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Abstract: The magnitude optimum (MO) technique provides non-oscillatory closed-loop 
response for a large class of process models. However, this technique is based on an 
accurate model which requires precise process identification and extensive computations. In 
the present lecture, it is shown that there exists a close relation between multiple 
integrations of the process step response and the MO criterion. Thanks to this relation, the 
MO criterion can be achived in a very simple way. Some practical guidelines how to 
perform multiple integrations and how to re-tune controller parameters are given. A 
description of an auto-tuning algorithm, based on this new approach, with real-time 
examples on the laboratory set-ups is given as well. 
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1. INTRODUCTION 

The Ziegler-Nichols tuning rules (Ziegler and 
Nichols, 1942) were the very first tuning rules for 
PID controllers, and it is surprising that they are still 
widely used today. The reason for their popularity 
lies in their simplicity and efficiency. This is why so 
many different tuning rules which are based on the 
same tuning procedures have been developed later on 
(Gorez, 1997). 
After the work of Ziegler and Nichols, a variety of 
PID tuning methods have been developed. In general, 
these methods can be divided into two main groups: 
the direct and the indirect tuning methods (Åström et 
al., 1993; Gorez, 1997). The direct tuning methods 
do not require a process model, while the indirect 
methods calculate controller parameters from 
identified model of the process. 
The purpose of this lecture is to introduce a new 
indirect tuning method which is based on an implicit 
process model rather than an explicit one. The 
multiple integrations method (Rake, 1987; Strejc, 

1959) is used for the implicit process identification. 
However, the areas, calculated by using the multiple 
integrations from the open-loop process response, are 
directly used for the calculation of the controller 
parameters rather than for the process identification 
(Nishikawa et al., 1984; Voda and Landau, 1995) in 
order to meet the so-called magnitude optimum (MO) 
criterion (Åström and Hägglund, 1995; Hanus, 1975; 
Kessler, 1955; Umland and Safiuddin, 1990). It was 
found out that in this way the magnitude optimum 
criterion can be met for a very large set of process 
models (low-order, high-order, highly non-minimum 
phase and/or processes with larger time delays) 
merely by measuring the process open-loop step 
response without the need for additional “fine” 
tuning. 
The lecture is organised as follows. Section 2 
provides a theoretical background with derivation of 
PID controller parameters, according to the new 
magnitude optimum multiple integrations (MOMI) 
method. Next, in Section 3, some guidelines on how 
to perform the multiple integrations in practice and 



 

how to re-tune controller parameters are given. Real-
time auto-tuning algorithm with experiments on two 
laboratory plants are given in Section 5. Some 
additional thoughts concerning the MO criterion and 
MOMI method are stated in Section 6. The lecture 
ends up with conclusions. 
 

2. DERIVATION OF PID CONTROLLER 
PARAMETERS 

The tuning procedure for the PID controller is given 
for processes which can be approximated by the 
transfer function 
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where KPR denotes the process steady-state gain, and 
a1 to an and b1 to bm are the corresponding parameters 
(m≤n) of the process transfer function, and Tdel 
represents the process pure time delay. 
The PID controller is given by the following transfer 
function: 
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where U and E denote the Laplace transforms of the 
controller output, and the control error (e=w-y), 
respectively. The controller parameters K, Ti, Td, and 
Tf represent proportional gain, integral time constant, 
derivative time constant, and filter time constant, 
respectively.  
The PID controller in a closed-loop configuration 
with the process is shown in Fig. 1, where d denotes a 
load disturbance. 

