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Control Algorithms Based on Gaussian

Process Models: A State-of-the-Art Survey

Juš Kocijan ∗

∗ Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
&

University of Nova Gorica, Nova Gorica, Slovenia

Abstract: Gaussian-process models provide a probabilistic, nonparametric modelling approach
for black-box identification of nonlinear dynamic systems. They can highlight areas of the input
space where prediction quality is poor, due to the lack of data or its complexity, by indicating
the higher variance around the predicted mean. Gaussian-process models contain noticeably
less coefficients to be optimised than commonly used parametric models. This paper provides
the state-of-the-art survey of control algorithms for dynamic systems described in publications
where Gaussian-process models have been used for control design or as a part of controller.
These methods, ranging from direct inverse control to advanced forms of adaptive control, may
take into account the variance information provided by the Gaussian-process model. Beside the
survey of control algorithms also trends, challenges and future opportunities are discussed in
the contribution.

Keywords: Nonlinear control systems, nonlinear models, identification, probabilistic models,
Gaussian processes.

1. INTRODUCTION

This paper provides the state-of-the-art survey of control
algorithms for dynamic systems described in publications
where Gaussian-process (GP) models have been used for
control design or as a part of controller.

Dynamic systems control design utilises various kinds
of black-box models. Gaussian-process models provide a
probabilistic, nonparametric modelling approach for black-
box identification of nonlinear dynamic systems. They
can highlight areas of the input space where prediction
quality is poor, due to the lack of data or its complexity,
by indicating the higher variance around the predicted
mean. Gaussian-process models contain noticeably less co-
efficients to be optimised than commonly used parametric
models. This approach to modelling is not considered as a
replacement to any existing systems identification method,
but rather as a complementary approach to modelling. The
drawback of Gaussian process models is their considerable
computational burden. This burden may be perceived as
an obstacle for Gaussian process model usage in control
applications.

The methods that are described in the following sections
are mainly, but not exclusively, meant for the control
of nonlinear and uncertain dynamic systems for which
GP models are most suitable. Only general description
of methods and application of GP models in a context
of systems control is given in the paper. The nonlinear
systems analysis that goes hand-in-hand with control

⋆ This work was supported by grants P2-0001 and J2-2099 of the

Slovenian Research Agency.

design is addressed in many references, e.g., Khalil (2002),
Slotine and Li (1991), and many others, but the formal
analysis of probabilistic nonparametric models or models
containing probabilistic nonparametric parts that would
be applicable in the context of GP models is rare. The
stability analysis as the most important issue in the
closed-loop control design is not addressed formally in
this text. Nevertheless, the stability of closed-loop systems
containing GP models is in various publications shown
with computer simulation, which is nowadays a common
tool in engineering design.

The method used for control design always depends on
the model of system to be controlled. Different sorts of
models also mean different sorts of control methods as it
will be seen in the following sections. The paper is devoted
to control methods that have already been presented in
literature. Reader is referred to literature where details of
these methods can be found.

The structure of the paper is as follows. Principles of
Gaussian process modelling are briefly described in the
next section. Survey of control algorithms is given in the
third section. The following control principles based on GP
models are covered: inverse dynamics control, model-based
predictive control, gain-scheduling control and adaptive
control. Trends, challenges and research opportunities are
given in the fourth section.

2. SYSTEMS MODELLING WITH GAUSSIAN
PROCESSES

A Gaussian process (GP) model is a probabilistic, non-
parametric model for the prediction of output-variable

Proceedings Volume from the Special International Conference on Complex Systems: 

 Synergy of Control, Communications and Computing - COSY 2011 

Hotel Metropol Resort, Ohrid, Republic of Macedonia, September, 16–20 2011

69



distributions. Its use and properties for modelling are
thoroughly described in Rasmussen and Williams (2006).
Here, only a brief description is given.

A Gaussian process is a collection of random variables
which have a joint multivariate Gaussian distribution.
Assuming a relationship of the form y = f(x) between
input x and output y, we have y1, . . . , yn ∼ N (0,Σ),
where elements of the covariance matrix Σ, namely, Σpq =
Cov(yp, yq) = C(xp,xq) give the covariance between out-
put points corresponding to input points xp and xq. Thus,
the mean µ(x) and the covariance function C(xp,xq) fully
specify the Gaussian process.

