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Abstract
This note concerns a fundamental issue in the modelling and realisation of nonlinear systems; namely, whether it is
possible to uniquely reconstruct a nonlinear system from a suitable collection of transfer functions and, if so, under
what conditions.  It is established that a family of frozen-parameter linearisations may be associated with a class of
nonlinear systems to provide an alternative realisation of such systems.  Nevertheless, knowledge of only the input-
output dynamics (transfer functions) of the frozen-parameter linearisations is insufficient to permit unique
reconstruction of a nonlinear system.  The difficulty with the transfer function family arises from the degree of
freedom available in the choice of state-space realisation of each linearisation.  Under mild structural conditions, it is
shown that knowledge of a family of augmented transfer functions is sufficient to permit a large class of nonlinear
systems to be uniquely reconstructed.  Essentially, the augmented family embodies the information necessary to
select state-space realisations for the linearisations which are compatible with one another and with the underlying
nonlinear system.  The results are constructive, with a state-space realisation of the nonlinear system associated with
a transfer function family being obtained as the solution to a number of linear equations.

1. Introduction
This note concerns a fundamental issue in the modelling and realisation of nonlinear systems; namely, whether it

is possible to uniquely reconstruct a nonlinear system from a suitable collection of transfer functions and, if so, under
what conditions.  Families of linear systems play an important role in many areas of nonlinear systems theory and
practice.  The construction of nonlinear systems related to a family of linear systems is, for example, the subject of
the pseudo-linearisation (e.g. Reboulet & Champetier 1984) and extended linearisation (e.g. Rugh 1986) approaches
and plays a central role in the choice of realisation of gain-scheduled controllers (e.g. Lawrence & Rugh 1995, Leith
& Leithead 1996,1998a).  Families of linear systems also play an important role in system identification practice
(e.g. Skeppstedt et al. 1992, McLoone & Irwin 2000).

A key issue in many application domains is that the linear systems are specified only to within a linear state
transformation; that is, the choice of state realisation is available as a degree of freedom.  This is usually the
situation, for example, in divide and conquer identification (because only input-output data is measurable) and many
forms of gain-scheduling design (because the linear methods used to carry out point designs are generally insensitive
to the choice of state-space realisation).  The objective of this note is to investigate the conditions, if any, under
which unique, global reconstruction of a nonlinear system is possible.  In order to focus on structural factors and to
improve the clarity of the development, attention is restricted here to situations where the linearisation family is well-
posed and known exactly; that is, stochastic issues are considered outwith the scope of the present note.

The note is organised as follows.  In section 2, families of frozen-parameter linearisations are introduced and
discussed.  The non-uniqueness associated with standard transfer function information of these linearisations is
introduced in section 3 and in section 4 sufficient conditions permitting global, unique reconstruction of a nonlinear
system from an appropriate transfer function family are derived.  A number of areas of application of these results
are indicated in section 5 and the conclusions are summarised in section 6.

2. Preliminaries
It is well known that the family of classical perturbation linearisations of a nonlinear system need not fully

characterise the dynamics of a nonlinear system.  It is not possible to distinguish between systems having the same
equilibrium dynamics but different dynamics away from equilibrium.  For example, consider a family of equilibrium
linearisations for which the member associated with the equilibrium operating point, (ro, xo, yo), is

δ δ δ δ δ&x x r y x= − + =101 101. . ,    (1)

δ δ δr r r x x x y y yo o o= − = − = +, ,

The linearised dynamics are the same at every equilibrium point and so might, for example, trivially be associated
with the linear system



& . . ,x x r= − +101 101   y = x (2)

However, it is straightforward to confirm that the linearised dynamics might equally be associated with any member
of the family of nonlinear systems

& ( ),x G r x y x= − =10             (3)

for which G(•) is any differentiable function such that ∇G(0)=1.01. To enable the nonlinear system to be
reconstructed, it is necessary to adopt a different linearisation approach which provides additional information about
the dynamics of the system.

