condition (4), the proportional gain K has to be

K== 27)

Inserting (27) into (22) gives

16



A
T=—-—| 28
" l+ta 8)
A factor a can be obtained by comparing (25) and (28):
AI A2
oa=—"-=-1 29
4 (29)

The PI controller tuning procedure can therefore go on as follows:

e measure a process step response
e calculate the surfaces 4;, 4> and 43
e calculate factor o from (29)

e calculate controller parameters K and 7; from (27) and (28)

The above procedure is valid if process steady-state gain equals to 1. If this assumption is not
true, then the process step response can be rescaled as to give the steady-state gain equal to 1.
The actual steady-state gain is saved in variable Ay. The procedure is then the same in all
points, except that the controller gain K must be calculated by expression (30) instead of (27).

05
o,

K (30)

Note that the introduction of the factor o has only “hystorical” reasons. This factor was used
during the optimisation procedure by which controller parameters K and 7; were obtained (see
[Vranci¢ et al., 1995]). Therefore, controller parameters can also be calculated directly from
(22) and (25).

17
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4. Experimental results

The tuning procedure was tested on 9 different processes (see Table 1), where one particular
process parameter was chosen for each process:

e
GPI(S)ZW (31)
G (s)= ¢ Y
72(5) o) (32)

1
G = 33
() (1+s)2 G

1
G = 34
P4(S) (1+s)4 G4

1
G = 35
»s(5) ) (35)
Gls) = ! (36)

(1+5)(1+0.55)(1+ 0.255)(1 + 0.1255)
(1-3)
G = 37
P7(S) (1+S)3 ( )
e *(1+0.45)

G = 38
rs(5) (s (38)
! (39)

Gpo(s) = (1+s)(1+s(1+0))1+s(1-17))

The tuning method was also tested on noise, wrongly estimated end of experiment
(integration) time and on process non-linearity.

The used simulation scheme in program package SIMULINK is shown in Fig. 8. A white
noise was filtered by the first-order filter with time constant 77;,=0.1s at various constants Ky

(Fig. 8).

19
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Fig. 8 The simulation scheme in SIMULINK

parameters K and 7; is given in appendix.

The experimental results for processes Gp;(s) to Gpg(s) with and without present noise are

given in Tables 2 to 10, where Kz, was changed from value 0 to 0.3.

Kne | Ao A A; A3 a K T;

0 1.000 | 1.999 |2.502 |2.674 |0.871 |0.574 | 1.069
0.1 1.002 |2.017 |2.601 |3.080 |0.703 |0.710 |1.184
0.2 1.005 |2.026 |2.663 |3.342 |0.615 |0.810 | 1.255
0.3 1.007 |2.039 |2.79 3.951 |0.44 1.129 | 1.416

Table 2. Calculated values of areas and controller parameters vs. noise amplitude K,

20

for the process Gp;(s)




Kaie | Ay A A; A3 a K T;

0 1.000 | 3.00 5.504 |8.191 |[1.016 |0.492 | 1.488
0.1 0.998 [2.969 |5234 |6954 |1.235 |0.406 | 1.329
0.2 0.996 |2.952 |5.047 |6.218 | 1.397 |0.360 | 1.232
0.3 0.994 2919 |4.665 |4.349 |2.131 |0.236 |0.932

Table 3. Calculated values of areas and controller parameters vs. noise amplitude K,
for the process Gp(s)

Kne | Ao A A; A3 a K T;

0 1.00 1.998 [2.992 [3.963 |0.509 | 0983 | 1.325
0.1 1.002 |2.015 |3.083 |4.336 |0433 |1.153 | 1.406
0.2 1.005 |2.027 |3.172 | 4.69 0.371 | 1.34 1.478
0.3 1.007 |2.048 |3.306 |5304 |0277 |1.795 | 1.604

Table 4. Calculated values of areas and controller parameters vs. noise amplitude K,
for the process Gps(s)

Kaie | Ay A A; A3 a K T;

0 1.00 3.997 |9.98 19.9 1.005 |0.498 | 1.994
0.1 1.00 3.993 [9.869 |19.31 |1.04 0.481 | 1.957
0.2 1.001 |3.997 |9.776 | 18.72 | 1.087 | 0.460 | 1.915
0.3 1.001 |[4.013 [9.925 [19.73 | 1.018 | 0.491 | 1.988

Table 5. Calculated values of areas and controller parameters vs. noise amplitude K,

for the process Gpy(s)

21



0 1.0 7.999 |36.0 120.1 | 1.397 |0.358 |3.336
0.1 0.999 |7958 |35.17 |113.2 |1.473 |0.34 3.218
0.2 0.997 |7.948 |3498 |112.5 | 1472 |0.341 |3.216
0.3 0996 |7.873 |33.52 |100.4 | 1.63 0.308 |[2.994

Table 6. Calculated values of areas and controller parameters vs. noise amplitude K,

for the process Gps(s)
Kne | Ao A A; A3 a K T;
0 1.0 1.875 [ 2424 |2.729 |0.665 |0.752 | 1.126

0.1 1.002 | 1.891 |[2.521 |3.132 |0.522 |0.955 | 1.242
0.2 1.005 |1.902 |2.611 |3.514 |0.413 |1.204 | 1.346
0.3 1.007 | 1912 |[2.695 |3.894 |0.324 | 1.534 | 1.445

Table 7. Calculated values of areas and controller parameters vs. noise amplitude K,

for the process Gpg(s)
Kaie | Ay A A; A3 a K T;
0 1.00 3.998 | 8.99 15.95 | 1.253 |0.399 | 1.775

0.1 0.998 (3973 |8.713 |14.66 | 1.361 |0.368 | 1.683
0.2 0.996 |3.954 |8.538 |13.96 |1.418 |0.354 | 1.635
0.3 0994 (3915 |8.176 | 1230 |1.603 |0.314 |1.504

Table 8. Calculated values of areas and controller parameters vs. noise amplitude K,
for the process Gp(s)



0 1.00 2.60 4301 |5976 |0.871 |0.574 | 1.389
0.1 0.998 |[2.583 |4.123 |5.17 1.059 | 0473 | 1.254
0.2 0996 |[2.578 |4.075 |5.052 |1.079 |0.465 |1.24

0.3 0.994 |2.552 |3.838 |4.04 1.424 | 0.353 | 1.053

Table 9. Calculated values of areas and controller parameters vs. noise amplitude K,

for the process Gps(s)
Kne | Ao A A; A3 a K T;
0 1.00 3.00 5012 |5.072 | 1.964 |0.255 | 1.012

0.1 1.004 |3.053 |5.433 | 7318 |1.267 |0.393 | 1.347
0.2 1.007 |3.096 |5.865 |10.41 |0.744 | 0.667 | 1.776
0.3 1.011 |3.129 |5968 | 1037 |0.80 0.618 | 1.738

Table 10. Calculated values of areas and controller parameters vs. noise amplitude Ky,
for the process Gpy(s)

It can be seen that some processes are more and some are less sensitive to noise. The most
sensitive to noise are faster processes, as Gp;(s), Gpa(s), Gps(s), Gpe(s) and Gpy(s). As it will
be outlined later, the resulted calculated parameters at the highest level of noise are resulting
in still quite good closed-loop time response. Moreover, in next chapter it will be shown that
much better estimations of K and 7; can be obtained when using another approach for noisy
processes.