The value of covariance function C(xp,xq) expresses the
correlation between the individual outputs f(xp) and
f(xq) with respect to inputs xp and xq. Note that the
covariance function C(·, ·) can be any function that gener-
ates a positive semi-definite covariance matrix. It is usually
composed of two parts:

C(xp,xq) = Cf (xp,xq) + Cn(xp,xq), (1)

where Cf represents the functional part and describes the
unknown system we are modelling, and Cn represents the
noise part and describes the model of the noise.

A frequently chosen covariance function consists of the
square exponential covariance function for functional part
Cf and the constant covariance function for the noise part
Cn, and is of the following form:

C(xp,xq) = v1 exp

[
− 1

2

D∑

d=1

wd(xdp − xdq)
2

]
+ δpqv0 (2)

where wd, v0, v1 are the ’hyperparameters’ of the covari-
ance function, D is the dimension of input space, and
δpq = 1 if p = q and 0 otherwise. The hyperparameters can
be written as a vector Θ = [w1 . . . wD v0 v1]

T . This covari-
ance function is smooth and continuous. It presumes that
the process is stationary and that the noise is white. Other
forms and combinations of covariance functions suitable
for various applications can be found in Rasmussen and
Williams (2006). For a given problem, the hyperparameter
values are learned using the data at hand.

To accurately reflect the correlations present in the train-
ing data, the hyperparameters of the covariance function
need to be optimized. Due to the probabilistic nature of
the GP models, the common model optimization approach
where model parameters and possibly also the model struc-
ture are optimized through the minimization of a cost
function defined in terms of model error (e.g., mean square
error), is not readily applicable. A probabilistic approach
to the optimization of the model seems more appropriate.
Actually, instead of minimizing the model error, the log of
marginal likelihood is maximized.

GP models can be easily utilized for regression calcula-
tion. Consider a set of N D-dimensional input vectors
X = [x1,x2, . . . ,xN ] and a vector of output data y =
[y1, y2, . . . , yN ]T . Based on the data (X,y), and given
a new input vector x∗, we wish to find the predictive
distribution of the corresponding output y∗. Based on
training set X, a covariance matrix K of size N × N is
determined. The overall problem of learning unknown pa-
rameters from data corresponds to the predictive distribu-
tion p(y∗|y,X,x∗) of the new target y, given the training

data (y,X) and a new input x∗. In order to calculate
this posterior distribution, a prior distribution over the
hyperparameters p(Θ|y,X) can first be defined, followed
by the integration of the model over the hyperparameters

p(y∗|y,X,x∗) =

∫
p(y∗|Θ,y,X,x∗)p(Θ|y,X)dΘ. (3)

The computation of such integrals can be difficult due
to the intractable nature of the nonlinear functions. A
solution to the problem of intractable integrals is to
adopt numerical integration methods such as the Monte-
Carlo approach. Unfortunately, significant computational
efforts may be required to achieve a sufficiently accurate
approximation.

An alternative approach based on the Maximum Like-
lihood optimization method has been developed and is
applied to maximize the marginal likelihood. It can be
restated as a cost function that is to be maximized. For
numerical scaling purposes the log of the marginal likeli-
hood is taken:

L(Θ) = −1

2
log(|K|)− 1

2
yTK−1y − N

2
log(2π). (4)

A frequently used method for optimizing the cost function
is a conjugate gradient method.

The predictive distribution of the GP model output for a
new test input x∗ has normal probability distribution with
mean and variance

µ(y∗) = k(x∗)TK−1y, (5)

σ2(y∗) = κ(x∗)− k(x∗)TK−1k(x∗), (6)

where k(x∗) = [C(x1,x
∗), . . . , C(xN ,x∗)]T is the N × 1

vector of covariances between the test and training cases,
and κ(x∗) = C(x∗,x∗) is the covariance between the test
input itself.

The above modelling procedure was developed for mod-
elling static nonlinearities, but it can be readily applied for
modelling dynamic systems. Consider a dynamic system
in the ARX representation, where the output at time step
k depends on the delayed outputs y and the exogenous
control inputs u:

y(k) =

f(y(k − 1), . . . , y(k − n), u(k − 1), . . . , u(k −m)) + ǫ(k)

(7)

where f denotes a function, ǫ(k) is white noise and the
output y(k) depends on the state vector x(k) = [y(k −
1), y(k−2), . . . , y(k−n), u(k−1), u(k−2), . . . , u(k−m)]T

at time step k.

