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Part II. PID controller 
tuning using the 
multiple integration 
method 
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5. Introduction to PID 
control 

PID controllers have been in use for a long time. The first (pneumatic) PI controllers 
came from the Foxboro and Taylor companies in 1934-1935. Within a few years, Taylor 
developed its first PID controller, the “Fulscope 100” (Babb, 1990; Bennett, 1993; 
Blickley, 1990). That PID controller performed excellently on several types of processes 
(especially temperature processes), but the problem which arose was how to tune such a 
controller. Without any guidelines for tuning, there were no prospects for selling the 
product. At that time, tuning of the PI controller required a relatively skilled engineer. 
The problem was significantly increased by the addition of the derivative (D) part. This 
led Ziegler and Nichols from the Taylor company to discover the famous “Ziegler-
Nichols” tuning rules (Ziegler and Nichols, 1942). Those rules were derived in quite a 
heuristic way using the laboratory multicapacity system and a “Fulscope 100” PID 
controller (Blickley, 1990). 

The Ziegler-Nichols tuning rules were the very first tuning rules for PID controllers, and 
it is surprising that they are still widely used today. The reason for their popularity lies 
in their simplicity and efficiency. This is why so many different tuning rules have been 
developed which are based on the same tuning procedures (see e.g. Clair, 1995). 

After the work of Ziegler and Nichols, a variety of PID tuning methods have been 
developed. A good survey of these can be found in Gorez (1996) and Haalman (1966). 
In general, these methods can be divided into two main groups: direct and indirect 
tuning methods (Åström and Hägglund, 1993; Gorez, 1996). Direct tuning methods do 
not use an explicit process model, whilst indirect methods are based on the process 
model. 

The most popular direct tuning methods are based on the measurement of particular 
points on the process Nyquist curve. The best-known rules are the Ziegler-Nichols 
tuning rules (Åström and Hägglund, 1995; Hang et al., 1991; Hang and Cao, 1993; Ho 
et al., 1995, 1996a; Thomas, 1991), and the refined Ziegler-Nichols rules (Åström and 
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Hägglund, 1995a; Åström and Hägglund, 1995b; Hang et al., 1991; Ho et al., 1995). 
Several methods based on the detection of one or two points of the process frequency 
response using relay excitation (Åström and Hägglund, 1984; Atherton, 1996) have 
become more popular in the last decade. In order to track the ultimate frequency if 
process dynamics vary, the measuring of more points on the Nyquist curve was 
proposed by Ho et al., (1996b). Use of the cross-correlation technique so as to detect the 
process ultimate gain and frequency was proposed in (Hang and Sin, 1991). Repeatedly 
changing the PI(D) controller parameters until the phase and gain margin are satisfied 
was proposed in Calcev and Gorez (1995), Denolin and Hanus (1996), Vrančić et al. 
(1996c), Vrančić and Peng (1994b, 1995a). Some direct tuning methods are also based 
on pattern recognition methods (Bristol, 1977), genetic algorithms (Wang and Kwok, 
1993), and on the optimisation approach (Zhou and Birdwell, 1996). 

The most popular indirect tuning methods are based on the process model in the 
frequency domain. PID controller tuning is usually achieved by placing the closed-loop 
poles (Persson and Åström, 1993; Shafiei and Shenton, 1994, Vrančić et al., 1993b, 
1994), by tuning each term of the PID controller so as to maximise the stability margin 
according to the specified phase and amplitude margins (Thomas, 1991), or by finding 
the appropriate PID parameters from the derived IMC controller (Williams and Adeniyi, 
1996). Some indirect tuning methods are based on a reduced process model (the first or 
second order model with pure time delay) (Ho et al., 1993). In this framework, several 
authors (Besherati and Gawthrop, 1991; Khan and Lehman, 1996; Leva et al., 1994) 
were particularly interested in accurately obtaining the process time delay. Obtaining an 
estimation of the process model by using the integration of the process step response 
was proposed in (Åström and Hägglund, 1995a; Nishikawa et al., 1984; Voda and 
Landau, 1995). PID controller tuning for such an estimated model is based on the 
symmetrical optimum technique (Kuhn, 1995, Voda and Landau, 1995), or on the 
optimal weighted integral of the squared error (Nishikawa et al., 1984). 

Each tuning method has its advantages and drawbacks. In general, the more information 
that can be extracted from the process, the better are the tuning results which can be 
obtained. However, extracting more process information requires more extensive 
process identification and computations, with longer and more complicated experiments 
on the tested plant. Moreover, it has been recognised (Peterka and Åström, 1980) that 
developing accurate models for the process industry and identifying the parameters 
within them is often not worthwhile; rather the problem is how to determine the 
controller parameters. 

On the other hand, tuning rules which require less process information (e.g. detection of 
the process gain, lag and rise times, or the process ultimate point) generally do not give 
the “optimal” response, since the available process information is based on few 
measured parameters. For instance, there are considerably different processes with the 
same pairs of lag and rise times (or ultimate points); clearly, these processes require 
different controller parameters. Several drawbacks of the Ziegler-Nichols tuning rules 
are reported in Åström and Hägglund (1995b), Hang et al. (1991), Hang and Cao 
(1993), Hang and Sin (1991), Thomas (1991), and Voda and Landau (1995). Some 
authors have suggested the introduction of the so-called set-point weighting approach 
(Hang et al., 1991; Hang and Cao, 1993), and the refinements of the Ziegler-Nichols 
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tuning rules (Åström and Hägglund, 1995a; Åström and Hägglund, 1995b). The 
improved closed-loop responses have shown that the refined tuning rules gave very 
good results on several types of processes, but tuning was still based on measurements 
of the process lag and rise time (or ultimate point), so their applicability to a wide 
spectrum of processes still remains an open problem. 

Our aim was to find a simple tuning procedure which could be easily executed by the 
real-time auto-tuning algorithm, and which would give the “optimal” controller settings 
for a large set of process models. It was decided that the PID controller tuning should be 
based on the process step response, because it can usually be simply obtained on the real 
plant. Instead of measuring the lag and rise times (this can be tricky if the process step 
response is noisy), the process information was extracted from the process step response 
by using a function which is quite inert to process noise (Nishikawa et al., 1984), and 
can be simply executed by a real-time digital algorithm: an integration. We chose the 
multiple integration approach, the technique originally used for the process 
identification (see e.g. Isermann (1971), Rake (1987), Strejc (1959), and Vrančić et al. 
(1996b,d)).  

It was also decided to meet all the demands of the "magnitude" ("modulus") optimum 
(MO) tuning goal (Åström and Hägglund, 1995a; Boucher and Tanguy, 1976; Hanus, 
1975; Umland and Safiuddin, 1990). The MO technique guarantees fast, stable and non-
oscillatory closed-loop behaviour for a large set of industrial processes. 

It was found that there is a close relationship between the five areas, obtained from the 
process open-loop step response (by using the multiple integration approach), and the 
MO technique. The PID controller parameters were merely calculated from the process 
step response, regardless of the process order.  
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6. Derivation of PID 
controller parameters  

The tuning procedure for the PID controller is given for those processes which can be 
approximated by the following transfer function: 

 ( )G s K
b s b s b s
a s a s a s

eP PR
m

m

n
n

sTdel=
+ + + +
+ + + +

−1
1

1 2
2

1 2
2

m

m

 , (132) 

where KPR denotes the process steady-state gain, and a1 to an and b1 to bm are the 
corresponding parameters (m≤n) of the process transfer function. A parameter Tdel 
represents the process pure time delay. 