The next we tested the new algorithm sensitivity on the wrongly estimated end of experiment
time. The results are shown in Tables 11 to 19. The first row denotes the original step-
response experimental time and other rows denotes results when the experimental time is
shorten. 7%, denotes the experimental time in seconds. It can be seen that the new algorithm is
not too sensitive on the improper estimation of the experiment time. Moreover, if process is
noisy, it is recommended to decrease the measurement time of step response, what will be
performed in next chapter.

23



Thn | Ay A A As a K T;

12 1.000 | 1.999 |2.502 |2.674 |0.871 |0.574 | 1.069
8 0.999 | 1.99 2.45 2.51 0.941 |0.532 | 1.025
6 0.991 |1.955 |2302 |2.17 1.073 | 0.470 | 0.943
4 0.939 |[1.813 |[1.863 |1.433 | 1.358 |0.392 |0.769

Table 11. Calculated values of areas and controller parameters vs. experimental time T, [s]

for the process Gpj(s)

T | Ay A A; A3 a K T;

15 1.000 | 3.00 5.504 | 8.191 |1.016 |[0.492 | 1.488
12 1.00 3.00 5475 | 8.06 1.04 0.483 | 1.472
10 0.998 |2.984 |5391 |7.75 1.076 | 0.466 | 1.437
8 0.99 2936 |5.126 | 6942 |1.168 |0.433 | 1.354

Table 12. Calculated values of areas and controller parameters vs. experimental time Ty, [s]

for the process Gpy(s)

Thn | Ao A A As a K T;

12 1.00 1.998 [2.992 |3.963 |0.509 |0.983 | 1.325
10 0.999 |[1.993 |2.955 |3.833 |0.537 | 0933 | 1.297
8 0.996 |1.969 |2.837 |3.484 |0.603 |0.832 | 1.228
6 0.977 |1.885 |[2.497 |2.703 |0.741 | 0.69 1.082

Table 13. Calculated values of areas and controller parameters vs. experimental time T, [s]
for the process Gps(s)
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16 1.00 3.997 |9.98 19.9 1.005 | 0.498 | 1.994
14 0.999 |3.99 9912 |19.54 |1.024 |0.489 |1.972
12 0996 |[3.965 |9.711 | 18.65 | 1.064 | 0472 |1.921
10 0985 |[3.880 |9.188 |16.68 |1.142 |0.445 |1.815

Table 14. Calculated values of areas and controller parameters vs. experimental time T, [s]
for the process Gpy(s)

T | Ay A A; A3 a K T;

25 1.0 7.999 |36.0 120.1 | 1.397 | 0.358 |3.336
20 0998 |7977 |35.68 |117.6 | 1.421 |0.353 |[3.295
18 0995 |7.936 |35.15 |114.0 | 1.448 |0.347 |3.243
15 0972 | 7.75 33.06 [101.6 |1.523 | 0.338 | 3.072

Table 15. Calculated values of areas and controller parameters vs. experimental time Ty, [s]
for the process Gps(s)

12 1.0 1.875 [ 2424 | 2729 |0.665 |0.752 | 1.126
8 0.998 |1.864 |2365 |2.549 |0.729 |0.687 |1.078
6 0990 |1.823 |2.199 |2.169 |0.848 |0.596 | 0.986
5 0974 |1.767 |2.011 | 1.82 0.952 [0.540 | 0.905

Table 16. Calculated values of areas and controller parameters vs. experimental time T, [s]
for the process Gpg(s)
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Thn | Ay A A As a K T;

15 1.00 3.998 |8.99 1595 |1.253 [0.399 | 1.775
12 0.998 |[3.985 |8.875 |1543 |1.292 |0.388 | 1.739
10 0.992 |3.945 |8.593 | 1436 | 1.362 | 0.371 | 1.671
8 0.966 |3.823 |7.865 |12.07 | 1.492 |0.347 | 1.534

Table 17. Calculated values of areas and controller parameters vs. experimental time T, [s]
for the process Gp(s)

T | Ay A A; A3 a K T;

14 1.00 2.60 4301 |[5976 |0.871 |0.574 | 1.389
10 0.999 |2.589 |4.23 5.701 |0.921 |0.544 | 1.348
8 0.993 | 2.556 |4.05 5.16 1.006 |0.501 | 1.274
7 0.984 |2.514 |3.857 |[4.666 | 1.078 | 0471 | 1.210

Table 18. Calculated values of areas and controller parameters vs. experimental time Ty, [s]

for the process Gps(s)
Thn | Ao A A As a K T;
20 1.00 3.00 5.012 |5.072 | 1.964 |0.255 |1.012
16 0.999 | 2987 |4.882 |4.335 |2.364 |0.212 |0.888
14 0.999 | 2989 |4905 |4.465 |2.284 |0.219 |0.910
12 1.004 |3.034 |5.24 5902 |1.694 |0.294 |1.126

Table 19. Calculated values of areas and controller parameters vs. experimental time T, [s]
for the process Gpy(s)

Finally, the chosen processes were also tested on the non-linearity. The non-linearity:
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was added on the process output. The variable u denotes input value and f(u) is the output of
the non-linearity. The values from K,,;=0.05 to K,,=0.15 were tested. The non-linearity (40) at
K,=0.15 is shown in Fig. 9.