 

Fig. 1. The closed loop system with PID controller 

The goal of tuning is to find such a controller that 
makes the closed-loop magnitude (amplitude) 
frequency response (GCL) from the set-point to the 
plant output as flat and as close to unity as possible 
for a large bandwidth. The requirements can be 
expressed in the following way:  
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This technique is called magnitude optimum (MO) 
(Umland and Safiuddin, 1990), modulus optimum 
(Åström and Hägglund, 1995), or Betragsoptimum 
(Åström and Hägglund, 1995; Kessler, 1955), and 
results in a fast and non-oscillatory closed-loop time 
response for a large class of process models. 
The closed-loop tuning goal can be easily 
transformed into the open-loop criterion by using the 
well-known M and N circles known from the basic 
control theory. To achieve the same tuning goal as 
given above, the open-loop Nyquist curve should 
follow the vertical line with the real value -0.5 up to 
the highest frequency possible (Hanus, 1975). If the 
controller is of the same order as the process, the 
open-loop Nyquist curve will follow the vertical line 
up to the frequency ω=∞ (see solid line in Fig. 2). 
Otherwise, open-loop Nyquist curve will turn away 
from the vertical line at higher frequencies (see 
dashed line in Fig. 2). 
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Fig. 2. Nyquist chart of the open-loop frequency 
response GP(jω)GC(jω);  
__ frequency response when using a controller 
with same order than the process,  
-- frequency response when using a controller 
with lower-order than the process. 

Following the procedure given by Hanus, (1975), 
such tuning goal can be achieved by moving the zeros 
of the function Re{GP(jω)GC(jω)}+0.5 toward ω=0. 
In order to derive the PI and the PID controller 
parameters according to the given MO criterion, 
firstly the pure time delay in equation (1) has to be 
developed into the Taylor series: 
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The open-loop system transfer function can then be 
expressed in the following way: 
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where parameters ci and di are functions of the 
transfer function (Equation 1), and PID controller 
(Equation 2) parameters (see e.g. Vrančić et al., 
1997c). 
In order to determine three PID controller 
parameters, as required by the presented magnitude 
optimum criterion, the first three equations (n=0..2)  
from the following set of equations must hold (Hanus, 
1975): 
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When inserting parameters ci and di from equation (5) 
into equation (6), and applying Tf=01, the following 
PID controller parameters can be expressed by the 
unknown process parameters (Vrančić, 1997): 
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Note that the explicit result for the derivative time 
constant is not given. The reason is that equation (9) 
would fill up one full page of this lecture. 
In order for the method to be applied, an explicit 
identification of the parameters KPR, a1, a2, a3, a4, a5, 
b1, b2, b3, b4, b5, and Tdel of the transfer function 
(Equation 1) is required. However, it is well known 
that exact and reliable identification of such a number 

                                                           
1 The derivation of PID controller parameters, when Tf≠0 
is given in Vrančić (1997). However, Tf does not affect 
seriously the accuracy of the calculated controller 
parameters when choosing  Tf=Td/10 as was used in all the 
closed-loop experiments given in this lecture. 

of parameters from real measurements is very 
problematic. 
This problem can be avoided by using the concept of 
multiple integrations (Rake, 1987; Strejc, 1959). 
Following Rake, (1987), and considering equation 
(1), the following areas can be expressed by 
integrating the process open-loop step response (y(t)), 
after applying the step-change ∆U at the process 
input: 
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where  
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In order to clarify the mathematical derivation, 
graphic representations of the first three areas (A1 to 
A3) are shown in Figures 3 to 5. 
When inserting the calculated areas (Equation 10), 
obtained from the process open-loop step response, 
into equations (7) to (9), the following result is 
obtained: 
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Note that the PI controller parameters can be 
expressed from equations (13) and (14) simply by 
applying Td=0.  



 

 

Fig. 3. The graphic representation of area A1 

 

Fig. 4. The graphic representation of area A2 

 

Fig. 5. The graphic representation of area A3 

Now obviously only the process steady-state gain 
KPR, and five areas (A1 to A5) are needed to calculate 
the unknown PID controller parameters, and three 
areas (A1 to A3) to calculate the unknown PI 
controller parameters. 
As seen from equations (10) and (11), or Figures 3 to 
5, the areas A1 to A5 can be calculated from the 
process open-loop step response by a simple 
numerical integration, whilst the gain KPR can be 
determined from the steady-state value of the process 
step response in the usual way. 
All together this means substantial reduction of the 
number of the required parameters (areas A1 to A5 
instead of transfer function parameters a1..a5, b1..b5, 
and Tdel) and consequently important simplification of 
expressions for K, Ti, and Td. 