The PID controller is given by the following transfer function: 

 ( ) ( )
( )G s

U s
E s

K
sT

sT
sTC

i

d

f
= = + +

+








1

1
1

, (133) 

where U and E denote the Laplace transforms of the controller output, and the control 
error (e=w-y), respectively. The controller parameters K, Ti, Td, and Tf denote 
proportional gain, integral time constant, derivative time constant, and filter time 
constant, respectively.  

The PID controller in a closed-loop configuration with the process is shown in Fig. 74, 
where d denotes a load disturbance. 
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A goal of tuning was to find such a controller that makes the closed-loop amplitude 
(magnitude) frequency response from the set-point to the plant output as flat and as 
close to unity as possible for a large bandwidth for a given plant and controller structure 
(see the solid line in Fig. 75).  

This technique is called magnitude optimum (MO) (Umland and Safiuddin, 1990), 
modulus optimum (Åström and Hägglund, 1995a), or Betragsoptimum (Åström and 
Hägglund, 1995a; Kessler, 1955), and results in a fast and non-oscillatory closed-loop 
time response for a large class of process models. 

The MO tuning goal can be achieved by setting |GCL(0)|=1 and dn|GCL(jω)|/dωn=0 at 
ω=0 for as many n as possible (see Åström and Hägglund, (1995a); Boucher and 
Tanguy, (1976); Hanus, (1975); Umland and Safiuddin, (1990)), where GCL(s) denotes 
the closed-loop transfer function from w to y. 

 
 

 
 

Fig. 74. The closed loop system with PID controller 

 
 
Figures 75 and 76 illustrate the relation between the closed-loop frequency response 
(Fig. 75), and the open-loop frequency response (Fig. 76) (the well-known M and N 
circles in control theory). To achieve the same tuning goal as given above, the open-loop 
Nyquist curve of the process and controller should follow the vertical line with the real 
value -0.5 for the highest frequencies as possible (see solid line in Fig. 76).  
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Fig. 75. Bode plot of the closed-loop magnitude frequency-response 

|GP(jω)GC(jω)|/|(1+GP(jω)GC(jω))| 
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Fig. 76. Nyquist curve of the open-loop frequency response GP(jω)GC(jω) 

 
 
When developing the pure time delay in (132) into the Taylor series: 
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( ) ( )

e sT
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2 3
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m , (134) 

the open-loop system transfer function can be expressed from (132) and (133) in the 
following way: 
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where parameters ci and di in (135) can be calculated by inserting (132), (133), and 
(134) into (135): 
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Note that expressions (136) are valid when Tf=0 (the ideal derivative term). A derivation 
of the PID controller parameters when Tf≠0 is given in sub-chapter 7.1. However, in all 
examples and real-time experiments, the derivative filter time constant is set to 
Tf=Td/10. 

Following the procedure given by Hanus, (1975), the magnitude optimum can be 
achieved by moving the zeros of the function Re{GP(jω)GC(jω)}+1/2 toward ω=0. This 
can be done by fulfilling the following set of equations (Hanus, 1975): 

 ( ) ( )− = −+ −
=

+

−
=

∑ ∑1 1
2

12 1
0

2 1

2
0

2
i

i n i
i

n
i

i n i
i

n

d c c c  (137) 

In order to find three PID parameters (K, Ti, and Td), the first three equations (n=0..2) in 
(137) are to hold (Vrančić and Peng, 1997): 
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When inserting (136) into (138) to (140), the following expressions are obtained: 
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When solving (141) to (143), the following PID controller parameters can be expressed 
by the unknown process parameters: 

 
( ) ( )

( )

( ) ( )

K

a a b a b a a a b a b

T a a b a b T a b T

K
a b a a a b a b b b T a b

T a b
T

T a b T

del
del del

PR

del

del
del

d del

=

− + − + + − +

+ − − + + − +

















− + + − − + + − +

+ − + − − +
















1
3

1
2

1 1 2 1 2 2 1 3 3

1
2

1 1 2 2

2

1 1

3

1
2

1 1 2 1 1
2

3 1 2 3 1 1
2

2
1 1

3

1 1
2

2

2 6

2

3 

 (144) 

 
( ) ( )

( ) ( )
T

a a b a b a a a b a b

T a a b a b
T

a b
T

a a b a b T a b
T

T a b T
i

del
del del

del
del

d del

=

− + − + + − +

+ − − + + − +

















− − + + − + − − +

1
3

1
2

1 1 2 1 2 2 1 3 3

1
2

1 1 2 2

2

1 1

3

1
2

1 1 2 2 1 1

2

1 1

2

2 6

2

 (145) 



 117

 ( )T f a a b b Td del= 1 5 1 5� �, ,  (146) 

Note that the explicit result for the derivative time constant is not given. The reason is 
that expression (146) would otherwise fill up several pages of this thesis. 

In order for the method to be applied, the real process must be approximated by the 
transfer function (132), which requires an explicit identification of the parameters KPR, 
a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, and Tdel. Note that the identified model of the process 
must be of the same or a higher order than the real process so as to avoid a modelling 
error which could appear due to the insufficient order of the model. Therefore, 
calculation of the PID controller parameters (based on expressions (144) to (146)) is 
frequently impossible in practice. 

The main benefit of the proposed new tuning method is, however, to avoid this explicit 
identification by using the concept of multiple integration (Isermann, 1971; Rake, 1987; 
Strejc, 1959; Vrančić and Juričić, 1995). 

Following Strejc, (1959), and considering (132), the following five areas can be 
expressed by integrating the process open-loop step response (y), after applying the step-
change ∆U at the process input: 

 ( )A y K a b TPR del1 1 1 1= ∞ = − +( )  (147) 

 ( ) 11

2

12222
2

aATbTabKyA del
delPR +








+−−=∞=  (148) 

 ( ) 2112

3
1

2

23333
!32

aAaATbTbTbaKyA deldel
delPR −+








+−+−=∞=   (149) 

 3122134
1

3

2
2

344

44

!4!3

2)( aAaAaA
TbT

bTbTab
KyA

deldel

del
del

PR +−+



















+−

−+−−
=∞=  (150) 

 413223145
1

4
2

3

3
2

455

55

!5!4!3

2)( aAaAaAaA
TbTbT

bTbTba
KyA

deldeldel

del
del

PR −+−+



















+−+

+−+−
=∞=  , (151) 

where  
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In order to clarify the mathematical derivation, graphic representations of the first two 
areas (A1 and A2) are shown in Figures 77 and 78. 
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Fig. 77. The graphic representation of area A1 
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Fig. 78. The graphic representation of area A2 

 
 
When inserting the calculated areas (147) to (151), obtained from the process open-loop 
step response, see e.g. Vrančić (1995b), Isermann (1971) or Rake (1987), into equations 
(144) to (146), the following result is obtained: 
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Let us define factor αD as: 
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where  
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 α = −A A
K APR

1 2

3

1 . (161) 

When applying (160) to (157) and (158), the proportional gain (K), and the integral time 
constant (Ti) can be rewritten into: 

 K
KPR D

= 05.
α

 (162) 

 ( )T A
Ki

PR D

=
+
1

1 α
 (163) 

This form is more appropriate in cases when modifying some of the controller 
parameters, as will be shown later. 

Note that the PI controller parameters can be expressed from (162) and (163) by 
applying Td=0 in (160). 