0 | | | | I | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input

Fig. 9. The non-linear function (40) @ K,=0.15

The following scheme in SIMULINK was used for testing the process non-linearity:

O—»

Clock

T—»cre R o vorkspace
Step Fen1 GPE) Fen Transport Delay1

Fig. 10. The simulation scheme in SIMULINK

The function f(u) denotes the process non-linearity (40). Tables 20 to 28 gives us the
calculated values of areas and controller parameters vs. parameter K,;. It is shown, that the
results differs from ones obtained by the linear process, but the differences are not so crucial,
that will be proved later from the closed-loop time response results.
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28

0 1.000 | 1.999 |2.502 |2.674 |0.871 |0.574 | 1.069
0.05 |1.00 1929 |2.242 |2.19 0974 0513 |0.977
0.10 | 1.00 |1.858 |1.982 |1.706 | 1.158 |0.432 |0.861
0.15 |1.00 |1.787 |1.722 |1.222 |1.518 |0.33 0.71

Table 20. Calculated values of areas and controller parameters vs. non-linearity K,

for the process Gpj(s)
Ku | Ao | A Az A; a K T;
0 1.000 | 3.00 5.504 |8.191 |1.016 |0.492 | 1.488

0.05 | 1.00 |2925 |5.05 6.94 1.127 | 0.444 | 1.376
0.10 | 1.00 |[2.851 |4.588 |5.689 |1.299 |0.385 | 1.240
0.15 |1.00 [2.776 |4.129 |4.438 |1.583 |0.316 |1.075

Table 21. Calculated values of areas and controller parameters vs. non-linearity K,
for the process Gpy(s)

Ku | Ao | A A; A; a K T;

0 1.00 | 1.998 |2.992 |3.963 |0.509 |0.983 | 1.325
0.05 |1.00 1924 |2.611 |3.145 |0.598 |0.837 |1.205
0.10 | 1.00 | 1.85 2.23 2327 [0.773 | 0.647 | 1.044
0.15 | 1.00 [1.776 |1.849 | 1.51 1.175 | 0.425 | 0.816

Table 22. Calculated values of areas and controller parameters vs. non-linearity K,
for the process Gps(s)



0 1.00 | 3.997 |9.98 19.9 1.005 | 0.498 | 1.994
0.05 |1.00 [3.925 |9.217 |17.03 |1.124 |0.445 | 1.848
0.10 | 1.00 |3.846 |8.45 14.17 | 1.293 |0.387 | 1.677
0.15 |1.00 [3.771 |7.685 | 1131 |1.562 |0.32 1.472

Table 23. Calculated values of areas and controller parameters vs. non-linearity K,

for the process Gpy(s)
Ku | Ao | A Az A; a K T;
0 1.0 7.999 |36.0 120.1 | 1.397 |0.358 |3.336

0.05 [ 1.00 |7.922 |3445 |1094 |1.496 |0.334 |3.174
0.10 | 1.00 |7.845 |3291 |98.62 |1.618 |0.309 |2.997
0.15 |1.00 [7.769 |31.36 |87.89 |1.772 |0.282 |2.802

Table 24. Calculated values of areas and controller parameters vs. non-linearity K,
for the process Gps(s)

Ku | Ao | A A; A; a K T;

0 1.0 1.875 |2.424 | 2729 |0.665 |0.752 | 1.126
0.05 |1.00 |1.815 |2.153 |2.207 |0.771 |0.649 |1.025
0.10 | 1.00 |1.755 |1.883 | 1.686 |0.961 |0.520 |0.895
0.15 | 1.00 [1.696 |1.613 |1.165 | 1.349 |0.371 |0.722

Table 25. Calculated values of areas and controller parameters vs. non-linearity K,
for the process Gpg(s)
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Ku | Ao Aq A As a K T;

0 1.00 | 3.998 | 8.99 1595 |1.253 [0.399 | 1.775
0.05 | 1.00 |3.88 8.32 13.80 | 1.339 |0.374 | 1.659
0.10 | 1.00 |3.762 |7.653 |11.66 |1.469 |0.340 | 1.524
0.15 | 1.00 |3.644 |6.986 |9.517 |1.675 |0.299 | 1.362

Table 26. Calculated values of areas and controller parameters vs. non-linearity K,
for the process Gp(s)

K. | Ao A A As a K T;

0 1.00 | 2.60 4301 |[5976 |0.871 |0.574 | 1.389
0.05 |1.00 |2.519 |3.879 |[4.945 (0977 |0.512 |1.275
0.10 | 1.00 |2.439 |3.458 |3.913 |1.155 [0.433 |1.132
0.15 | 1.00 |2.359 |3.036 |2.882 |1.485 |0.337 |0.949

Table 27. Calculated values of areas and controller parameters vs. non-linearity K,
for the process Gps(s)

Ku | Ao Aq A As a K T;

0 1.00 | 3.00 5.012 [ 5.072 [ 1.964 | 0.255 | 1.012
0.05 | 1.00 |3.005 |4.96 5214 | 1.858 |0.269 | 1.051
0.10 | 1.00 |3.010 |4.91 5.363 | 1.755 |0.285 | 1.092
0.15 | 1.00 |3.015 |4.859 |5.512 |1.658 [0.302 | 1.134

Table 28. Calculated values of areas and controller parameters vs. non-linearity K,
for the process Gpy(s)

Now, the open-loop and closed-loop time responses will be shown for all 9 processes ((31) to
(39)). Controller settings will be based on the original step responses, the noisy step responses
(at K4=0.3), the shorten step responses (the shortest in Tables 11 to 19) and the non-linear
step responses (at K,=0.15). The shown time-responses are those marked by the shadowed

rows in Tables 2 to 28.
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Several closed-loop experiments were performed, where tracking and control performances
were being tested. The set-point changed from 0 to 1 at time origin, and the disturbance unity
step change at process input appeared at the half-time of each experiment (see Fig. 1).

Fig. 11 and 12 show simulation schemes, built in the program package SIMULINK, adapted
for testing the closed-loop operation for the linear and noiseless processes, processes with the
present noise, and the non-linear processes.

Kiilt

\Nhitoise Thlts+1 "
Step Fent Transfer Fen11 Clock
¥
Kp*Ti.s+K| + / >Q} { Mux| yout
n 4 P E PGP - . I To Workspace

= Tis Sumé
Step Fen Sum1
Sum Pl - controller GP(s) Delay

Fig. 11. The closed-loop scheme in SIMULINK
for testing the processes with and without noise

Step Fen1 ®—>
Kp*Ti.s+Kp E GP(S) Clock >

Tis
Sum1 Fcn
Pl - controller GP(s) Delay

v

Step Fen To Workspace

o Mux

Fig. 12. The closed-loop scheme in SIMULINK for testing the non-linear processes
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1.2

Fig. 13. The open-loop response of the process Gp;(s);
__noiseless response, -- response with added noise (Kz; = 0.3)
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Fig. 14. The closed-loop response of the process Gp(s);
__controller parameters calculation based on the noiseless response,
-- controller parameters calculation based on response with added noise (Kz, = 0.3),
-.- controller parameters calculation based on the shorten step response (T, = 45)