Borrowing notation from the LPV/quasi-LPV literature, consider systems of the form
& ( ) ( )

( ) ( )

z A M z B N u

v C M z D N u

= + + +

= + + +

φ θ φ θ

ϕ θ ϕ θ
1 6 1 6
1 6 1 6 (4)

where u∈ℜm, v ∈ ℜp, θ∈ ℜq, z ∈ ℜn, φ, ϕ are nonlinear matrix functions and A, B, C, D, M, N are appropriately
dimensioned constant matrices.  The defining characteristic of the systems in (4) is that the parameter variation
enters via the nonlinear functions φ, ϕ which are, in turn, linearly coupled into the system equations through M, N.
It is assumed that the “parameter” θ is either measured directly or estimated from measurable signals but no
restriction is otherwise placed on θ.  In particular, θ need not be an exogenous variable but may depend via a static or
dynamic mapping on the state, z, of the system. Confining attention to the class of systems (4) is not overly
restrictive as it is easy to verify that any LPV/quasi-LPV system can be formulated as in (4) by, if necessary,
appropriately augmenting the parameter vector (trivially by including all the states and all the inputs when required).

Instead of the classical equilibrium linearisations, consider the family of linear systems with members
$& ( ) $ ( )

$ ( ) $ ( )
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obtained by “freezing” the parameter, θ, of the system (4).  It is important to note that the frozen-parameter
linearisation family includes information regarding not only the dynamics relating the input and output (characterised
by the transfer function) but also the state-space realisation of each linearisation.  As will become clearer in the
sequel, the latter plays a key role in the reconstruction of the nonlinear dynamics from a family of frozen-parameter
linearisations.  Evidently, and quite unlike the situation with classical equilibrium linearisations, knowledge of the
state-space frozen-parameter linearisation family, (5), does completely define the nonlinear system (4) since it can be
recovered by simply allowing θ to vary in (5); that is, the family of frozen-parameter linearisations is an alternative
representation of the nonlinear system (4).  Observe that, when θ depends on the state, z, of the system, there is a
frozen-parameter linearisation associated with every value of θ even though in general some may only occur for off-
equilibrium operating points.  The restriction to near equilibrium operation inherent in the use of classical
equilibrium linearisations is thereby avoided.   Moreover, expanding, with respect to time, the solution z(t) of the
system (4) relative to an initial time, t1,

z(t) = z(t1) + z& (t1)δt + εz (6)
with εz = z(t) - {z(t1) + z& (t1) δt }, &( ) ( ) ( ) ( ) ( )z A M z B N ut t t1 1 1 1 1= + + +φ θ φ θ1 6 1 6 , δt=t-t1 and θ1=θ(z(t1),Nu(t1)).

Similarly, expanding the solution of the corresponding frozen-parameter linearisation, $z , relative to time t1 then

$z  (t) = $z  (t1) + z&̂ (t1)δt + ε $z (7)

with $& ( ) $( ) ( ) ( )z A M z B N u= + + +φ θ φ θ1 1 1 11 6 1 6t t .  For initial condition $( ) ( )z zt t1 1= ,  it can therefore be seen that

the solution to (5) approximates the solution to (4) with error O(δt2); that is, to first-order in time.  By combining the
solutions to the members of the frozen-parameter linearisation family in an appropriate manner, a global
approximation to z(t) can be obtained.  Over any time interval, [t1,t2], an approximation is obtained by partitioning
the interval into a number of short sub-intervals. Over each sub-interval, the approximate solution is the solution to
(5) with θ1 equal to the value of θ at the operating point reached at the initial time for the sub-interval (with the initial
conditions chosen to ensure continuity of the approximate solution). The approximation error over each sub-interval
is proportional to the duration of the sub-interval squared.  Hence, as the number of sub-intervals increases the
number of local solutions pieced together increases, the approximation error associated with each decreases more
quickly and the overall approximation error reduces.  Indeed, since this construction is just Euler integration, it is
straightforward to confirm that the overall approximation error tends to zero as the number of sub-intervals becomes
unbounded.