Now obviously only the process steady-state gain KPR, and five areas A1 to A5 are 
needed to calculate the unknown PID controller parameters K, Ti, and Td, by using 
expressions (159) to (163). 

As can be seen from equations (147) to (155), the areas can be calculated from the 
process open-loop step response by a simple numerical integration, whilst the gain KPR 
can be determined from the steady-state value of the process step response in the usual 
way. 

The PID controller tuning procedure can therefore proceed as follows: 

• measure the process step response, 

• find the process steady-state gain KPR and areas A1, to A5 (by using numerical 
integration (summation) from the start to the end of the process step response), and 

• calculate the PID controller parameters by using expressions (159) to (163). 

The main point is, however, that the PID controller parameters can be calculated exactly 
(according to the MO criterion) for a wide spectrum of process models (132), merely by 
measuring the process open-loop step response. 

Let us now illustrate the proposed PID controller design in one example.  

The following eight-order process model is chosen: 
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( )

G s
sP( ) =

+
1

1 8  . (164) 

At first, a step-change ∆U=1 is applied to the process input. The process open-loop step 
response is shown in Fig. 79 above. The final steady-state of the process is y(∞)=1, so 
the process steady-state gain KPR=y(∞)/∆U=1. A function y1(t) is obtained by 
numerically integrating the difference KPR-y(t)/∆U, as given by (147) and (152). The 
function y1(t) is shown in Fig. 79 below. The final steady-state y1(∞)=8, which 
corresponds to area A1. Similarly, area A2 can be obtained by numerically integrating the 
difference between A1=y1(∞) and y1(t), as given by (148) and (153). Function y2(t) is 
given in Fig. 80 above. The final steady-state value of y2(t) corresponds to A2 
(A2=y2(∞)=36). Similarly, as for y1(t) and y2(t) (A1 and A2), the remaining functions (y3 
to y5) and areas (A3 to A5) can be calculated. Functions y3(t) to y5(t) are shown in Figs. 
80 and 81. 
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Fig. 79. Process step response (y) (above) and function y1(t) (below) 

 
 
The following values of the process steady-state gain and the areas are obtained from the 
process step-response: 

 K A A A A APR = = = = =1 8 36 330 7921 2 3 4 5, , , ,      =120,     . (165) 
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Fig. 80. Function y2(t) (above) and function y3(t) (below) 
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Fig. 81. Function y4(t) (above) and function y5(t) (below) 

 
 
The optimal PID parameters are calculated from (165) by using expressions (159) to 
(163): 
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 K T s T si d= = =0 75 4 8 1 375. , . , .     . (166) 

Figs. 82 and 83 show the closed-loop time responses on the reference change (w=1 at 
t=0s), and on the load-disturbance (d=1 at t=50s). It is clear that both closed-loop 
responses are quite acceptable, all according to the chosen tuning goal. 

The Nyquist curve of the open-loop frequency response GC(jω)GPR(jω) is shown in Fig. 
84. It is clear that the Nyquist curve closely follows the vertical line with the real value -
0.5 at lower frequencies, as prescribed by the MO tuning. 

Fig. 85 shows the closed-loop frequency response. The closed-loop magnitude equals 
one at lower frequencies, all according to MO. 
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Fig. 82. Process output (y) during the closed-loop experiment 
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Fig. 83. Process input (u) during the closed-loop experiment 
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Fig. 84. Nyquist curve of the open-loop frequency response 
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Fig. 85. Bode closed-loop frequency response 
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7. Some considerations 
and practical 
modifications of tuning 
approach 

7.1 Influence of a derivative filter time constant 
on PID controller settings 

The calculation of the PID controller parameters set out in the previous chapter holds for 
the ideal PID controller without a derivative filter (Tf=0). Let us now investigate a case 
where a derivative term filter is present, so as to fix the ratio between the derivative and 
the filter time constant: 

 T Tf d= δ  (167) 

Expression (136) therefore becomes 
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Note that in expression (168) the process time delay is fixed to Tdel=0 in order to 
simplify the mathematical derivation. However, the final result (169) does not depend 
on the time delay (Tdel). 

Following similar derivations as for the ideal derivative term, the following expressions 
are derived: 

 ( ) ( )T A T A A T A A A T A A A A A A Ad d d d
4 3

3
3 2

1 3
2

5 3 2 5 1 3
2

5 2 4 3 0δ δ δ+ − − + − + + − =  (169) 

 T A
A T A Ti

d d

=
− −

3

2 1
2δ

 (170) 

 ( )K T
A T

i

i

=
−2 1

 (171) 

It is clear that when applying δ=0 to expressions (169) to (171), the resulting PID 
controller parameters are the same as those obtained by using expressions (159) to 
(163). Generally, by using more terms in expression (169), a more accurate result can be 
obtained when applying δ>0. Expression (169) is of the fourth order and Td can still be 
solved analytically, but the calculation is quite involved. However, in usual applications, 
when using small ratio δ (e.g. δ≤0.1), the difference between the calculated Td from 
(159) and (169) is relatively small. When using greater values of δ, the derivative time 
constant Td can usually be quite accurately calculated by using only the last three terms 
in expression (169): 
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 ( ) ( )− − + − + + − =T A A A T A A A A A A Ad d
2

5 3 2 5 1 3
2

5 2 4 3 0δ  (172) 

The analytical solution of (172) can be expressed in the following way: 

 
( ) ( ) ( )( )

( )T
A A A A A A A A A A A A A

A A Ad1 2

3
2

5 1 3
2

5 1

2

3 2 5 5 2 4 3

3 2 5

4

2,
=

− − + − − − −

−

δ
δ

 (173) 

Let us provide an example by using the following third-order process: 

 
( )

G
s

PR =
+
1

1 3  (174) 

The steady-state gain for the process (174) is KPR=1. The areas A1 to A5 can be 
calculated from expression (147) to (151): A1=3, A2=6, A3=10, A4=15, A5=21. 

The PID controller parameters, when using the ideal derivative term (δ=0), are 
calculated from (159), (160), (162), and (163): 

 K T s T si d= = =2 31 2 47 0 65. , . , .     (175) 

Let us now calculate the PID controller parameters for the situation where the filter time 
constant is fixed to Tf=0.1Td (δ=0.1), by using expressions (169) to (171): 

 K T s T si d= = =2 07 2 42 0 61. , . , .     (176) 

By using the approximate expression (173), and expressions (170), and (171), the 
following PID controller parameters are obtained: 

 K T s T si d= = =2 08 2 42 0 61. , . , .     (177) 

It is clear that the difference between the calculated PID controller parameters in (175), 
(176) and (177) is relatively small. The closed-loop responses, when using process 
(174), and controllers (175), (176), and (177), are given in Fig. 86. It is clear that only 
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slight differences exist between the closed-loop responses. Note that all three closed-
loop responses were obtained by fixing the filter time constant to Tf=0.1⋅Td. 

However, the difference becomes more obvious when ratio δ is increased. When fixing 
the ratio δ=1 for the same process (174), the following PID controller parameters are 
obtained from (169) to (171): 

 K T s T si d= = =1 31 2 17 0 41. , . , .     (178) 
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Fig. 86. Closed-loop process output response on the reference change and load 
disturbance (at t=20s, d=1 (see Fig. 74) is added to the process input) @ Tf=0.1⋅Td 
(δ=0.1); __ controller parameters calculated by using the fourth-order expression 

(169), and the approximate expression (173), -- controller parameters calculated from 
basic expression for Td (159) 

 
 
When using the approximate formula for Td (173), the following parameters are 
obtained: 

 K T s T si d= = =1 46 2 23 0 44. , . , .     (179) 
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Here, the difference between (175), (178), and (179) is more obvious. The difference 
between the closed-loop responses is shown in Fig. 87. Note that all three process 
responses were obtained by fixing the filter time constant to Tf=Td. 