0.9F

0.8

0.7F

0.6

0.5

0.4

0.3

0.2

0.1

8 10 12

Fig. 15. The open-loop response of the process Gp;(s);
__linear process (K, = 0), -- non-linear process (K, = 0.15)
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Fig. 16. The closed-loop response of the process Gp(s);
__controller parameters calculation based on the linear response,
-- controller parameters calculation based on the non-linear response (K,; = 0.15)
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1.2
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Fig. 17. The open-loop response of the process Gpa(s);
__noiseless response, -- response with added noise (Kz; = 0.3)
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Fig. 18. The closed-loop response of the process Gp(s);
__controller parameters calculation based on the noiseless response,
-- controller parameters calculation based on response with added noise (Kz, = 0.3),
-.- controller parameters calculation based on the shorten step response (T, = 8s)
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Fig. 19. The open-loop response of the process Gpa(s);
__linear process (K, = 0), -- non-linear process (K, = 0.15)
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Fig. 20. The closed-loop response of the process Gpy(s);
__controller parameters calculation based on the linear response,
-- controller parameters calculation based on the non-linear response (K,; = 0.15)
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Fig. 21. The open-loop response of the process Gps(s);
__noiseless response, -- response with added noise (Kz; = 0.3)
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Fig. 22. The closed-loop response of the process Gps(s);
__controller parameters calculation based on the noiseless response,
-- controller parameters calculation based on response with added noise (Kz, = 0.3),
-.- controller parameters calculation based on the shorten step response (T, = 65)
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Fig. 23. The open-loop response of the process Gps(s);
__linear process (K, = 0), -- non-linear process (K, = 0.15)
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Fig. 24. The closed-loop response of the process Gps(s);
__controller parameters calculation based on the linear response,
-- controller parameters calculation based on the non-linear response (K,; = 0.15)
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Fig. 25. The open-loop response of the process Gpy(s);
__noiseless response, -- response with added noise (Kz; = 0.3)
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Fig. 26. The closed-loop response of the process Gpy(s);
__controller parameters calculation based on the noiseless response,
-- controller parameters calculation based on response with added noise (Kz, = 0.3),
-.- controller parameters calculation based on the shorten step response (14, = 10s)
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Fig. 27. The open-loop response of the process Gpy(s);
__linear process (K, = 0), -- non-linear process (K, = 0.15)
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Fig. 28. The closed-loop response of the process Gpy(s);
__controller parameters calculation based on the linear response,
-- controller parameters calculation based on the non-linear response (K,; = 0.15)
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Fig. 29. The open-loop response of the process Gps(s);
__noiseless response, -- response with added noise (Kz; = 0.3)
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Fig. 30. The closed-loop response of the process Gps(s);
__controller parameters calculation based on the noiseless response,
-- controller parameters calculation based on response with added noise (Kp; = 0.3),
-.- controller parameters calculation based on the shorten step response (T4, = 155)
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Fig. 31. The open-loop response of the process Gps(s);
__linear process (K, = 0), -- non-linear process (K, = 0.15)
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Fig. 32. The closed-loop response of the process Gps(s);
__controller parameters calculation based on the linear response,
-- controller parameters calculation based on the non-linear response (K,; = 0.15)
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1.2

Fig. 33. The open-loop response of the process Gpg(s);
__noiseless response, -- response with added noise (Kz; = 0.3)
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Fig. 34. The closed-loop response of the process Gpg(s);
__controller parameters calculation based on the noiseless response,
-- controller parameters calculation based on response with added noise (Kz, = 0.3),
-.- controller parameters calculation based on the shorten step response (T, = 3s)
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Fig. 35. The open-loop response of the process Gpg(s);
__linear process (K, = 0), -- non-linear process (K, = 0.15)
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Fig. 36. The closed-loop response of the process Gpg(s);
__controller parameters calculation based on the linear response,
-- controller parameters calculation based on the non-linear response (K,; = 0.15)
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Fig. 37. The open-loop response of the process Gp(s);
__noiseless response, -- response with added noise (Kz; = 0.3)
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Fig. 38. The closed-loop response of the process Gps(s);
__controller parameters calculation based on the noiseless response,
-- controller parameters calculation based on response with added noise (Kz, = 0.3),
-.- controller parameters calculation based on the shorten step response (T, = 8s)
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Fig. 39. The open-loop response of the process Gp(s);
__linear process (K, = 0), -- non-linear process (K, = 0.15)
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Fig. 40. The closed-loop response of the process Gps(s);
__controller parameters calculation based on the linear response,
-- controller parameters calculation based on the non-linear response (K,; = 0.15)
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Fig. 41. The open-loop response of the process Gps(s);
__noiseless response, -- response with added noise (Kz; = 0.3)
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Fig. 42. The closed-loop response of the process Gps(s);
__controller parameters calculation based on the noiseless response,
-- controller parameters calculation based on response with added noise (Kz, = 0.3),
-.- controller parameters calculation based on the shorten step response (T, = 75)
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Fig. 43. The open-loop response of the process Gps(s);
__linear process (K, = 0), -- non-linear process (K, = 0.15)
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Fig. 44. The closed-loop response of the process Gps(s);
__controller parameters calculation based on the linear response,
-- controller parameters calculation based on the non-linear response (K,; = 0.15)
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Fig. 45. The open-loop response of the process Gpy(s);
__noiseless response, -- response with added noise (Kz; = 0.3)
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Fig. 46. The closed-loop response of the process Gpy(s);
__controller parameters calculation based on the noiseless response,
-- controller parameters calculation based on response with added noise (Kp; = 0.3),
-.- controller parameters calculation based on the shorten step response (T4, = 125)
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Fig. 47. The open-loop response of the process Gpy(s);
__linear process (K, = 0), -- non-linear process (K, = 0.15)
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Fig. 48. The closed-loop response of the process Gpy(s);
__controller parameters calculation based on the linear response,
-- controller parameters calculation based on the non-linear response (K,; = 0.15)



The simulation results in Figs. 13 to 48 show that the new tuning method, based on the
process reaction curve, gives quite good results when testing the system closed-loop time
response. Even when quite the high level of noise is present in the system (Kj;,=0.3), the new
method still gives stable results for tested processes. It can be seen that, as mentioned before,
the biggest difference between the noiseless and a process with present noise can be seen for
the processes Gp;, Gpy, Gpz, Gps and Gpy. In next chapter it will be outlined that the obtained
results for the processes with noise can be considerably improved by shortening the
integration time.