3. Conventional Transfer Function1 Knowledge Alone Is Insufficient
The family of frozen-parameter linearisations, (5), completely defines the system (4) since it can be recovered by

simply allowing θ to vary in (5); that is, the family of frozen-parameter linearisations is an alternative representation
of the nonlinear system (4).  Nevertheless, this equivalence is dependent on knowledge of the appropriate state co-
ordinates for the frozen-parameter linearisations.  For example, consider a system in the quasi-LPV form
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y C x D r

= +
= +

θ θ
θ θ

(8)

with θ θ= ( , )x r .  It can be seen immediately that any quasi-LPV system
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with T(θ) non-singular, has frozen-parameter linearisations with transfer functions1 identical to those of (8).  A
system (9) may, of course, have quite different dynamics from those of (8): applying the state transformation
x T x= −1( )~θ  yields

& ( ) ( ) & ( ) ( )
~ ( ) ( )

x A x B r T T x

y C x D r

= + +
= +

−θ θ θ θ
θ θ

1

(10)

Evidently, the dynamics, (10) (equivalent to (9)) differ from (8).
The impact of variations in T(•) may also be seen in the context of constructing the solution to the nonlinear

system from the piecewise combination of the solutions to the frozen-parameter linearisations (see §2).   For
example, consider the piecewise-linear system

& ( ) , ( , ,...z A z A A A= ∈t   t) 1 2; @ (11)

where A(t)=Ai on the interval (ti,ti-1] with t1≤ t2 ≤ t3 … and Ai=TiATi
-1.  The solution may be written explicitly as
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The solution is strongly dependent on the properties of the Ti.  For example, when the Ti are identical, the system is
precisely linear and thus stable for A Hurwitz, whereas when the Ti differ the system behaviour may be highly

nonlinear and, in particular, unstable even when A is Hurwitz (e.g. with A( ) . .
. . , . .
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Ai are Hurwitz and similar yet it is straightforward to confirm, using for example the results of Shorten & Narendra
(1998), that there exist switching sequences such that (11) is unstable).

The objective of the present paper is to study the situation where a nonlinear system (4) is to be reconstructed
from the members of its frozen-parameter linearisations when the latter are specified only to within a linear state
transformation (that is, only the transfer functions1 are specified and the choice of state realisation is an available as a
degree of freedom).  This is the situation, for example, in divide and conquer identification (because only input-
output data is measurable, see for example McLoone & Irwin 2000) and many forms of gain-scheduling design
(because the linear methods used to carry out point designs are generally insensitive to the choice of state-space
realisation, see for example Leith & Leithead 2000).  It is clear that, for each linear system, it is necessary to
determine the appropriate choice of state which cannot be uniquely inferred from conventional transfer function
information alone.

4. Conditions for Reconstructing a Nonlinear System
It is evident from the foregoing discussion that additional information is required in order to permit a nonlinear

system to be reconstructed in a unique manner from an associated family of linear transfer functions. Neither the

                                                          
1 Throughout this paper the term ‘transfer function’ is used as shorthand to denote a linear model based only on
measurable input-output data since this is the situation generally encountered in, for example, system identification
and gain-scheduling contexts.  It includes, in addition to actual transfer function models, linear state-space models
where the choice of state co-ordinates is only defined to within a linear transformation.  No restriction to frequency-
domain methods is implied or necessary.



conventional family of input/output transfer functions associated with the classical equilibrium linearisations nor the
family of input/output transfer functions associated with the frozen-parameter linearisations satisfy this requirement.
The requirement is thus to determine a suitable family of linear state-space systems which both uniquely defines (to
within a non-singular state transformation) a nonlinear system and which is, in turn, uniquely defined by its
associated family of transfer functions.

4.1 Conditions for Uniqueness
Consider two nonlinear systems
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The system (13) may be reformulated as
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and similarly for (14).  Assume that the following conditions are satisfied

 (i) the members of the frozen-parameter linearisations families corresponding to (15) are controllable and
observable and M N  is full rank

 (ii) φ φ ϕ ϕ( ),
~

( ), ( ), ~( )θ θ θ θo o o o       are equal to zero, for some value of θ equal to θo

 (iii) there exist no non-zero solutions ∆, X and Y, satisfying
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   (iv) corresponding members of the frozen-parameter linearisation families (i.e. for which θ=θ1, 
~θ =θ1) have,

respectively, the same transfer function from u to vaug and from u to ~vaug .