Therefore, it can be concluded that when using small values for the ratio δ=Tf/Td (e.g. 
δ=0.1 or less), expressions (159) to (163) generally give a very good approximation for 
the PID controller parameters. However, the exact value of the derivative time constant 
is obtained by solving the fourth-order expression (169) when δ≠0. 

In all of the following examples, expressions (159) to (163) are used for calculating the 
PID controller parameters, and the filter time constant is fixed to Tf=Td/10 (δ=0.1) 
unless otherwise stated. 
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Fig. 87. Closed-loop process output response on the reference change and load 

disturbance (at t=20s, d=1 (see Fig. 74) is added to the process input) @ Tf=Td (δ=1); 
__ controller parameters calculated by using the fourth-order expression (169), -- 
controller parameters calculated from approximate expression (173), -.- controller 

parameters calculated from basic expression for Td (159) 
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7.2 modified tuning procedure for PID 
controllers using three areas 

In practice, it is relatively difficult to obtain five multiple integrations from the step 
response without making a significant error. Such an error can occur due to load 
disturbances, process non-linearities and process noise if the integration time is too 
long. It is recognised (Rake, 1987) that as the subsequent integration is prone to errors, 
only low-order models can be obtained by this method. It is advised that the method 
should only be used for the identification of systems up to the third order (Isermann, 
1971). If the process model has 3 poles and 2 zeros (without time delay), this implies 
that 5 subsequent integrations are required in order to explicitly identify the process 
parameters. Moreover, in our case the calculated areas are not used for the explicit 
identification of the process parameters, but for the calculation of the controller 
parameters. Therefore, moderate measurement errors are generally allowed. 

However, in our experience, five integrations can only be successfully obtained without 
making significant errors from relatively undisturbed processes. Three subsequent 
integrations are much more likely to be successfully obtained in practice. The tuning 
algorithm for the PI controller, based on the calculation of three integrals (A1 to A3), was 
testeded to the process noise and non-linearity (Vrančić, 1995b). The closed-loop time 
responses showed quite acceptable results. 

Therefore, a tuning procedure for the PID controller will be given which will require the 
calculation of only three areas (A1 to A3) and the process steady-state gain KPR. The 
areas A4 and A5 are explicitly used only in the calculation of the derivative time constant 
(159). So, an alternative way of calculating Td will be given which does not require 
parameters A4 and A5. To this end, the ratio ρ=Td/Ti is fixed to a reasonable value, e.g. 
ρ=0.2 to 0.25 (Vrančić et al., 1997c). Although such a concept is not optimal in the 
sense of MO, it does usually give quite reasonable tuning results. 

In such a case, using expressions (160) and (163), the integral time constant can be 
expressed as: 

 T
A A A A

Ai =
− −2 2

2
1 3

1

4
2

ρ
ρ

, (180) 

where Td=ρTi. The controller gain can be re-calculated from (162) and (163) as 

 K A
T

K
i

PR

=
−

0 5
1

.
 . (181) 
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The PID controller tuning procedure can therefore proceed as follows: 

 

• measure a process step response; 

• find a process steady-state gain KPR and areas A1, A2, and A3 (by numerical 
integration (summation) from the start to the end of response) or even areas A4 and 
A5, if the process is relatively undisturbed and mostly linear; and 

• calculate PI controller parameters K and Ti (160), (162), and (163) by fixing Td=0 or 
PID controller parameters by fixing the ratio ρ=Td/Ti. The ratio ρ=0.2 to 0.25 usually 
results in quite a reasonable tuning. However, the optimal Td is explicitly given by 
(159) if A4 and A5 can be successfully obtained. 

An illustrative example can be found in Chapter 8. 

 

7.3 modified tuning procedure for 2-degrees-of-
freedom  PI controllers 

It is frequently claimed that a drawback of the MO tuning approach is that the process 
poles are cancelled by the controller zeros. This may lead to poor attenuation of load 
disturbances if the cancelled poles are excited by disturbances, and if they are slow 
compared to the dominant closed-loop poles (Åström and Hägglund, 1995a). However, 
the MO controller design given in Åström and Hägglund (1995a, page 166) is based on 
the second-order closed-loop transfer function. In our design procedure, the closed-loop 
transfer function is of the higher order (according to the process (132) plus controller 
(133) order), and our results therefore differ from those obtained by Åström and 
Hägglund (1995a), and Umland and Safiuddin (1990). 

However, poorer disturbance rejection can be observed for dominantly first-order 
processes when using the PI controller, and dominantly first and second-order processes 
when using the PID controller. In such cases, disturbance rejection can be significantly 
improved by using a two-degrees-of-freedom PI (PID) controller (e.g. the generalised 
PID controller). Here, the controller parameters have to be recalculated according to the 
changed structure of the controller. 

Let us derive the controller parameters for the simple two-degrees-of-freedom PI 
controller shown in Fig. 88 (see e.g. Åström et al., 1993; Åström and Hägglund, 1995b; 
Hang et al., 1991; Hang and Cao, 1993). 
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Fig. 88. A two-degrees-of-freedom PI controller.  

 

 

In order to satisfy the magnitude optimum (MO) criterion, the closed-loop magnitude 
frequency-response should be as flat and as close to unity as possible for a large 
bandwidth, as shown by the solid line in Fig. 75.  

The system closed-loop transfer function is the following: 

 ( ) ( )
( )

( ) ( )
( ) ( )G s

Y s
W s

G s K s T
sT G s K sTCL

P i

i P i

= =
+

+ +
1

1
β

 , (182) 

where GP(s) denotes the process transfer function (132). The corresponding open-loop 
transfer function (GOL) can be derived from the following expression: 

 ( ) ( )
( )G s

G s
G sCL
OL

OL
=

+1
 (183) 

The open-loop transfer function can be expressed by solving (182) and (183): 

 ( ) ( ) ( )
( )( )G s

G s K s T
sT G s sKTOL

P i

i P i

=
+

+ −
1
1

β
β

 (184) 

By using the same method as for the one-degree-of-freedom PID controller (note that for 
the PI controller, only expressions (138), and (139) are to be satisfied), the following 
expressions are derived: 
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From (185), the controller proportional gain K can be expressed in the following way: 
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if KPRA3-A1A2 < 0, and 
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, (187b) 

if KPRA3-A1A2 > 0. 

In cases when β=1, or KPR
2A3+A1

3-2KPRA1A2=0, the proportional gain can be calculated 
from (185) as: 

 ( )K
A

A A K APR

=
−

3

1 2 32
 (188) 

Note that expression (188) is the same as expression (162), when using the PI controller 
(Td=0). 