Closed-loop time responses also show that the new method is not too sensitive to badly
estimated and of experiment time (7},), so it can turn out as a quite robust method for real
applications.

The results obtained with non-linear processes showed that the new method is also quite
robust on process non-linearity. It can be seen that even when the non-linearity in the process
is quite distinctive (K,~=0.15), what can be clearly seen from the open-loop time responses,
the closed-loop behaviour remains acceptable for all tested processes.
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5. Discussions and limit cases

5.1. Practical multiple integration

The new tuning method is based on the multiple integrations, as derived in previous chapter. It
will be outlined that it is very important how to perform such integrations. Moreover, the
results might be completely unusable in the presence of noise.

The original expressions for calculating the areas A; to A3 are given by expressions (15) to
(20). Instead of successive calculating the results (16), (17) and (20), one can insert (15) into
(18) and (15) and (18) into (19) and get the following results:

w(r)=1= [¥(r)di (41)
y,(t) = At - g + ]{ (;[y(t)dt}dt (42)

yi(t) = 4,1 - 4, g + % - j[ 6[{ ;[y(t)dt}dt}dt (43)

0

The area A4, is calculated from (41) when inserting =17, (the end of experiment time). The
resulted 4, is then inserted into (42) and A4, is determined by asserting =7%,. The area 4 is
then used in (43) and 4; is calculated by using 1=7,.

The MATLAB procedure AREATEST.M, which performs such calculations, is given in
appendix. The results, when using the noise filter Kj;;=0.3 for each tested process, are shown
in Table 29. When comparing to appropriate values in Tables 2 to 10 (for Kj;;=0.3), the
significant difference can seen. The calculated controller gain K becomes even negative for
processes Gpg and Gpy.
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Process Ao A] A2 A3 (04 K T,'

Gpi(s) | 1.023 |2.198 |3.855 | 8.246 |0.028 | 17.77 | 2.139
Gpo(s) 099 |2.882 4366 |2.651 |3.746 | 0.135 | 0.607
Gps(s) | 1.023 |2.193 (4272 |9.11 |0.029 |17.27 |2.132
Gpy(s) | 1.002 |3.982 [9.696 | 18.62 |1.073 |0.465 | 1.92

Gps(s) | 1.031 | 8.551 |44.74 | 201.2 | 0901 |0.538 |4.497
Gps(s) | 1.023 | 2.087 |3.874 | 8.774 | -0.079 | -6.21 |2.265
Gps(s) 099 |3.897 [7.952 | 1095 |1.829 |0.276 | 1.378
Gps(s) 099 |2.497 (3362 | 1.711 |3.908 |0.129 | 0.509
Gpo(s) | 1.028 |3.418 |9.268 | 32.07 |-0.012 | -39.8 | 3.461

Table 29. The resulted areas and controller constants when using equations (41) to (43)
@ Kzu=0.3

The example showed that we must be careful when calculating areas A; to 43;. The reason for
such bad results lies in the fact that the errors were accumulated at the end of experiments,
when process step responses were actually close to the final values.

Figures 49 to 52 depict above statements. For the process Gpa(s), we were studying what is
happening to the calculated values y;(?), y2(¢) and y3(t) (see (15), (18) and (19)). The filter
K7=0.3 was used and the simulation time was 7%,=15s. The open-loop time response is given
in Fig. 49. Fig. 50 shows the first integral y;(z). It can be seen that y;(?), for the system with
noise, tracks the noiseless response quite well at the beginning, but when process approaches
the new steady-state value, the response of the process with the noise starts to drift apart from
the noiseless response. This drift is afterwards accumulated by additional integrations as
shown in Figs. 51 and 52. From Fig. 52 can be seen that the difference between noiseless
response y3(¢) and the response of the process with noise becomes quite significant.

The accuracy of the new method can be therefore significantly improved by shortening the
simulation time. It is shown in Tables 30 to 33, where the processes, which were the most
sensitive to the added noise (Gp;, Gpa, Gps and Gpy), were tested. When comparing these
results with the original ones from Tables 2, 3, 7 and 10, we can see quite improved results.

The experiment on the process Gp, was made to show improvements made by using the
shorter simulation time, where 75,=10s was used. The results can be seen in Figures 53 to 56.
Comparing the functions y,(?), y2() and y3(?) to those obtained by using 74,=15s (Figs. 49 to
52), show obvious improvements.
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Fig. 49. The open-loop response of the process Gpy(s); Simulation time 15,=135s;
__noiseless response, -- response with added noise (Kz; = 0.3)
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Fig. 50. The first integral y (1) of the process Gpy(s); Simulation time Tj,=135s;
___noiseless response, -- response with added noise (K, = 0.3)
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Fig. 51. The second integral y»(t) of the process Gpy(s); Simulation time Tf,=15s;
__noiseless response, -- response with added noise (Kz; = 0.3)

Time [s]

Fig. 52. The third integral y3(t) of the process Gpx(s); Simulation time Tg,=15s;
___noiseless response, -- response with added noise (Ky; = 0.3)



0 1.000 |1.999 |2.502 |2.674 |0.871 |0.574 | 1.069
0.1 1.001 |1.994 |2.463 |2.548 |0.928 |0.539 | 1.035
0.2 1.003 | 2.00 2487 2615 (0902 |0.553 | 1.051
0.3 1.005 |2.005 |2.495 |2.635 |0.898 |0.554 | 1.056

Table 30. Calculated values of areas and controller parameters vs. noise amplitude Kz,
for the process Gpi(s) when experiment time is shorten to T5,=8s.

Kne | Ao A A; A3 a K T;

0 1.000 | 3.00 5504 |8.191 |1.016 |0.492 | 1.488
0.1 1.00 3.001 |5.453 |7.943 | 1.06 0.472 | 1.457
0.2 1.002 |3.019 |5.503 |8.096 |1.052 |0.474 |1.471
0.3 1.005 |3.033 |5.548 |8.268 |1.035 |0.481 |1.49

Table 31. Calculated values of areas and controller parameters vs. noise amplitude Ky
Jor the process Gpz(s) when experiment time is shorten to Ty,=10s.