One of the main points is, however, that the mapping 
of equations (7), (8), and (9) into equations (13), 
(14), and (12) is an exact and not an approximate 
one. This means that the PID parameters defined by 
the MO criterion and originally expressed by 
complicated relations between the parameters of the 
transfer function, can be equally well expressed by 
single combination of corresponding areas obtained 
from the step response. 
The PID controller tuning procedure can therefore 
proceed as follows: 
• measure the process step response, 
• find the process steady-state gain KPR and areas 

A1, to A5 (by using numerical integration 
(summation) from the start to the end of the 
process step response), and 

• calculate the PID controller parameters by using 
equations (12) to (14). 

 
2.1 Illustrative example  

Let us now illustrate the proposed PID controller 
design in one example.  
The following fifth-order process model is chosen: 
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At first, a step-change ∆U=2 is applied to the process 
input. The process open-loop step response is shown 
in Fig. 6 above. The starting process steady-state is 
y(0)=0, and the final steady-state of the process is 
y(∞)=3, so the process steady-state gain  
KPR=(y(∞)-y(0))/∆U=1.5. Function y1(t) is obtained 
by numerically integrating a difference KPR-(y(t)-
y(0))/∆U, as given by equation (11). Function y1(t) is 
shown in Fig. 6 below. The final steady-state 
y1(∞)=7.5 equals area A1 (10). Similarly, area A2 can 
be obtained by numerically integrating the difference 
between A1=y1(∞) and y1(t), as given by equations 
(10) and (11). Calculated function y2(t) is given in 
Fig. 7. The final steady-state value of y2(t) 
corresponds to A2 (A2=y2(∞)=22.5). The remaining 
functions (y3 to y5) and areas (A3 to A5) can be 
calculated in the similar manner. Functions y3(t) to 
y5(t) are shown in Fig. 7.  
Hence, the following values of the process steady-
state gain and the areas are obtained from the process 
step-response: 
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The optimal PID controller parameters are calculated 
from equation (16) by using equations (12) to (14): 

 K T s T si d= = =0 708 3 4 0 94. , . , .     . (17)  
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Fig. 6. Process step response (y) (above) and function 
y1(t) (below) 
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Fig. 7. Function y2(t) (above left), function y4(t) 
(above right) , function y5(t) (below left), and 
function y5(t) (below right) 

The optimal PI controller parameters can be 
calculated as well by applying Td=0 into equations 
(13) and (14): 

 K T si= =0 292 2 33. , .   . (18) 

Fig. 8 shows the closed-loop time responses on the 
reference change (w=1 at t=0s), and on the load-
disturbance (d=1 at t=30s) when using the PI and the 
PID controller. It is clear that both closed-loop 
responses are quite acceptable, all according to the 
chosen MO tuning criterion.  
Two Nyquist curves of the open-loop frequency 
response GC(jω)GP(jω) (when using the PI and the 
PID controller) are shown in Fig. 9. It is clear that 
both Nyquist curves closely follow the vertical line 
with the real value -0.5 at lower frequencies, as 
prescribed by the MO tuning criterion. 
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Fig. 8. Process output (y) (above) and controller 
output (u) (below) during the closed-loop 
experiment with: __ PID controller, -- PI 
controller 
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Fig. 9. Nyquist curve of the open-loop frequency 
response when using: __ PID controller, -- PI 
controller 

 
3. SOME GUIDELINES FOR PRACTICAL 

WORK 

In the previous section it was shown that the 
implementation of the magnitude optimum multiple 
integrations (MOMI) method is very simple and 
straightforward. Only the process step response has to 
be measured and some integrations (summations) to 
be performed in order to calculate areas A1 to A5 (A1 
to A3 for PI controller). However, there are always 
some additional obstacles which have to be overcome 
in order to be able to implement the method in 
practice. In this section a few practical guidelines for 
deriving areas from process step response will be 
given, as well as some modifications of the tuning 
procedure if the calculated controller gain is too high 
or even negative. 