Two examples were made in order to depict the above results. The first example was 
made with the following dominantly first-order process (the second process time 
constant is much shorter than the main time constant): 

 ( ) ( )( )G s
s sP =

+ +
1

1 1 01.
 (189) 
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The following values of the process steady state gain and areas are calculated: KPR=1, 
A1=1.1, A2=1.11, A3=1.111. The value of expression A3+A1

3-2A1A2=0, so the controller 
gain is calculated by using expression (188). The integral time constant is given by 
expression (186). Controller parameters were calculated for different values of 
parameter β: 

 
 

ββββ    K Ti [s] 

1 5.05 1.0009 

0.8 5.05 0.5478 

0.5 5.05 0.3676 

0 5.05 0.3035 

 
 
The closed-loop responses, when using all four of the PI controllers given above with 
different parameter β, are shown in Fig. 89. It is clear that disturbance rejection is 
significantly improved by using smaller values of β down to β=0.5. Further decreasing 
of factor β does not improve significantly the disturbance rejection, but rather degrades 
the tracking performance. 
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Fig. 89. Process (189) closed-loop responses when using different PI controller 
parameters and factors β; __ β=1, -- β=0.8, … β=0.5, -.- β=0. 
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The other example was made by using the fifth-order process: 

 ( ) ( )G s
sP =

+
1

1 5  (190) 

The following values of the process steady state gain and areas are calculated: KPR=1, 
A1=5, A2=15, A3=35. This time the value of A3+A1

3-2A1A2≠0, so the controller gain is  
calculated from expression (187) (except for β=1). As in the previous case, the PI 
controller parameters were calculated for the same values of parameter β: 

 
 

ββββ    K Ti [s] 

1 0.438 2.333 

0.8 0.447 2.251 

0.5 0.457 2.167 

0 0.465 2.117 

 
 
The closed-loop responses when using all four PI controllers with different parameter β 
are shown in Fig. 90. It is clear that the responses are almost identical. However, the 
decreased value of parameter β does not improve disturbance rejection significantly, 
whilst still degrading the tracking performance. 

From our experience, based on numerous simulations on different process transfer 
functions and a real-time implementation of the algorithm to the plastic extruder 
machine, the most appropriate range of parameter β for achieving good tracking 
performance and disturbance rejection is: 

 β = 0 5 0 8. .�  (191) 
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Fig. 90. Process (190) closed-loop responses when using different PI controller 
parameters and factors β; __ β=1, -- β=0.8, … β=0.5, -.- β=0. 

 
 

7.4 Improving some certain tuning rules by 
using the new tuning approach 

This new tuning method is also suitable for improving the response of certain classical 
tuning rules (e.g. Ziegler-Nichols, Cohen-Coon, Chien-Hrones-Reswick, etc.). For 
example, the proportional gain of the PI controller can be obtained by using the Ziegler-
Nichols (or any other) settings, whilst the integral time constant can be recalculated 
from expressions (162) and (163).  

As an example, we use the process GP1(s) with T=1 (see Appendix E). The Ziegler-
Nichols tuning rules give the following PI parameters: K=0.9 and Ti=3.3. The integral 
term time constant can be recalculated using the new tuning approach. At first, factor αD 
is calculated from (162): αD=0.5/(K·KPR)=0.555. The integral time constant Ti is then 
calculated from (163): Ti=2s/1.555=1.29s. The tuning results, when using the original 
Ziegler-Nichols tuning rules and the recalculated parameter Ti, are shown in Fig. 91. It is 
obvious that the recalculated PI controller gives better closed-loop performance. 

Note that only area A1 is used in the recalculation of parameter Ti. Such an approach can 
also be used for highly disturbed processes. 
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Fig. 91. The process response to the reference change and load disturbance (d=1 @ 
t=30s); __ K=0.9, Ti=1.29 (recalculated Ti); -- K=0.9, Ti=3.33 (Ziegler-Nichols) 

 
 

7.5 Process noise and non-linearity 

High-frequency process noise does not usually cause significant errors in calculating 
areas. However, if the noise is quite distinctive and the integration time is too long, 
fairly large errors can be obtained, as reported in (Vrančić, 1995b). The proposed 
scheme, by which the time of experiment is divided into the integration period and a 
determination of the process gain period, is given in Fig. 92. Such an approach can 
significantly improve the accuracy of the calculated areas (an example can be found in 
Vrančić, (1995b)). 

The new tuning algorithm was also tested on non-linear processes. It was shown that 
tuning results obtained by using the PI controller are relatively robust to the process 
non-linearities (Vrančić, 1995b). 

However, the higher the process noise, disturbances, and non-linearities, the less reliable 
is the information that can be obtained from the process step response.  
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Fig. 92. The proposed approach divides the experimental period into two periods in 
order to improve the accuracy of the measured areas 

 

 

7.6 Stability considerations 

In spite of the considerably large set of tested process models (see Appendix E), the 
stability of the obtained PI or PID controller is not a priori guaranteed. A necessary 
stability condition is given by Hanus, (1975): 

 K K
T
PR

i

> 0  . (192) 

Inequality (192) is a sufficient condition when using the controller which places all the 
zeros of the function Re{GP(jω)GC(jω)}+1/2 toward ω=0 (Hanus, 1975). This can be 
achieved by using the controller with an appropriately high degree. By using the PI 
controller, only four zeros can be moved toward ω=0. The PID controller can increase 
the number of zeros by two, but this is still not a sufficient condition for the closed-loop 
stability when using higher-order processes.  

In fact, the necessary condition is sometimes violated when using the PI (PID) controller 
on the processes with strong zeros or complex poles placed close to the imaginary axis. 
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Indeed, in such cases factors α or αD can be -1≤α≤0 (-1≤αD≤0)1. From (162) and (163), 
it can be seen that -1<αD<0 violates expression (192), if A1>0. A typical example can be 
the following process: 

 ( )( )G s s
s sP ( )

.
= +

+ +
1

1 2 1 01
 . (193) 

The calculated factor is α=-0.449 (αD=-0.476). This results in an unstable closed-loop 
system. The open-loop Nyquist curve when using the calculated PI and PID controller 
(PI: K=-1.114, Ti=1.996s; PID: K=-1.05, Ti=2.1s, Td=0.0952s) for the process (193) is 
shown in Fig. 93. It is obvious that the Nyquist curve follows the prescribed vertical line  
with the real value -0.5, as required by the MO criterion. However, both Nyquist curves 
start on the wrong side (from +j∞) and the system is therefore unstable. 

Sometimes, stability can be achieved simply by choosing a positive factor α (e.g. by 
inverting its sign) and recalculating the controller parameters.  

As an example, we can choose α=0.2, and αD=0.1 for the process (193). The modified 
derivative term time constant can be calculated from (160) as: 

 
( )

T
A

Ad
D=

−3

1
2

α α
 , (194) 

whilst the other two parameters of the PID controller can be calculated directly from 
(162) and (163) (K=5, Ti=1s, Td=0.348s). Note that the PI controller parameters can be 
calculated from (162) and (163) by substituting αD=α (K=2.5, Ti=0.917s). 

The open-loop Nyquist curves when using the modified PI and PID controller 
parameters are shown in Fig. 94. It is clear that the closed-loop system is now stable. 
This is also confirmed by the process closed-loop time responses as shown in Fig. 95. 

However, such a technique does not work in all cases (Vrančić, 1995b). Therefore, we 
will pay more attention to such cases in our further research. 

 

                                                 
1 If α<-1 or αD<-1, a stable PI (PID) controller is obtained with unstable zero (see Vrančić, (1995)). 
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Fig. 93. The open-loop Nyquist curve when using: __ the PID controller, -- the PI 
controller 
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Fig. 94. The open-loop Nyquist curve when using the modified controller parameters 
for: __ the PID controller, -- the PI controller 
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Fig. 95. The process closed-loop time response when using the modified controller 
parameters for: __ the PID controller, -- the PI controller 
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8. Simulation examples  

A simulation experiment was performed to depict the above results in more detail, 
during which tracking and control performances were tested.  