Kaie | Ay A A; A3 a K T;

0 1.0 1.875 [ 2424 | 2729 |0.665 |0.752 | 1.126
0.1 1.00 1.87 2.387 | 2611 |0.71 0.704 | 1.094
0.2 1.002 | 1.873 |2.39 2.61 0.717 [0.696 | 1.091
0.3 1.004 | 1.878 |2.415 |2.688 |0.687 |0.724 |1.113

Table 32. Calculated values of areas and controller parameters vs. noise amplitude Kz,
for the process Gpg(s) when experiment time is shorten to T5,=8s.
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0 1.00 3.00 5012 |5.072 | 1.964 | 0.255 | 1.012
0.1 1.002 | 3.03 5186 |5.731 | 1.742 |0.286 | 1.105
0.2 1.006 |3.057 |5349 |6.543 | 1.5 0.332 | 1.223
0.3 1.009 |3.11 5649 | 7.767 |1.262 |0.393 |1.375

Table 33. Calculated values of areas and controller parameters vs. noise amplitude Kz,
for the process Gpo(s) when experiment time is shorten to Tj,=16s.

12

02 | | | | | I | | |
0 1 2 3 4 5 6 7 8 9 10

Fig. 53. The open-loop response of the process Gpy(s); Simulation time T;,=10s;
___noiseless response, -- response with added noise (K, = 0.3)
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Fig. 54. The first integral y,(t) of the process Gpz(s); Simulation time T5,=10s;
__noiseless response, -- response with added noise (Kz; = 0.3)

Fig. 55. The second integral y;(t) of the process Gpy(s),; Simulation time Tj,=10s;
___noiseless response, -- response with added noise (Ky; = 0.3)



0 1 2 3 4 5 6 7 8 9 10

Fig. 56. The third integral y3(t) of the process Gpy(s); Simulation time Tz,=10s;
__noiseless response, -- response with added noise (Kz; = 0.3)

To improve the accuracy of the new method even more, we decided to separate the
experiment time from the integration time. The experimental results from the end of
integration time (73,) to the end of experiment time (7%,) were used for determination the
process gain (4y) and the process response during the integration time was used for calculating
surfaces A; to A3 (see Fig. 57).

u(t)

determination of
Y process gain 4,

integration time

time of experiment

Fig. 57. A new approach for determination of Ay to A;
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Different experiments were made to show the improvements made by the new approach. For
the process Gpg, which previously gave the worse results, a new values of areas 4; to 43 and
the values of controller parameters were obtained which are given in Table 34. Comparing
these values to ones given in Table 33 and Table 10, we can see significant improvements of
the new approach.

Tfin

Tint

Ay

A3

20s

14s

1.007

3.058

5.21

5.741

1.775

0.28

1.102

Table 34. Calculated values of areas and controller parameters (@ noise amplitude Kz;,=0.3

for process Gpy(s) when using the separated integration and experimental time.

The modified MATLAB procedure STEPTUN1.M is given in appendix.
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5.2. Limit cases

In this chapter the applicability of the new tuning method will be tested on several other
processes and process constants than those given in Table 1.

Firstly, some process models which give negative value of factor o will be treated. The first
representative is the process similar to the process Gpo(s) but with the following parameters:

Gr(s)= (1+s)(1+s(1+ 21 M+s(1-2))) “4)

The open-loop process step response is shown in Fig. 58 and the process frequency response
is given by the Bode plot in Fig. 59. The frequency peak in Fig. 59 causes the overshoot in
time domain, as shown in Fig. 58.

40 50 60
Time [s]

Fig. 58. The process Gp(s) step response
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Amplitude response

10 ¢

Phase response

-10°t

10°

Fig. 59. The Bode plot of the process Gp(s)

Frequency [1/s]

The values of calculated areas and the controller parameters are given in Table 35. It can be
noticed that factor o is negative. Although the resulted controller parameters K and 7; are

negative, it will be proved that the resulted closed-loop behaviour is acceptable.

Ay

A

A;

A3

1.00

3.00

2.134

-9.044

-1.708

-0.293

-4.239

Table 35. Calculated values of areas and controller parameters for Gp(s)

The Nyquist diagram of the process (44) and the controller given in Table 35, is shown in Fig.
60. It is obvious that the shape of the Nyquist curve is the one defined by the frequency
response method (FRM). The real part equals to -1/2 at small frequencies and the value is
greater for all higher frequencies. The closed-loop time response is given in Fig. 61. It can be
seen that the response behaves like the one for the phase non-minimal process, but no
oscillations can be noticed on time response. The system is critically damped.
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Fig. 60. The Nyquist frequency response of the process and controller (Gp(jw)Gc(j @)
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60
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80 100 120

Fig 61. The closed-loop time response of Gp(s)

and the controller given in Table 35



The second example is performed with a process with relatively strong time constant of the
zero (The process transfer function is similar to the Gps(s)):

G,(s) = e’(1+2s) 45)

(1 + S)2

The open-loop process step response is shown in Fig. 62 and the process frequency response
is given by the Bode frequency response in Fig. 63. The frequency peak in Fig. 63 causes the
overshoot in time domain, as shown in Fig. 62.

12

0.8 J

0.6 b

0.4r- b

Time [s]

Fig. 62. The process Gp(s) step response
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Fig. 63. The Bode plot of the process Gp(s) frequency response

The calculated values of the areas with controller parameters are given in Table 36. It can be
noticed that factor o has again negative sign. The same as in the previous case will be proved
that the resulted closed-loop behaviour is the one desired.

Ao A] Ag A3 o K Ti

1.00 3.00 2.134 |-9.044 | -1.708 | -0.293 | -4.239

Table 36. Calculated values of areas and controller parameters for process Gp(s)

The Nyquist diagram of the process (45) and the controller given in Table 36 is shown in Fig.
64. It is obvious that the shape of the Nyquist curve is as defined by the frequency response
method (FRM). The real part equals to -1/2 at small frequencies and is greater for all higher
frequencies. The closed-loop time response is given in Fig. 65. It can be seen that the response
is quite good. The system is critically damped again.
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Fig. 64. The Nyquist frequency response of the process and controller (GP(jo)GC(jw)
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Fig. 65. The closed-loop time response of Gp(s)
and controller given in Table 34



If the time constant of a zero in (45) would not be 2s, but would change from 1.4s to 1.5s, the
signs of K and 7; would alter, such as shown in table 37.