 



 

3.1 Performing multiple integrations in practice 

Areas A1 to A5 can be calculated from the final values 
(t=∞) of signals y1(t) to y5(t) (Equation 10). In 
practice, of course, it is enough to wait until process 
step response settles. Fig. 10 shows a typical process 
step response. At t=t1, a step-change is applied to the 
process input. Process practically reaches the steady-
state value at t=tint, so all integrations in equation (11) 
can be made in time interval t=[t1, tint]. 

 

Fig. 10. Process input and output during step-change 
experiment.  

However, making relatively small errors in the 
calculation of the process steady-state gain (KPR) 
could lead to relatively large errors in calculated 
areas. Such errors are especially noticeable when 
dealing with process with present noise. In order to 
improve the accuracy of the calculated KPR, the 
process step response should be averaged in time 
intervals  
t=[t0, t1] (before making step change) and t=[tint, tfin] 
(after new steady-state is already achieved) in the 
following way (see Fig. 10): 
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A process steady-state gain is then simply calculated 
as: 

 K y y
UPR
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Note that y(0) in (11) should be replaced by ya0. 
How to choose time instants t0 and tfin? Numerous 
experiments on several process models and 
laboratory plants showed that good practical results 
are usually obtained when choosing: 
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Let us now illustrate the proposed integration 
procedure in one example.  
The following process model is chosen: 
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A random noise, generated by MATLAB function 
RANDN, and amplified by factor 0.05, was added to 
the process step response. The process output and 
input signals are shown in Fig. 11.  
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Fig. 11. Process output (y) and controller output (u) 
during the open-loop experiment on the process 
with present noise. 

The following time intervals were chosen: t0=0s, 
t1=10s, tint=50s, and tfin=60s. Values ya0 and ya1 were 
calculated by averaging process output signal during 
intervals t=[t0, t1] and t=[tint, tfin] (Equation 19) and 
resulted in ya0=-6.97⋅10-4, and ya1=0.996. Using 
equation (20), the calculated process gain was 
KPR=0.997. Functions y1(t) to y5(t) were calculated 
from equation (11), where integrations were 
performed in time interval t=[t1, tint]. Areas A1 to A5 
were calculated from y1(tint) to y5(tint). The following 
values of areas and controller parameters were 
obtained: 
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The ideal values, obtained on the process without 
present noise, were the following: 
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It is clear that the obtained controller parameters 
(Equation (23)) are close to the ideal ones (Equation 
(24)).   

Tuning procedure, shown above, was used as a basis 
of the auto-tuning algorithm, which will be explained 
in more details in section 4.1. 
 
3.2 Re-tuning the controller parameters 

In some cases, the controller parameters, obtained by 
using the MOMI method, have to be re-tuned due to 
some practical reasons. Namely, when tuning the PID 
controllers for a first-order or second-order process 
the controller gain is in accordance with MO tuning 
criterion theoretically infinite. In practice (when 
process noise is present), the calculated controller 
gain can have a very high positive or negative value. 
In this case the controller gain should be limited to 
some acceptable value, which depends on the 
controller and the process limitations.  

The remaining two controller parameters can now be 
calculated according to the limited (fixed) controller 
gain from equations (13) and (14): 
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When limiting the controller gain in the PI controller 
than, of course only equation (25) is used. Note that 
the proposed re-tuning of controller parameters can 
also be used in cases when slower and more robust 
controller should be designed (by decreasing the 
calculated gain K) or faster, but more oscillatory 

response is required (by increasing the calculated 
gain K).  

Let us now illustrate the proposed modified tuning 
procedure.  
The following process model is chosen: 
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The multiple integrations were performed on the 
process step response (y), and the following values of 
the process steady-state gain and areas were obtained 
from equations (10) and (11): 
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In the next step PI and the PID controller parameters 
were calculated from equations (12) to (14): 
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By fixing the controller gain to K=10, and by using 
equations (25) and (26), the following modified PID 
controller parameters were obtained: 

      K T s T si d= = =10 5 85 0 725, . , .  (33) 