The following third-order system was chosen: 

 ( )
( )

G s
s

P =
+
1

1 3  . (195) 

From the process step response, the following parameters were detected: 

 K A A A A APR = = = = = =1 3 6 10 15 211 2 3 4 5, , , , ,      . (196) 

The PI controller parameters were calculated from (160), (162), and (163): 

 K Ti= =0 625 1667. , .  . (197) 

In order to speed-up the closed-loop performance, the PID controller was used.  

The optimal Td was calculated from (159), and the corresponding PID controller 
parameters were: 

 K T Ti d= = =2 31 2 467 0 649. , . , .   (198) 
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The PID controller parameters, when applying the modified tuning procedure which 
uses only three areas (see Chapter 7.2), were also calculated by fixing the following 
ratios: ρ=Td/Ti=0.2, 0.25 and 0.29 (see expressions (180) and (181)). The calculated PID 
controller parameters were: 

 
 

ρρρρ K Ti Td 

0.2 1.19 2.113 0.423 

0.25 1.87 2.367 0.592 

0.29 7.77 2.819 0.817 

 
 
The process closed-loop responses are shown in Fig. 96. It is clear that the process 
closed-loop response on the reference change and on disturbance when using the PID 
controller (198) is quite faster than the response given when using the PI controller 
(197) (see upper figure). From the lower figure, it can be seen that the process response, 
when using the PID controller with ρ=0.29, results in quite a higher overshoot than 
when using all the other controllers. An additional slight increase of ρ would result in a 
negative K and in an unstable closed-loop response. 

In general, the proportional gain K increases upon increasing factor ρ. By testing several 
process transfer functions and laboratory plants, it was found that ratio ρ=0.2 is a 
relatively safe choice. 

The new tuning method was also compared to the Ziegler-Nichols (ZN), Cohen-Coon 
(CC) and Chien-Hrones-Reswick2 (CHR) step-response tuning methods (Åström and 
Hägglund, 1995b; Haalman, 1966; Hang et al, 1991; Šega, 1991; Zupančič, 1996).  

In comparison to these methods, the new method gives time responses with a very small 
overshoot, without oscillations, and with a better or comparable settling time for a large 
set of processes (see Appendix E) (Vrančić et al., 1995a), all of which is in accordance 
with the chosen tuning criterion (MO). 

In order to illustrate the tuning results, a comparison of time responses obtained by the 
mentioned methods for three of the tested processes is given. The chosen processes are 
GP1 with T=1 (process a), GP5 with n=5 (process b), and GP7 with T=10 (process c) (see 
Appendix E). 

The calculated controller parameters for all four tuning methods, for PI and PID 
controller (optimal Td), are shown in Tables 2.2 and 2.3. 

In order to test the behaviour of the closed-loop system, a unity step change in reference 
at the beginning of the experiment and a unity step load disturbance at the process input 
in the middle of the experiment were chosen. 
                                                 
2 For tracking with a 20% overshoot. 
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Fig. 96. The closed-loop process time responses (y) when using the PI (--) and the PID 
(__) controller(upper figure), and three different PID controllers obtained by fixing the 

ratios ρ=Td/Ti=0.2 (__), 0.25 (--), and 0.29 (-.-) (lower figure).  
Load disturbance d=1 appears @ t=15s. 

 
 
The results, obtained by simulation using a MATLAB-SIMULINK programme package, 
are shown in Figs. 97 and 98. Note that the CC settings gave an unstable closed-loop 
response for processes b and c (for PI and PID controllers), the CHR settings gave an 
unstable closed-loop response for process c (for PI and PID controllers), and ZN settings 
gave an unstable response for process c for PID controllers, and are therefore not shown.  

 

Table 2.2. Calculated PI controller parameters. 

 
Process New tuning method ZN CC CHR 

 K Ti K Ti K Ti K Ti 

a 0.571 1.067 0.9 3.3 0.983 1.138 0.6 1.0 

b 0.437 2.33 2.19 6.93 2.28 3.81 1.463 5.12 

c 0.088 1.95 0.194 15.44 0.277 2.02 0.129 1.008 
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Table 2.3a. Calculated PID controller parameters. 

 
Process New tuning method ZN 

 K Ti Td K Ti Td 

a 1.03 1.34 0.26 1.2 2 0.5 

b 1.08 3.41 0.95 2.93 4.2 1.05 

c 0.126 2.62 0.71 0.26 9.36 2.34 

 
 
Table 2.3b. Calculated PID controller parameters. 

 
Process CC CHR 

 K Ti Td K Ti Td 

a 1.58 1.81 0.31 0.95 1.35 0.47

b 3.5 4.44 0.71 2.32 6.91 0.99

c 0.54 5.58 0.92 0.205 1.36 2.2 

 
 

0 5 10 15 20 25 30
0

1

2

Time [s]

a. First order process with delay

0 10 20 30 40 50 60 70 80
0

1

2

Time [s]

b. Fifth order process

0 20 40 60 80 100 120 140 160 180 200

-2

0

2

4

Time [s]

c. Non-minimum phase process

 
 

Fig. 97. Process output (y) closed-loop responses for test processes when using PI 
controller; __ new tuning method, -- ZN, ... CC, -.- CHR, 
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Fig. 98. Process output (y) closed-loop responses for test processes when using PID 
controller; __ new tuning method, -- ZN, ... CC, -.- CHR, 
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9. Experiments with real-
time auto-tuning 
algorithm 

9.1 Description of the auto-tuning algorithm 

The auto-tuning algorithm, made in the Pascal programme language, using programme 
unit CONTROL (Vrančić et al., 1993c), has been built up to show the advantages of 
using the proposed tuning method in the auto-tuning controllers (Đapić, 1997; Vrančić 
et al., 1997b). 

The block scheme of the auto-tuning algorithm is given in Fig. 99. 

 

 

9.1.1 Inserting parameters 

At first, the algorithm requires some parameters for proper initialisation: 

• sampling time (TS), 

• amplitude of the step-change at the process input (∆U), 

• maximum allowable open-loop proportional gain K*KPR (Kmax), so as to reduce the 
transfer of the quantisation noise from the A/D converter to the output of the 
derivative term, and 

• approximate process main time constant (Tmain). 
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The last parameter (Tmain) does not have to be accurate. It is generally enough to 
estimate the range of the value (e.g. 1s, 10s, 100s...). 

 
 

 
 

Fig. 99. Block diagram of the auto-tuning algorithm 

 

 

 

9.1.2 Manually driving the process into the steady-state 

After inserting the parameters, the algorithm switches into the manual mode and the 
process has to be driven to the desired steady-state. When the process output settles, we 
can start the next stage of the algorithm, at which the open-loop step-response is 
performed. 