Condition (i) is a standard minimality condition from linear theory whilst condition (ii) removes the possible

ambiguity regarding the linear component, if any, of φ φ ϕ ϕ,
~

, , ~      .  Note, condition (iii) needs to be tested for only

one member of the linearisation family since it is then automatically satisfied by the entire family.  Condition (iv)
requires that the transfer function relating the input, u, to ϑ is known in addition to the transfer function relating u to
v.  More information than was available in section 3 is thus available

Proposition (Uniqueness)   Assume that conditions (i)-(iv) are satisfied.  Then the nonlinear systems (13) and (14)
are identical (to within a constant linear state transformation); that is, under structural conditions (i)-(iii) the transfer
function information specified in condition (iv) uniquely defines a nonlinear system.

Proof  It follows immediately from standard linear theory that when condition (iv) is satisfied
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where T(θ1) is a non-singular linear state transformation (which may be different for each member of a linear
family).   Let T(θo) be the identity matrix; this involves no loss of generality since, by (i), it can always be achieved



by applying an appropriate constant linear state transformation.  Then, owing to the minimality conditions (ii), it

follows that (17) reduces at θo to 
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where ∆(θ1)=T-1(θ1)-I.  Condition (iii) ensures that ∆(θ1) = 0, X=0 and Y=0 is the only solution to
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and so by (18) and (iii)
~
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as required.  Consequently, under the foregoing conditions the nonlinear systems (13) and (14) must be identical to
within a constant linear state transformation.

Remark: Genericity of condition (iii).  It is evident that violation of condition (iii) requires the simultaneous
satisfaction of many linear constraints.  Specific systems violating condition (iii) do, of course, exist; for example, in
the case of a system for which
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are solutions to (16).  Nevertheless, the class of linearisation families for which there exist non-zero solutions to (16)
is non-generic.  This can be seen as follows.  The number of unknowns in (16) is n2+nq+pn while the number of
linear equations is n2+nq+pn+nm, where n, m, p, q are the dimensions, respectively, of the state, input, output and
parameter vectors.  From standard linear theory, for any singular matrix there exists an arbitrarily small perturbation
which makes it non-singular; that is, non-singular matrices are generic.  When m is zero, the number of linear
equations is the same as the number of unknowns and it follows immediately from the genericity of non-singular
matrices that condition (iii) is also generically satisfied.  When m is non-zero, violation of condition (iii) requires
singularity of an n2+nq+pn subsets of equations subject to nm equality constraints and again genericity follows
immediately.  Hence, for most practical purposes condition (iii) may be assumed to always be satisfied (that is,
except in singular circumstances where there exist specific application-related constraints such that consideration of
the non-generic solutions to (16) is essential).

4.2  θ and ϑ Linearly Related
Condition (iv) in Section 4.1 requires knowledge of the transfer functions relating ϑ  to the input u.   When ϑ  is

linearly related to θ and known a priori, the transfer function of one may be inferred from that of the other.  In these
circumstances, condition (iv) can be modified to a requirement for knowledge of the frozen-parameter transfer

functions relating u to v
θ
�
! 

"
$# . The Uniqueness Proposition may therefore be readily specialised as follows.

Corollary ( ϑ Linearly Related to θ)  When ϑ  is linearly related to θ, conditions (i)-(iii) of section 4.1 together

with knowledge of the frozen-parameter transfer functions relating u to v
θ
�
! 

"
$#  and the relationship between ϑ  and θ

uniquely defines a nonlinear system (4).  (A similar situation pertains when, for example, the elements of θ are a



subset the elements of ϑ  or when the mapping from ϑ  to θ is defined indirectly via some third quantity, ξ say; note
that ξ may be measurable when θ and ϑ  are not).

The proof follows directly from the observation in the Uniqueness Proposition that when the relationship between
ϑ  and θ is linear and known a priori, the transfer function of one may be inferred from that of the other.