Tzero Ay Aq A3 A3 a K T;

1.4 1.00 1.601 | 1.313 | 0.52 3.041 | 0.164 | 0.396
1.5 1.00 1.501 | 1.016 |-0.018 |-84.26 | -0.006 | -0.018

Table 37. Calculated values of areas and controller parameters for process Gp(s) with
different zero time constant

In both cases it can be noticed that the controller proportional gain is relatively small, but the
integral term proportional factor:

(46)

remains almost unchanged. This implies that the integral character of the controller, for some
processes with 7., between 1.4s and 1.5s, becomes dominant, the proportional gain is
neglected and the PI controller becomes and can be realised by the I controller:

(47)

In both previous cases (44) and (45) we got the negative values of K and 7;. The question
which remains is what happens when K and 7; have different signs. Now, such case will be
investigated, in which the process:

Go(s)= (1+ 2(;)6? 0.15) (48)

was tested. Fig. 66 shows the process step response and Fig. 67 gives the Bode frequency
response.
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0 2 4 6 8 10 12 14 16
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Fig. 66. The process Gp(s) step response
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Fig. 67. The Bode plot of the process Gp(s) frequency response

The new tuning algorithm gives the next values of the surfaces and controller parameters:



A

A

1.00

1.097

2.076

3.977

-0.427

-1.17

1.916

Table 38. Calculated values of areas and controller parameters for process Gp(s)

Such controller parameters give the unstable closed-loop response. As a rule of thumb in such
cases is to change the sign of o (from negative to positive value or vice versa) and recalculate
values of K (30) and 7; (28). In particular case, the modified controller parameters for

0=0.427 are K=1.17 and 7:=0.769s.

Fig. 68 gives the Nyquist diagram of the process (47) and the modified controller. It is
obvious that the shape of the Nyquist curve is as defined by the frequency response method
(FRM), where the real part equals to -1/2 at small frequencies and the value is greater for all

higher frequencies.

100

601

40

201

Im
o
T

-20-

-40+

_60 -

-801

-100
-2

Fig. 68. The Nyquist frequency response of the process and modified controller

The closed-loop time response of the process with a modified controller is given in Fig. 69.

-1.5

-0.5

(Gr(j )G @)

The response is again critically damped.
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Time [s]

Fig. 69. The closed-loop time response of the process (47)
and the modified controller

Another limit case is when factor o has low values. In such case, the proportional gain K will
have great values (27), (30). If the controller gain K must be limited (what is the case in all
practical implementations (see [Peng et al.]), then 7; (28) can be recalculated from (30) as:

T=—"ts (49)

This can happen when dealing with the low-order processes, e.g. the first order process. The
theoretical value of the factor a for such process is a=0. The small values of the factor a also
appear for the second or higher order processes where one (the main) time constant is
dominant and all the rest of constants can be neglected (they are much smaller than the main
one). The controller parameter calculation for such processes is also more sensitive to noise,
where factor a can easily become smaller than 0. What to do in such cases was already given
in this chapter.
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5.3. Derivative (D) part of a PID controller

The next question which appears is whether it is possible to calculate the derivative part of the
PID controller using the new method approach. Here we will try to use only the already
available information about the surfaces A4;, 4, and A43. It is assumed that the three successive
integrations are enough (maximum) in real processes and that additional integrations would
not give so exact information more. In our further work the latter assumption will be tested.

We try to find the relation between process constants by using the “schoolbook™ PID
controller:

sKT,
d
W e + + y
> K " Process >
+
K
sT;

Fig. 70. The “schoolbook’ PID controller
The controller transfer function is therefore:

1+sT +5°TT
G.(s)= KT" (50)

When applying such controller to the process (5), and when expressing the coefficient ¢y to ¢;
and dj to d; in (6), we get the following result:
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(D

Inserting the changed constants (51) into (10) and (14), the changed value of the constant o
can be expressed:

4,4,
4,

}ﬂ

AZ
a= -1-T,— 52
A, (52)

From (52) is obvious that oo depends on the chosen derivative time constant 7, but there are
given no strict guidelines how to choose parameter 7. It can be seen that the factor o becomes
zero when T,; becomes equal to:

— AIAZ — A3 (53)

So, the actual 7}; should be smaller than 7},,,.. In fact, 7; must be such smaller than 7., that
the system will remain stable.

The example was performed to depict above statements. The following process was used:

Gy(s)= (54)

Table 39 gives the values of areas, which were calculated from the process step response:
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1.00 | 3.00 |6.00 10.0

Table 39. Calculated values of areas for the process Gp(s)

The process was tested with 4 different differential time constants: 7,~=0s, 7,=0.3s, 7,=0.6s
and 7,/=0.8s. The values of o (52) and corresponding controller parameters K (27) and 7; (28)
are given in Table 40.

Td (04 K Tt

0 0.8 0.625 | 1.667
0.3 0.53 0.943 | 1.961
0.6 0.26 1.923 | 2.381
0.8 0.08 6.25 2.778

Table 40. Calculated values of a and controller parameters for the process Gp(s)

The adequate closed-loop time responses are given in Fig. 71. It is shown that all four time
responses are stable. Increasing the value of 7,; from Os to 0.6s improves the closed-loop
response, while using the 7,/=0.8s causes damped oscillations (although it gives the fastest
response). So, there exists the optimal solution for the controller constant 7. The optimal
value of 7, is the greatest 7; for which the Nyquist curve of the process and controller will
still follow the frequency response method recommendations. This optimal value of 7; will be
specially investigated in our further work.

The Nyquist curves are given in Fig. 72. It can be seen that the solutions for 7,/~0s to 7,/~0.6s
give the desired shape of the Nyquist curve, given by the frequency response method, while
the solution for 7,/~0.8s crosses the vertical line Re{G¢(j®)Gp(j@w) }=-1/2 and approaches the
unstable point -1+70. Fig. 73 gives the detailed scheme of the Fig. 72.
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Fig. 71. The closed-loop time response of the process Gp(s)
at different differential time constants Ty, Ty=0s, -- T;=0.3s, -.- T;=0.6s, ... T;=0.8s
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Fig. 72. The Nyquist frequency response of the process and controller (Gp(j@)Gc(j @)
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Fig. 73. The Nyquist frequency response of the process and controller (Gp(jw)Gc(j @) -
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5.4. Improving the classical tuning rules

The main drawback of the classical tuning rules, based on the process reaction curve is that
they usually use only the limited information about the process (e.g. only process lag and
process rise time). Therefore they can only be successfully used in a limited range of process
models.

Here, the Ziegler-Nichols and Cohen-Coon tuning rules will be used for calculating controller
proportional gain, while expression (49) will be used for calculating the integral time constant
T;. At first, the Ziegler-Nichols tuning rules for PI controller (see [Vranci¢ et al., 1995]) were
used to calculate the controller parameters for the following process:

G,(s)= ] (55)

The calculated controller parameters were (see [Vranci¢ et al., 1995]):

K=0.9 s
1 =33s (56)

The closed-loop time response is given with the dashed line in Fig. 74.

A quite sluggish response can be observed. To improve the response, the controller integral
time constant was recalculated using the expression (49). The new value was 7;=1.29s. The
changed closed-loop response is given with the full line in Fig. 74, where much better
response can be noticed.