Fig. 12 shows the process closed-loop responses 
when using the original PI controller and the 
modified PID controller parameters. It is clear that 
the process closed-loop response when using such 
modified PID controller is very good. The Nyquist 
curves of the open-loop system, when using the PI 
and the modified PID controller parameters, are 
shown in Fig. 13. 
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Fig. 12. Process output (y) and controller output (u) 
during the closed-loop experiment with:  
__ modified PID controller, -- PI controller 
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Fig. 13. Nyquist curves of the open-loop frequency 
response when using:  
__ modified PID controller, -- PI controller 

 
4. EXPERIMENTS ON LABORATORY PLANTS 

 
4.1 Description of auto-tuning algorithm 

An auto-tuning algorithm, made in the Pascal 
programme language has been built up to show the 
advantages of using the proposed tuning method in 
the auto-tuning controllers (Vrančić, 1997). 

The block scheme of the auto-tuning algorithm is 
given in Fig. 14. 

 

Fig. 14. Block diagram of the auto-tuning algorithm 

 
4.1.1 Inserting parameters 

At first, the algorithm requires some parameters for 
proper initialisation: 

• sampling time (TS), 

• amplitude of the step-change at the process input 
(∆U), 

• maximum allowable proportional gain of the 
controller (K), (see sub-section 3.2), and 

• approximate process main time constant (Tmain). 

The last parameter (Tmain) does not have to be 
accurate. It is generally enough to estimate the range 
of the value (e.g. 1s, 10s, 100s...). 

 
4.1.2 Manually driving the process into the steady-
state 

After inserting the parameters, the algorithm switches 
into the manual mode and the process has to be 
driven to the desired steady-state. When the process 
output settles the open-loop step-response can be 
performed. 

 
4.1.3 Performing the open-loop step response 

At first, a standard deviation (σ1) and a mean value 
( y1 ) of the process output signal is measured by 
using the recursive algorithms, during the period 
0<t≤t1=Tmain/4 (see Fig. 15 and a block-diagram in 
Fig. 16). Then, at t=t1=Tmain/4, a step-change ∆U is 
applied to the process input. After t=t1, five integrals 
of ( )y t y− 1  are calculated recursively, where y(t) 
denotes the process output and 

 ( ) ( )y
t t

y t dt y t t t ti
i i

i i
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t

i

i

=
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−
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∫
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Time instants t1 to tn are defined in the following 
way: 

 t
t T t T

t t T
i

i
main

i main

i i main

+ =
+ <

⋅ ≥







1 4

1 25

;

. ;

 

 
 . (35) 

 

Fig. 15. Process output during the open-loop and the 
closed-loop experiments performed by the auto-
tuning algorithm  



 

In time intervals ti-1 ≤ t ≤ ti (i=2...n), the process 
standard deviation: 

 ( )( )σ i
i i

i
t

t

t t
y t y dt

i

i

=
−

−
− −

∫
1

1 1

 (36) 

and the process mean value yi  (see Equation (34)) 
are recursively calculated. The multiple integrations 
of the process step response are also recursively 
calculated from t=t1 and are terminated at t=tn-1, when 

the standard deviation becomes σn-1≤2⋅σ1 or when  
σn-1≤σmax/40, where 

 σ σmax max=
= −k n k1 1l

 . (37) 

The steady-state gain of the process is calculated at 
t=tn in the following way: 

 K y y
UPR

n= − 1

∆
, (38) 
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Fig. 16. Block-diagram of the auto-tuning algorithm whilst performing the open-loop step response. 

At the same instant, the areas A1 to A5 are calculated: 
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where I1 to I5 are recursively calculated multiple 
integrations of the process step response: 
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where the process step response y(t) is approximated 
by the linear function between two samples: 
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as given in Fig. 17.  

After the process steady-state gain KPR and areas A1 
to A5 are obtained, the PI and the PID controller 
parameters are derived from expressions (12) to (14). 

In order to achieve more robust auto-tuning 
algorithm, the proportional gain of the PID controller 
(KPID) is additionally limited to four times the 
proportional gain of the PI controller (KPI): 

 K KPID PI≤ 4  . (50) 

The remaining two PID controller parameters can be 
calculated from Equations (25) to (29). 