Remark: In this context Condition (iv) of the Uniqueness Condition is a very natural requirement. Information
concerning the local evolution of the state is provided by the transfer function relating u to v.  However, the frozen
linearisation evolves as the state evolves.  Hence, to construct non-local solutions, the information is required to also
update the member of the frozen linearisation family being used to define the evolution of the state.  This additional
information is provided by the transfer function relating  u to θ.

Examples in the literature to which this corollary is directly relevant include:

(1) State-dependent systems (Priestley 1988, Young 2000)
One particularly interesting special case (studied by, for example, Priestley 1988, Young 2000) is nonlinear

systems of the form
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with θ and ϑ equal to ρ.  The notation, ρ, is used here rather than θ or ϑ , in order to emphasise that for such
systems the parameter ρ embodies the nonlinear dependence of the dynamics.  Consequently, for example, the series
expansion of the right-hand side is solely in terms of ρ.

(2) Velocity-based systems (Leith & Leithead 1998b,c)
Following Leith and Leithead (1998b,c), any nonlinear dynamics

&x = F(x, r),     y = G(x, r) (24)
where r∈ℜm, y ∈ ℜp, x ∈ ℜn, F(·,·) and G(·,·) are differentiable nonlinear functions may be reformulated as

& ( ), ( )x Ax Br f y Cx Dr g= + + = + +ρ ρ  (25)

where A, B, C, D are appropriately dimensioned constant matrices, f(•) and g(•) are differentiable nonlinear
functions and ρ(x,r)∈ℜq, q≤m+n, embodies the nonlinear dependence of the dynamics on the state and input with
∇xρ, ∇rρ constant.  Trivially, this reformulation can always be achieved by letting ρ = [xT  rT]T, in which case
q=m+n.  However, the nonlinearity of the system is frequently dependent on only a subset of the states and inputs, in
which case the dimension, q, of ρ is less than m+n.  Under an appropriate state and input transformation, (25) may be
reformulated as a system of the form (4).  For example, the archetypal transformation is to differentiate (25), yielding
the alternative representation of the nonlinear dynamics
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(26)

with
& &ρ ρ ρ= ∇ + ∇x rw r  (27)

The velocity-based (VB) formulation, (26), is dynamically equivalent to (25) in the sense that, for appropriate initial
conditions,  they have the same solution.  Identifying, for example, u with &r ,  z  with w,  v with &y  and ρ with θ it is

evident that (26) is precisely of the form (4).   In this case, it can be seen that ϑ  is associated with &ρ  and so related

to θ by a linear differentiation operator.

4.3  A Reconstruction Methodology
In state-space terms, under conditions (i)-(iv) of section 4.1 the linear family with members
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is known but the state transformation, T(•), relating the co-ordinates of one member to another is unknown.  Note
that ^ notation is used to emphasise the distinction between the frozen-parameter linearisations and the associated
nonlinear system.  Assume, without loss of generality, that T(θo)=I (recalling that the system is defined to within a
constant linear state transformation, this assumption corresponds to one choice of linear transformation).   Assume,
also without loss of generality, that the constant matrices associated with the dynamics are

A A B B C C D D M M= = = = =$ ( ), $ ( ), $ ( ), $ ( ), $ ( )θ θ θ θ θo o o o o (29)
(this simply serves to fix any linear component of the system nonlinearity).  The coefficients of the nonlinear system
associated with (28) can be obtained as the solution, {T(•), φ(•), ϕ(•)}, to the following linear equalities.
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A solution to (30) is guaranteed to be unique by the conditions in the foregoing proposition and corollaries; the
nonlinear system thus reconstructed is described by
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Example Missile lateral dynamics
Consider a skid-to-turn missile with lateral dynamics described (Leith et al. 2000) by the family of frozen-

parameter transfer functions
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where $z = [v r]T, with r the yaw rate (rad/s), v the lateral velocity (m/s), u is the fin angle (rad) and θ1 ranges over
some appropriate set.  T(•) is an unknown state transformation as before and the ^ notation is used distinguish
between the frozen-parameter linearisations and the associated nonlinear system.  In this example θ is lateral velocity
and ϑ  consists of the state and input, with $ $θ = 1 0 ϑ .  Note that the availability of measurements of the state and