 
 
9.1.3 Performing the open-loop step response 

At first, a standard deviation (σ1) and a mean value ( y1 ) of the process output signal is 
measured by using the recursive algorithms, during the period 0<t≤t1=Tmain/4 (see Fig. 
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100 and a block-diagram in Fig. 101). Then, at t=t1=Tmain/4, a step-change ∆U is applied 
to the process input. After t=t1, five integrals of ( )y t y− 1  are calculated recursively, 
where y(t) denotes the process open-loop step response. Time instants t1 to tn are 
changed in the following way: 

 t
t

T
t T

t t T
i

i
main

i main

i i main

+ =
+ <

⋅ ≥







1 4

1 25

;

. ;

 

 
 . (199) 

 

 
 

Fig. 100. Process output during the open-loop and the closed-loop experiments 
performed by the auto-tuning algorithm  

 
 
In time intervals ti-1 ≤ t ≤ ti (i=2...n), the process deviation σi, and the process mean 
value yi  are recursively calculated. The multiple integrations of the process step 
response are also recursively calculated from t=t1 and are terminated at t=tn-1, when the 
standard deviation becomes σn-1≤2⋅σ1 or when σn-1≤σmax/40, where 

 σ σmax max=
= −k n k1 1l

 . (200) 

The steady-state gain of the process is calculated at t=tn in the following way: 
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 K
y y

UPR
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− 1

∆
, (201) 

At the same instant, the areas A1 to A5 are calculated: 
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where I1 to I5 are recursively calculated multiple integrations of the process step 
response: 

 I y d
t
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where the process step response y(t) is approximated by the linear function between two 
samples: 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( )y t y k
y k y k

T
t t k t k t t k

S

= − +
− −

− − − < ≤1
1

1 1   ; , (212) 

as given in Fig. 102. 

After the process steady-state gain KPR and areas A1 to A5 are obtained, the PI and the 
PID controller parameters are derived from expressions (159), (160), (162), (163), and 
(180), and (181) by fixing ρ=0.2. 

Note that the calculated proportional gain of the PI and PID controller for the 
dominantly first-order process or the proportional gain of the PID controller for 
dominantly second-order process can become very high or even infinite (K=∞). In such 
a case, the open-loop gain is restricted to: 

 K
K
KPR

≤ max  , (213) 

where Kmax is a given user-defined parameter (see Chapter 9.1.1). 

By solving expressions (162), and (213), the factor αD can be recalculated: 

 αD K
= 05.

max

 . (214) 
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When applying (214) to (160) and (163), the remaining two PID parameters can be 
obtained. 
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Fig. 101. Block-diagram of the auto-tuning algorithm whilst performing the open-loop 
step response. 
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Fig. 102. The continuous-time approximation of the process step-response between two 
discrete samples. 

 
 
In order to achieve an even more robust auto-tuning algorithm for the PID controllers, 
the proportional gain of the PID controller is additionally limited to four times the 
proportional gain of the PI controller. As factor α corresponds to the PI controller and 
αD corresponds to the PID controller (160), this limitation can be expressed in the 
following way: 

 α α
D ≥

4
 . (215) 

 

 

9.1.4 Performing closed-loop experiments 

After calculating areas A1 to A5, the PI and the PID controller parameters (the 
calculation is very fast due to the recursive way of numerical integration), the algorithm 
switches into automatic mode (closed-loop).  

After switching to automatic mode, the reference step changes are applied (only for 
testing purposes), first by using the PI controller (using expressions (160) (Td=0), (162) 
and (163)) from tn<t≤tn+2, then by applying the PID controller obtained by fixing the 
ratio ρ=Td/Ti=0.2 (see (180) and (181)) from tn+2<t≤tn+3, and then by using the PID 
controller using expressions (159), (160), (162), and (163) from tn+3<t≤tn+4.  



 158

Note that in practical realisation of the PID controllers, the implementation of the 
appropriate anti-windup protection is of high importance. In this auto-tuning algorithm, 
the conditioning technique is applied as an anti-windup protection (see part I of this 
thesis). 

 

9.2 Real-time experiments on laboratory plants 

Four real-time experiments were performed on laboratory plants. 

The first experiment was made on a very simple model of the third-order process, 
comprised of resistors, capacitors, and the operational amplifiers (R-C chain) as given in 
Fig. 1033. The process is very linear with almost no noise (in fact, only the quantisation 
noise of the A/D converter is present). 

 
 

 
 

Fig. 103. The R-C chain “plant” 

 
 
Fig. 104 shows the results of the real-time experiment on the R-C chain, when using the 
auto-tuning algorithm. After the process open-loop step response is obtained (from t=2s 
to t=18s - see the step-change of the process input), the following values of the process 
gain, areas, and factors α and αD are obtained: 

 

                                                 
3 The input filters of the Burr-Brown acquisition system are not shown in Fig. 103, but it should be noted 
that they contribute additional dynamics to the system. 
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KPR A1 A2 A3 A4 A5 αααα ααααD 

0.66033 3.0872 9.6234 24.521 54.086 105.57 0.835 0.172 

 
 
The following PI and PID controller parameters were obtained from expressions (160), 
(162), (163), (159), (180) and (181): 

 
 

 K Ti Td 

PI 0.907 2.548  

PID (Td=0.2Ti) 1.656 3.209 0.642 

PID (159) - (modified 
αD) 

3.627 3.868 1.064 

 
 
Note that the PID controller parameters (159) are modified so as to comply with the 
restriction αD≥α/4. 

The closed-loop responses (see Fig. 104) are very good for all three controllers used. It 
is obvious that the closed-loop response becomes faster when using a controller with 
higher proportional gain without an increase of the plant overshoot. Moreover, the 
overshoot is even smaller when a controller with maximum gain (PID controller) is 
used. The closed-loop responses in Fig. 104 are shown in more detail in Fig. 105. 

 
 

0 50 100 150 200 250
1

1.5

2

2.5

3

Time [s]

__ process output [V], -- reference [V]

0 50 100 150 200 250
0

2

4

6

8

10

Time [s]

Process input [V]

 
Fig. 104. The system responses under the auto-tuning algorithm for the R-C process 
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Fig. 105. The closed-loop responses under the real-time auto-tuning algorithm (the 

detailed view of Fig. 104) 

 
 
The second experiment was made on a motor-generator plant, as shown in Fig. 106. The 
plant input is the voltage on the amplifier input (Uin) which drives the motor, and the 
output is the speed of the motor-generator system measured at the output of the speed-
to-voltage converter (Uout). Both input and output signals are in the range from 0 to 10V. 

The motor-generator plant is quite non-linear. The steady-state input-output 
characteristic of the process is given in Fig. 107, where the solid line represents the 
characteristics obtained when increasing the process input voltage, whilst the dashed 
line represents the characteristics obtained when decreasing the input voltage. 

 
 

 
 

Fig. 106. Motor-generator laboratory set-up 
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Fig. 107. The static characteristics of the motor-generator set-up; __ increasing the 
input voltage, -- decreasing the input voltage. 

 
 
The system time response, when driven by the real-time auto-tuning algorithm, is shown 
in Fig. 108. It can be seen that the open-loop step response takes 0.65s (from t=0.25s to 
t=0.9s), whilst the sampling time is TS=0.01s.  

The following values of the process gain, areas, and factors α and αD are obtained: 

 
 

KPR A1 A2 A3 A4 A5 αααα ααααD 

0.644 0.1221 1.435·10-2 1.311·10-3 1.001·10-4 6.607·10-6 1.076 0.3702 

 
 
The following PI and PID controller parameters were obtained from (160), (162), (163), 
(159), (180) and (181): 
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 K Ti Td 

PI 0.721 0.0914  

PID (Td=0.2Ti) 1.148 0.1131 0.0226 

PID (159) - (modified 
αD) 

2.096 0.1384 0.0399 

 

The system response (see Fig. 108) is very good for all three controllers. It is obvious 
that the process response becomes faster as proportional gain increases. Different 
process transients at low and high reference levels indicate non-linear process 
characteristics.  