 

Fig. 17. The continuous-time approximation of the 
process step-response between two discrete 
samples. 

 
4.1.4 Performing closed-loop experiments 

After calculating areas A1 to A5, the PI and the PID 
controller parameters (the calculation is very fast due 
to the recursive way of numerical integration), the 
algorithm switches into automatic mode (into closed-
loop configuration).  

After switching to automatic mode, the reference step 
changes are applied (only for testing purposes), first 
by using the PI controller from tn<t≤tn+2, and then by 
using the PID controller from tn+2<t≤tn+3.  

Note that in practical realisation of the PID 
controllers, the implementation of the appropriate 
anti-windup protection is of high importance. In this 
auto-tuning algorithm, the conditioning technique is 
applied as an anti-windup protection (see Peng et al., 
1996). 

 
4.2 Real-time experiments 

Two real-time experiments were performed on the 
laboratory set-ups by using the Burr-Brown 
acquisition system PCI-20000 (Vrančić, 1997). The 
first experiment was made on a pneumatic set-up 
(process), given by Fig. 18. The input of the process 
is the current reference iin (4/20 mA) on the servo-
driven valve V1 and the output is the pressure p1 
between valves V1 and V2 (transferred to the voltage 
uout by using the pressure-to-voltage transmitter in the 
range from 0 to 10V). 

 

Fig. 18. Pneumatic set-up. 



 

Fig. 19 shows the system time response when running 
the auto-tuning algorithm. 
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Fig. 19. Process output (upper Figure) and input 
(lower Figure) during the open-loop tuning period 
(0-1.2s) and the closed-loop testing period (1.2s-
17s) of the auto-tuning algorithm.  

Fig. 20 shows the process open-loop step response in 
more details from which the following values of the 
process gain KPR, and areas A1 to A5 were calculated 
by the auto-tuning algorithm: KPR=-0.0782,  
A1=-0.0248, A2=-4.919·10-3, A3=-7.746·10-4,  
A4=-1.039·10-4, A5=-1.219·10-5. 
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Fig. 20. The pneumatic set-up open-loop step 
response. 

The corresponding PI and PID controller parameters 
are obtained from equations (12) to (14) and are: 

 
PI K T s
PID K T s T s

i

i d

: . , .
: . , . , .
   

    
= − =

= − = =
6 31 0 157

20 36 0 241 0 069
 . (51) 

The closed-loop responses (see Fig. 21) are quite 
good for both controllers. It is obvious that the 
closed-loop time response is faster when using the 

PID controller, without significant increase of the 
process overshoot. Different closed-loop transients at 
low and high reference levels indicate the non-linear 
characteristics of the plant. The higher process time 
delay is clearly noticeable when decreasing the 
pressure, rather than when increasing the pressure 
(see Fig. 21). 
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Fig. 21. The closed-loop process responses under PI 
and PID controller for the pneumatic set-up. 

The second experiment was made on a motor-
generator laboratory plant, as shown in Fig. 22. 
The plant input is the voltage on the amplifier input 
(uin) which drives the motor, and the output is the 
speed of the motor-generator system, measured at the 
output of the speed-to-voltage converter (uout). Both 
input and output signals are in the range from 0 to 
10V. 

 
 

Fig. 22. Motor-generator laboratory set-up. 

Fig. 23 shows the system time response when running 
the auto-tuning algorithm. 
The process open-loop step response is shown in 
more details in Fig. 24. From the step response the 
following values of the process gain KPR, and areas A1 
to A5 were calculated by the auto-tuning algorithm: 
KPR=0.7144, A1=0.187, A2=3.198·10-2, A3=4.357·10-3, 
A4=4.989·10-4, A5=4.881·10-5, and the resulting PI 
and PID controller parameters are  
 

 
PI K T s
PID K T s T s

i

i d

: . , .
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= =

= = =
0 76 0136

314 0 214 0 062
 . (52) 
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Fig. 23. Process output (upper Figure) and input 
(lower Figure) during the open-loop tuning period 
(0-1.3s) and the closed-loop testing period (1.3s-
19s) of the auto-tuning algorithm. 