input is not uncommon in an aerospace context.  It straightforward to confirm that the transfer functions (32)
relating the input u to vaug  are controllable, observable and condition (iii). Assume, without loss of generality, that
T(0)=I and, consequently, the constant matrices associated with the nonlinear dynamics are
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The reconstructive linear equalities, (30), for this example therefore are
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The unique solution to (34) defines the nonlinear missile dynamics
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with θ = 1 0 z .

5. Some Applications

5.1 Extended local linear equivalence systems
Let Ε = + + + =z u Az Bu z u M No o o o o o o oz u, : ( ( , ))[ ]φ θ 0; @  denote the set of equilibrium points of the system

(4), Rθ(E) denote the range of θ on E (i.e. Rθ(E)={ θ(z,u): ((z,u) ∈E}) and Rθ(Φ) the range of θ on the full operating
space of the system, Φ={(z,u): z∈ ℜn, u∈ℜm}.  Systems, (4), for which

Rθ (E)= Rθ (Φ) (36)
are referred to here as extended local linear equivalence (ELLE) systems.  The condition, (36), simply corresponds to
the requirement that θ is parameterised by the equilibrium points.  It follows immediately that the equilibrium
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: R (E)θ , together with knowledge of θ, completely defines an ELLE

system.  In view of the importance of equilibrium information in classical theory (particularly gain-scheduling
theory), and the relative ease with which equilibrium dynamics may be identified from measured data, the class of
ELLE systems is of considerable interest in its own right.  Note that even if not exactly satisfied, it is often possible
to utilise, within a useful operating envelope, an ELLE approximation to a non-ELLE system.

The results of section 4 can be immediately specialised to ELLE systems, as summarised by the following
corollary.

Corollary (Uniqueness of ELLE Systems) Assume that conditions (i)-(iii) of section 4 are satisfied and that the
frozen-parameter linearisations associated with the equilibrium operating points of (13) and (14) have the same
transfer function from u to vaug and from u to ~vaug . Assume, in addition, that (13) and (14) belong to the class of

ELLE systems.  Then the nonlinear systems (13) and (14) are identical (to within a fixed linear state transformation);
that is, under conditions (i)-(iii) a nonlinear system is uniquely defined by appropriate equilibrium transfer function
information. The proof follows trivially from the foregoing proposition and the definition of ELLE systems.

Example Wiener-Hammerstein system
Suppose that the frozen-parameter linearisation transfer functions relating vaug and u are known and are given by



Vaug ( )

( )

( )( )

( )

( )s

K

s a s b

s a

s= + +

+

�

!

    

"

$

####

θ1

1
U (37)

where Vaug(s), U(s) denote, respectively, the Laplace transforms of vaug, u.  Assume also that the structure of the
dynamics is such that θ equals ϑ .  Equivalently, in state-space terms, we have that
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where T(•) is an unknown state transformation and the ^ notation is used to emphasise the distinction between the
frozen-parameter linearisations and the associated nonlinear system. The linearisations, (38), are controllable and
observable.  Assume, without loss of generality, that T(θo)=I (recalling that the system is defined to within a global
linear state transformation, this assumption corresponds to one choice of global linear transformation).   Assume,
also without loss of generality, that the constant matrices associated with the nonlinear dynamics are
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(this simply serves to fix any linear component of the system nonlinearity).  Uniqueness condition, (16), only
requires to be evaluated for a single member of the linearisation family; taking the member corresponding to θ equal
to θo yields
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where ∆ij denotes the ijth element of ∆, and similarly for Xi. and Y1  Evidently, ∆=0, X=0, Y=0 is the sole solution, as
required.  Conditions (i)-(iv) are satisfied and it therefore follows from the foregoing proposition that (37) uniquely
defines a nonlinear system. From (30), the coefficients of the nonlinear system associated with (37) (equivalently,
(38)) are obtained as the solution to the following linear equalities (note that the existence of a unique solution is
guaranteed by the foregoing conditions).
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It is straightforward to verify that the solution to (41) is
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That is, the nonlinear system uniquely defined by the input-output information (37) is
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with θ ϑ= .  This system, depicted in figure 1, is of Wiener-Hammerstein  form.  The frozen-parameter linearisation
family is parameterised by the quantity, θ, while the family of equilibrium points of (43) may be parameterised by
the value of the input, u, at equilibrium.  Since θ=u/a at equilibrium, the family of equilibrium points may therefore
also be parameterised by θ, and vice-versa.  Hence, (43) belongs to the class of ELLE systems and, in accordance
with the definition of this class, the frozen-parameter linearisation family (and so the global nonlinear dynamics) is