Assuming the signal is known up to k, we wish to predict
the output of the system l steps ahead, i.e., we need to
find the predictive distribution of y(k + l) corresponding
to x(k + l). Multiple-step-ahead predictions of a system
modelled by (7) can be achieved by iteratively making
repeated one-step-ahead predictions, up to the desired
horizon.

A noticeable drawback of the system identification with
GP models is the computation time necessary for the
modelling. Regression based on GP models involves several
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matrix computations in which the load increases with the
third power of the number of input data, such as matrix
inversion and the calculation of the log-determinant of the
used covariance matrix. To overcome the computational-
limitation issues and to also make use of the method for
large-scale dataset applications, numerous authors have
suggested various sparse approximations as well as on-line
modelling (Rasmussen and Williams, 2006).

A survey of control algorithms that make use of Gaussian
process models is given in the next section.

3. SURVEY OF CONTROL ALGORITHMS

3.1 Inverse dynamics control

When machine learning methods are preliminary intro-
duced for control, frequently the following scheme appears.
An inverse model of the process is developed to be con-
nected in series with the process and therefore an open-
loop control system is formed. This kind of approach is
usually not meant as effective control solution, but mainly
as a demonstration of particular machine learning method.

The basic principle in brief is as follows. If the system to
be controlled can be described by input-output model

y(k + 1) =

f(y(k), . . . , y(k − n+ 1), . . . , u(k), . . . , u(k −m))

(8)

then the corresponding inverse model is

ũ(k) =

f̂−1(y(k + 1), y(k), . . . , y(k − n+ 1), . . . , u(k − 1),

. . . , u(k −m) (9)

where the notation x̂ denotes the estimator of x.

Assuming that this inverse system has been obtained it can
be used to generate control input that approaches desired
process output, when the reference input is given to the
inverse model. This means that samples of y in equation
(9) are replaced by reference values r.

The principle is illustrated in Fig. 1.

GP inverse
model

Process
r u y

Fig. 1. General block scheme of the direct inverse control

There is a list of assumptions and constraints that need to
be satisfied for a such system to be practical implemented.
The assumptions necessary for the open-loop control to
be operational are: no disturbances in the system, no
uncertainties and changes in the process and open-loop
controller that is the perfect inverse of the process in the
region of operation. Since these assumptions are frequently
not fulfilled in the real world, the inverse system is usually
realised as the adaptive system, where the controller
matches any changes in the process on-line.

Training of the inverse model requires that the process and
inverse model are input-output stable. This is because sig-
nals are always constrained in magnitude, which disables
the open-loop control of unstable systems. Even in the
case of computer simulation, inputs and outputs can not
be infinitely large.

When the mentioned assumptions are satisfied, the inverse
model can be modelled from appropriately selected out-
puts and inputs of the process following equation (9). In
the case of open-loop controller realisation with GP model,
only the mean value of controller output prediction is the
input into the process to be controlled.

The reinforcement learning of the described open-loop
controller actions based on GP model is introduced in
Engel et al. (2006). The entire system is implemented
only as a computer simulation and meant to demonstrate
reinforcement learning, rather then practically applicable
control system principle.

Different approach to open-loop control is given in Ko et al.
(2007) where GP model in the role of open-loop controller
is taught with reinforcement learning to mimic the outputs
of an optimal and closed-loop conventional controller.

Another method that uses inverse model for cancelling
nonlinearities of the process to be controlled is Inverse Dy-
namics Control (Nguyen-Tuong et al., 2008b) illustrated in
Fig. 2.

GP inverse
model

ProcessCoventional
controller

r u y

-

Fig. 2. General block scheme of the inverse dynamics
control

This is the closed-loop method that contains conventional
controller to deal with miss-matches between nonlinearity
compensator and process as well as with the process
disturbances. Such scheme with different sorts of inverse
models is commonly used for dynamics control in robotics.
The inverse model can be identified off-line or on-line. The
application with the GP model of inverse process dynamics
that is identified off-line is given in Nguyen-Tuong et al.
(2008b) for a robot control investigation.

Feedforward that eliminates the process nonlinearities is
another control method that is used mainly in robotics.
Its principle is depicted in Fig. 3.