The closed-loop responses (see Fig. 25) are very 
good for both controllers. It is obvious that the 
closed-loop response becomes faster when using PID 
controller. Different process transients at low and 
high reference levels again indicate the non-linear 
process characteristics. 
Note that in this case also some noise at the process 
output is present. 
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Fig. 24. The motor-generator set-up open-loop 
response.  

 
5. DISCUSSION 

The research related to the presented method was 
extended also to some other areas like e.g. 
multivariable PI controllers or Smith-predictor 
schemes. It was shown that the same idea with some 
modifications works quite successfully also in these 
domains (Vrančić et al., 1997b, Vrančić et al., 1998). 

Unfortunately, the MOMI method has also some 
drawbacks which have to be mentioned. 
Integration is a mathematical operation which is quite 
inert to moderate high frequency noise present in the 
process response. However, lower frequency noise, 
like disturbances in the measured system, can 
significantly deteriorate accuracy of the calculation of 
areas.  
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Fig. 25. The closed-loop process responses under PI 
and PID controller for the motor-generator set-up. 

There are several different approaches to circumvent 
this problem. First, to use larger excitation signals at 
the process input if possible (since signal/disturbance 
ratio is higher, higher accuracy of the calculated areas 
can be obtained). Second, to carry out several 
different experiments on the process (the average of 
all process responses can then be used for the 
calculation of areas. This can significantly reduce the 
error, but on the other hand it also increases the time 
of experiment).  

If neither the first nor the second approach is 
possible, the error in the calculation of controller 
parameters can be reduced by using lower number of 
areas. Namely, it is possible to calculate the PID 
controller parameters based only on three areas 
(instead of five), but such a solution is not more 
optimal according to the MO criterion, because the 
ratio Td/Ti has to be fixed (Vrančić et al., 1997a). 
However, the obtained closed-loop responses of such 
a controller are still faster than those obtained by 
using the PI controller and are not oscillatory for 
majority of the process models which frequently 
appear in the process industry. 

Beside the mentioned problems there are also some 
difficulties related to the drawbacks of the original 
magnitude optimum (MO) technique on which our 
approach is based. One of them is that the closed-
loop stability is not guaranteed (Hanus, 1975). 
Namely, there exist processes with stronger zeros or 
complex poles, which correspond to equation (1), but 
give unstable controller parameters (Vrančić, 1997). 



 

Even though it was not our prime intention to 
improve the original MO technique, some ways how 
to achieve stability for such processes by re-tuning 
controller parameters, were proposed (Vrančić, 
1997).  
Another, also frequently claimed problem is that the 
process poles are cancelled by the controller zeros. 
This may lead to poor attenuation of load 
disturbances if the cancelled poles are excited by 
disturbances, and if they are slow compared to the 
dominant closed-loop poles (Åström and Hägglund, 
1995). Poorer disturbance rejection can be observed 
especially when controlling low-order processes. In 
such cases, disturbance rejection can be significantly 
improved by using a two-degrees-of-freedom PI 
(PID) controller (Vrančić, 1997).  

We are planning to report about the results mentioned 
above in future publications.  

 
6. CONCLUSIONS 

The purpose of this lecture was to present a simple 
tuning method for the PI(D) controller, suitable for a 
large class of processes. The method is based on the 
magnitude optimum (frequency domain) criterion 
from which the formulae for calculation of PI(D) 
controller parameters are derived. These formulae are 
transformed into the new ones consisting mainly of 
different areas which can be calculated from the 
process step response by using the multiple 
integrations method. This results in a quite simple 
and straightforward time domain tuning approach. 
Simulation experiments on different kinds of 
processes have shown that the proposed method gives 
better results in comparison to some other, more 
frequently used, tuning procedures. 
The method was also tested on two laboratory plants. 
It was shown that it is quite robust to the process 
high-frequency noise and non-linearity. 
The drawback of this approach is that the method 
requires a stable open-loop process response in order 
to determine the appropriate controller parameters, 
and that the low-frequency noise or disturbances can 
significantly affect the accuracy of the calculated 
controller parameters if some additional precautions 
are not taken. 
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