completely defined by the family of frozen-parameter linearisations at the equilibrium points taken together with
appropriate knowledge of θ.

Remark  Correspondence between equilibrium linearisations and frozen-parameter linearisations
In the particular situation where the frozen-parameter linearisations considered are, in fact, VB linearisations, a
strong link can be established between the frozen-parameter linearisations and the classical equilibrium
linearisations.  The classical series expansion linearisation of (25) relative to the equilibrium operating point at which
x and r are, respectively, equal to xo and ro, is
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together with the input, output and state transformations
δ δ δr r r x x x y y y= − = + = +0 0 0, ,    (45)

where ρo=ρ(xo,ro).  In contrast to the classical equilibrium linearisations, the frozen-parameter linearisation family
associated with the velocity-based system (26) includes linearisations of the plant at both non-equilibrium and
equilibrium operating points.  Nevertheless, it is clear that the members of the classical equilibrium linearisation
family defined by (44) are closely related to the members of the VB frozen-parameter linearisation family even
though the state, input and output are different.  In particular, the VB frozen-parameter linearisation family can be
determined directly, by inspection, from the classical equilibrium linearisation family provided that there exists an
equilibrium operating point corresponding to every value in the range of ρ.   This correspondence is certainly not the
case in general but rather is a feature of systems possessing the ELLE property (and systems for which a sufficiently
accurate ELLE approximation exists).  It follows immediately that, for ELLE systems, the nonlinear dynamics can be
uniquely reconstructed from the classical equilibrium linearisation family taken together with appropriate knowledge
of ρ.

5.2 Finite parameterisation of linearisation family by blending local models.
The frozen-parameter linearisation family associated with a nonlinear system generally has infinitely many

members.  In many situations it is preferable to work with a small number of “representative” linearisations and
recover the full linearisation family by blending or interpolating between these linearisations.  Similar issues arise in
many application domains and the literature on blended representations is extensive (see, for example, the survey by
Johansen & Murray-Smith 1997, Leith & Leithead 1999, 2000), including numerous approaches related to gain-
scheduling.  A typical blended multiple model formulation of the nonlinear system (4) blends the linear local models
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together via the weighting functions µi i=1,… to yield the nonlinear dynamics
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Provided µk(θj) is unity when j=k and zero when j≠k, the frozen-parameter linearisations of (47) corresponding to
parameter value θi is just the local model (46).  Consider relaxing condition (iv) of the Uniqueness Proposition to the
weaker requirement that the frozen-parameter transfer functions relating u to vaug are known only for parameter
values {θi, i=1,…} (rather than for all parameter values).  It follows directly from the proof of the Uniqueness
Proposition that this relaxed condition (iv), together with conditions (i)-(iii) of section 4, uniquely defines the local
models, (46).  Compatible state-space realisations of the local models can be determined using the procedure
described in the section 4.3 above.  The blended nonlinear system, (47), is then defined by an appropriate choice of
weighting functions µi (for example, the use of triangular weighting functions corresponds to linear interpolation
between the local models (46)).



Remark  Choice of weighting function dependence
It is worth emphasising that the weighting functions, µi , must depend on the same parameter, θ, as the local models
in order to ensure consistency across the reconstructed nonlinear system.  Inference of the parameter, θ, is of course
one outcome of the reconstruction process. This observation is a trivial consequence of the present development, but
nevertheless an issue of considerable practical importance (see, for example, the discussion in Johansen & Murray-
Smith (1997)).