Similarly, the Cohen-Coon tuning rules were applied to the process:

G,(s)= (57)

where the calculated controller parameters were (see [ Vrancic¢ et al., 1995]):

K =8.71 .
T =0.774s (58)

The dashed line in Fig. 75 shows the closed-loop time response. Again, as in previous case,
the integral time constant was recalculated, using the expression (49). The new value was
T=1.89s. A full line in Fig. 75 shows the closed-loop response when using the changed
controller. It can be seen, that the controller becomes more stable.
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Fig. 74. The closed-loop response for the process Gp(s) (@ K=0.9;
 T=1.29s, --T;=3.3s
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Fig. 75. The closed-loop response for the process Gp(s) (@ K=8.71;
 T=1.89s, - T;=0.774s



6. Conclusions

The improved controller tuning results can be seen when using the whole process reaction
curve instead of detecting the process lag and rise time. In the same time, the tuning procedure
is simple and can be implemented in praxis.

The only thing which should be done by the operator is to determine the experiment and
integration time (see chapter 5.1). Then the procedure calculates the appropriate areas and
controller constants by itself.

The advantages of such approach are:

e There is no need to detect the process reflection point (difficult for noisy processes)

e The controller parameters are exactly calculated, according to given frequency criterion, for
wide spectrum of process models

e The method is not too sensitive to noise (see chapter 5.1), non-linearity and badly estimated
time of experiment

e The process overshoot can be controlled by moving the vertical axis in Nyquist plot from
position -1/2 to the left or to the right

e The method gives stable closed-loop responses

The drawback of such approach is that the disturbance rejection is not always the optimal one.
Moving the “vertical axis” from the position -1/2 is not always the best concept. The method
in the present form gives such controller which has the same transfer function from the
reference (feed-forward path) and from the process output (feedback path) to the controller
output. The advantages of e.g. variable set-point weighting method (see [Astrom and
Hégglund, 1995]) can therefore not be used.

Our further work will be based on finding the exact value of the parameter 7, finding the rule
for which processes the method can be implemented and investigating if further integrations
can give some additional process information (in the presence of noise).

The accent will also be given to finding a more global concept for tuning the controllers given
by the rational transfer function and to find the adequate approach in the case if the feedback
and the feed-forward controller paths are not the same.
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Appendix

The MATLAB procedure STEPTUN.M

e

function [Kp,Ti,A0,Al1,A2,A3,alphal = steptun (yout);

o

e

function STEPTUN.M calculates the appropriate Kp and Ti
controller parameters from the process step response and
its first, second and third integral.

o

e

function [Kp,Ti,A0,Al1,A2,A3,alphal = steptun (yout);

global K;
global T;
global U;
global youtl;

3
Il

a = max(size(yout));
Tfin = yout(a,l);

i = a;

while (yout(i,1l) > 0.9*Tfin)
i = 1-1;

end

A0 = mean(yout(i:a,2));
K= 1;
T
U

= yout(:,1);
= yout(:,2)/R0;

[t,x,y] = rk45('openl2',Tfin);

a = max(size(youtl));

i = a;

while (youtl(i,l) > 0.8*Tfin)
i = 1-1;

end

Al = mean(youtl(i:a,2)):

K = Al;
youtl(:,1);
U = youtl(:,2);

=
I

[t,x,vy] = rkd5('openl2',Tfin);

a = max(size(youtl));

i = a;

while (youtl(i,1) > 0.8*Tfin)
i=1i-1;

end

A2 = mean(youtl(i:a,2));

K = A2;

T = youtl(:,1);

U = youtl(:,2);

[t,x,y] = rk45('openl2',Tfin);

a = max(size(youtl));

i = a;



while (youtl(i,l) > 0.8*Tfin)
i = 1-1;
end

A3 = mean(youtl(i:a,2)):

alpha = AL*A2/A3 - 1;

0.5/ (a0*alpha) ;
Al/(l+alpha);

Kp
Ti

The MATLAB procedure AREATEST.M

o

function [Kp,Ti,A0,Al,A2,A3,alphal = areatest (yout):;

e

o

function AREATEST.M calculates the appropriate Kp and Ti
controller parameters from the process step response by
using the improper calculations of areas Al to A3.

e

o

function [Kp,Ti,A0,Al,A2,A3,alphal = areatest (yout):;

global K;
global T;
global U;
global youtl;

K= [];

3
Il

U= 1[]:

a = max(size(yout));
Tfin = yout(a,l);

AQ = yout(a,2);

K 0;

T = yout(:,1);

U = -yout(:,2)/A0;

[t,x,y] = rk45('openl2',Tfin);
a = max(size(youtl));

Al = Tfin - youtl(a,2);

K = 0;

T = youtl(:,1);

U = -youtl(:,2);

[t,x,y] = rk45('openl2',Tfin);

a = max(size(youtl));
A2 = Al*Tfin - Tfin"2/2 + youtl(a,2);
K = 0;

youtl(:,1);
U = -youtl(:,2);

3
Il

[t,x,v] = rkd5('openl2',Tfin);

a = max(size(youtl));

A3 = A2*Tfin - Al*Tfin”"2/2 + Tfin"3/6 - youtl(a,2);
alpha = AL*A2/A3 - 1;

Kp = 0.5/ (A0*alpha);
Ti Al/(l+alpha);
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The MATLAB procedure STEPTUN1.M

o

function [K,Ti,AQ,Al,A2,A3,alpha] = steptunl (yout,Tfin,Tint);

e

o

function STEPTUN1.M calculates the appropriate K and Ti
controller parameters from the process step response and
its first, second and third integral.

e

o

function [K,Ti,AQ,Al,A2,A3,alphal = steptunl (yout,Tfin,Tint);

global K;
global T;
global U;
global youtl;

K= 11;

T =11;

U= 1[]:

a = max(size(yout));

i = a;

while (yout(i,1l) > Tint)
i=1i-1;

end

A0 = mean(yout(i:a,2));

K= 1;

T = yout(:,1);

U = yout(:,2)/A0;

[t,x,y] = rk45('openl3',Tint);

a = max(size(youtl));

Al = youtl(a,2);

K = Al;

T = youtl(:,1);

U = youtl(:,2);

[t,x,y] = rk45('openl3',Tint);

a = max(size(youtl));

A2 = youtl(a,2);

K = A2;
= youtl(:,1);

|

[t,x,y] = rk45('openl3',Tint);
a = max(size(youtl));
A3 = youtl(a,2);

alpha = A1*A2/A3 - 1;

Kp 0.5/ (A0*alpha);
Ti = Al/(l+alpha);
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