The closed-loop responses in Fig. 108 are shown in Fig. 109. 
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Fig. 108. The system responses under the auto-tuning algorithm for the motor-

generator set-up 
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Fig. 109. The closed-loop responses under the real-time auto-tuning algorithm  

(the detailed view of Fig. 108) 

 
 
The third experiment was made on a pneumatic plant, as depicted in Fig. 110. The plant 
input is the current reference (i) on the servo-driven valve, and the output is the pressure 
p1 between valves V1 and V2 (transferred to voltage by the pressure-to-voltage 
transmitter). The input current is in the range of 4-20mA, whilst the output voltage is in 
the range from 0 to 1V. 

The pneumatic plant is also non-linear. The steady-state input-output characteristic of 
the process is given in Fig. 111, where the solid line represents the characteristics 
obtained when increasing the current at the process input, whilst the dashed line 
represents the characteristics obtained when decreasing the input current. 

 
 

 
 

Fig. 110. Pneumatic laboratory set-up. 
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Fig. 111. The static characteristics of the pneumatic set-up (output voltage);  
__ increasing the input current, -- decreasing the input current. 

 
 
The system time response, when driven by the auto-tuning algorithm, is shown in Fig. 
112. 

The following values of the process gain, areas, and factors α and αD are obtained: 

 

KPR A1 A2 A3 A4 A5 αααα ααααD 

-0.089 -2.203·10-2 -3.723·10-3 -5.359·10-4 -6.857·10-5 -7.85·10-6 0.715 0.0472 

 

Note that the PID controller parameters (159) are modified so as to comply with the 
restriction αD≥α/4. 

The following PI and PID controller parameters were obtained from (160), (162), (163), 
(159), (180) and (181): 
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 K Ti Td 

PI -7.835 0.1439  

PID (Td=0.2Ti) -16.39 0.184 0.0368 

PID (159) - (modified 
αD) 

-31.34 0.2094 0.0529 

 
 
The system response (see Fig. 112) is very good when using all three controllers. It is 
obvious that the closed-loop response becomes faster when controllers with higher 
proportional gain are used. Different closed-loop transients at low and high reference 
levels again indicate the non-linear characteristics of the plant. The higher process delay 
time is particularly noticeable when decreasing the pressure, rather than when increasing 
the pressure, as shown in Fig. 113. 

The closed-loop responses in Fig. 112 are shown in Fig. 113. 
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Fig. 112. The system responses under the auto-tuning algorithm for the pneumatic set-

up 
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Fig. 113. The closed-loop responses under the real-time auto-tuning algorithm (the 

detailed view of Fig. 112) 

 
 
The fourth experiment was made on a three-water-columns laboratory set-up (Vrančić et 
al., 1993d), which is shown in Fig. 114. 
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Fig. 114. Three-water-columns laboratory set-up. 
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The water comes from the reservoir through the pump to water column 1. It then flows 
through the valve V12 to water column 2 and then through V2 and V23 after which it 
flows back to the reservoir and into the third water column. The water flows from 
column 3 through V3 back to the reservoir. The process input is the voltage on the pump 
(u), and the process output is the water level in the third column (h3). The input-output 
characteristic of the process is non-linear (in the steady-state h3∝u2). 

The system time response, when driven by the auto-tuning algorithm, is shown in Fig. 
115. 

The following values of the process gain, areas, and factors α and αD are obtained: 

 
 

KPR A1 A2 A3 A4 A5 αααα ααααD 

1.0605 197.22 2.7274·104 3.2409·106 3.3652·108 3.0693·1010 0.565 -0.0796 

 
 
It can be seen that the calculated αD is negative. The reason for this could be due to the 
highly non-linear and dominantly second-order behaviour of the process, variations in 
the speed of the pump, and the non-linearity of the level sensor. The auto-tuning 
algorithm corrects the value αD to αD=α/4=0.141. It is therefore clearly shown that the 
multiple integrations up to area A5 cannot be successfully used for relatively non-linear 
and disturbed processes. 

The following PI and PID controller parameters were obtained from (160), (159), (162), 
(163), (180) and (181), by taking into account the restrictions of the auto-tuning 
algorithm (αD≥α/4): 

 
 

 K Ti Td 

PI 0.834 37.5  

PID (Td=0.2Ti) 2.143 152.4 30.49 

PID (159) - (modified αD) 3.338 163.0 37.45 

 
 
All of the closed-loop responses are once again very good. As in the previous examples, 
it is obvious that the closed-loop process response becomes faster when controllers with 
higher proportional gain are used, without increasing the process overshoot. On the 
other hand, the process input becomes noisier when both PID controllers are used 
because of the quantisation of the A/D converter. The process non-linear behaviour can 
be clearly seen from the closed-loop responses, where no overshoots are visible when 
decreasing the reference signal, whilst overshoots are noticable when the reference 
signal is increased. 
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The closed-loop responses in Fig. 115 are shown in Fig. 116. 
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Fig. 115. The system responses under the auto-tuning algorithm for the three-water-
columns process 
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Fig. 116. The closed-loop responses under the real-time auto-tuning algorithm (detailed 

view of Fig. 115) 
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10. Discussion 

The aim of this part of the thesis was to find a simple tuning method for the PI(D) 
controller which would be suitable for a large set of processes. A frequency domain 
tuning criterion (magnitude optimum) was chosen. It was shown that the parameters of 
the PI controller can be calculated from the step response by the multiple integration 
method in a very simple way, using the areas A1, A2, and A3. This also holds when 
calculating the PID controller parameters, if areas A4 and A5 can be successfully 
obtained. The derivative term time constant can also be obtained by fixing the ratio 
ρ=Td/Ti. This, however, does not result in the optimal closed-loop time response, 
according to MO criterion. 

Tests on the laboratory plants also showed that the method is relatively robust to process 
noise and non-linearity. The main point, however, is that in spite of the considerably 
demanding frequency criterion - and the fact that the calculation of the controller 
parameters is based on the complete process model - implementation using the time 
domain approach is very simple and straightforward. 

The method also resulted in excellent PI controller tuning performances for high-order 
processes, highly non-minimal phase processes and for those processes with higher time 
delays (Vrančić, 1995b). 

 

The advantages of the new tuning approach are: 

• There is no need to detect the process inflection point and the slope from the process 
step response (which is difficult in a noisy environment). The method is based on 
multiple integrations (summations) and is therefore suitable for use in the auto-tuning 
algorithms. 

• The controller parameters are calculated exactly, according to the given MO criterion, 
for a wide spectrum of process models. 

• The calculation of areas A1 to A3 is neither too sensitive to process noise nor to non-
linearity (Vrančić, 1995b). 
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The drawback of such an approach is that the method requires a stable open-loop 
process response in order to determine the appropriate controller parameters. However, 
the closed-loop stability is not guaranteed. Only the necessary condition for stability is 
derived. 

However, the new tuning method was tested in Vrančić et al. (1995a), and the 
experimental results showed very good closed-loop time responses for all the process 
models given in Appendix E. In Vrančić (1995b), a few additional processes were also 
tested. 

The new method can be successfully used for improving the classical tuning rules. It can 
also be used in a pre-tuning stage when some other control goal is to be met. The 
extension of the new tuning method (using the multiple integration approach) to other 
types of controllers, two-degrees-of freedom PID controllers, as well as MIMO PI 
controllers (Vrančić et al., 1997a) is also straightforward. 

 