Example (cont)   Missile lateral dynamics
Returning to the missile example of section 4.3, suppose that the frozen-parameter linearisations are now known only
for the discrete parameter values θi, i=1,2..N.  As before, assume without loss that the constant matrices associated
with the nonlinear dynamics are
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It follows from the previous analysis of this example that conditions (i)-(iii) are satisfied by this collection of N
linearisations.  The reconstructive linear equalities for this example therefore are
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with i=1,2..N.  Note that there are now only a finite number, N, of equalities and the unique solution to (49)
reconstructs the state-space realisations of the frozen-parameter linearisations as
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Blending between these N state-space linearisations using appropriate weighting functions µi i=1,2..N yields a state-
space frozen-parameter linearisation family for which the corresponding nonlinear system is
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with θ = 1 0 z .  In general, the requirement is to reconstruct the nonlinear dynamics from knowledge of as few

linearisations as possible; that is, to minimise the number N of linearisations needed to achieve an accurate
reconstruction.  In the present example, it is known from (35) that the coefficients of the missile equations depend
linearly on θ.  Hence, using triangular weighting functions and the linearisations associated with the extremal values
of θ associated with the required operating envelope, accurate reconstruction can in fact be achieved on the basis of
knowledge of input-output information pertaining to only two linearisations.



Remark  Correspondence between equilibrium linearisations and frozen-parameter linearisations (cont)
As noted in section 5.1, by adopting the velocity-based formalism a direct relationship exists between the frozen-
parameter linearisations and the classical equilibrium linearisations for the class of systems possessing the ELLE
property.  The missile example considered here does not belong to the class of ELLE systems.  However, it can be
shown (Leith et al. 2000) that the velocity-based form of the missile dynamics may be accurately approximated by
an appropriate ELLE system.  The reconstruction of a blended type of representation as considered above may
therefore be carried out in terms of the classical equilibrium linearisations (indeed, by blending only a small number
of linearisations).  This is clearly of considerable practical relevance.

6. Conclusions
This paper concerns a fundamental issue in the modelling and realisation of nonlinear systems; namely, whether

it is possible to uniquely reconstruct a nonlinear system from a suitable collection of transfer functions and, if so,
under what conditions.  (Here, ‘transfer function’ is used as shorthand to denote a linear model based only on
measurable input-output data.  It includes, in addition to actual transfer function models, linear state-space models
where the choice of state co-ordinates is only defined to within a linear transformation.  No restriction to frequency-
domain methods is implied or necessary).  It is established that

� A family of frozen-parameter linearisations may be associated with a nonlinear LPV/quasi-LPV type of system.
While the dynamics of individual members of the family are only weakly related to the dynamics of the nonlinear
system, the state-space family of linearisations nevertheless does provide an alternative realisation of the
nonlinear system without loss of information.  This is, of course, quite different from the situation with classical
equilibrium linearisations.

� Knowledge of the input-output dynamics (transfer functions) of the frozen-parameter linearisations of a system
is, however, not sufficient to permit reconstruction of the associated nonlinear system.  This result is interesting
since the state-space frozen-parameter linearisation family does provide a unique representation of a nonlinear
system which embodies all of its dynamic characteristics.  The difficulty with the transfer function family arises
from the degree of freedom available in the choice of state-space realisation of each linearisation.

� Under mild structural conditions, knowledge of a family of augmented transfer functions is sufficient to permit a
large class of nonlinear systems to be uniquely reconstructed.  That is, the family of augmented transfer functions
provides an alternative, and entirely input-output based, representation of a nonlinear system. Essentially, the
augmented family embodies the information necessary to select state-space realisations for the linearisations
which are compatible with one another and with the underlying nonlinear system.  The results are constructive,
with a state-space realisation of the nonlinear system associated with a transfer function family being obtained as
the solution to a number of linear equations.
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Figure 1 Structure of nonlinear system in Example 3