GP inverse
model

Process
Coventional
controller

r u y

uff

ufb

-

Fig. 3. General block scheme of existing control system
with GP inverse model as feedforward for improve-
ment of closed-loop performance
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The control signal consists of feedforward and feedback
component u = uff + ufb. The feedback loop with a con-
ventional, frequently linear, controller is required to main-
tain stability and disturbance rejection for this control
system purposed for set-point tracking. The feedforward
that is a stable inverse model is meant to compensate
for process nonlinearities. The inverse model has to be as
precise as possible in the region of operation to enable
the required performance. The closed-loop performance is
deteriorated in the case of unmodelled nonlinearities. The
feedforward is generally considered as a function of the
desired set-point, in the case of robotic control that would
mean desired robot trajectories.

The concept has some practical advantages (Norgaard
et al., 2000). First, the data necessary for the inverse model
can be collected from beforehand assembled closed-loop
system without the feedforward component. Second, the
feedforward signal can be introduced gradually during con-
trol system implementation from the reason of cautious-
ness. Third, in the case that the inverse dynamics is to be
avoided, only static feedforward can be used with feedback
controller compensating for erroneous feedforward signal.

The inverse model can be identified off-line or on-line. The
case when inverse GP model is identified off line and used
in such control set-up is described in Nguyen-Tuong et al.
(2008a) and Nguyen-Tuong et al. (2008b). The adaptive
cases are mentioned in Section 3.4.

None of these applications of inverse GP models uses entire
information from prediction distribution rather they focus
on the mean value of the prediction. In such a way the
full potential of GP models for this kind of control is
not utilised entirely, e.g., information of variances could
be used for maintaining or indicating the region of the
nominal closed-loop performance.

3.2 Model-based predictive control

Model Predictive Control (MPC)(Maciejowski, 2002) is a
common name for computer control algorithms that use an
explicit process model to predict the future plant response.
According to this prediction in the chosen period, also
known as the prediction horizon, the MPC algorithm
optimizes the manipulated variable to obtain an optimal
future plant response. The input of chosen length, also
known as control horizon, is sent into the plant and then
the entire sequence is repeated again in the next time
period.

The popularity of MPC is to a great extent owed to the
ability of MPC algorithms to deal with constraints that
are frequently met in control practice and are often not
well addressed with other approaches. MPC algorithms
can handle hard state and rate constraints on inputs and
states that are usually, but not always incorporated in the
algorithms via an optimization method.

In our case we are interested in the applications of Non-
linear Model Predictive Control (NMPC) principle with
a Gaussian process model. Stochastic NMPC problems
are formulated in the applications where the system to
be controlled is described by a stochastic model such as
the GP model. Stochastic problems like state estimation
are studied for long time, but, in our case, we explore

only stochastic NMPC problem. Nevertheless, most known
stochastic MPC approaches are based on parametric prob-
abilistic models. Alternatively, the stochastic systems can
be modeled with nonparametric models which can offer a
significant advantage compared to the parametric models.
This is related to the fact that the nonparametric prob-
abilistic models, like Gaussian process models, provide
information about prediction uncertainties which are diffi-
cult to evaluate appropriately with the parametric models.

The nonlinear model predictive control as it is applied with
the Gaussian process model can be in general described
with a block diagram, as depicted in Fig. 4. The model
is fixed, identified off-line, which means that the resulting
control algorithm is not an adaptive one. The structure of
the entire control loop is therefore less complex as in the
case of adaptive control.

O p t i m i s a t i o n
a l g o r i t h m

R e f e r e n c e
g e n e r a t o r

P r o c e s s

G P  m o d e l G P  m o d e l

w r

yy u

u

n

y

+ +_ _
+

+

+

_

Fig. 4. Block diagram of model predictive control system

The control objective is to be achieved by minimization of
the cost function. The cost function penalizes deviations
of the predicted controlled outputs ŷ(k + j|k) from a
reference trajectory r(k + j|k). This reference trajectory
may depend on measurements made up to time instant
k. Its initial point may be the output measurement y(k),
but can also be a fixed set-point, or some predetermined
trajectory. The minimization of cost function, in which
future control signal (u(k)) is calculated, can be subject
to various constraints (e.g., input, state, rates, etc).

MPC solves a constrained control problem. The single-
input, single-output case is elaborated here, but it can
be generalised to multiple-input, multiple-output case. A
stochastic nonlinear discrete-time system can be described
in the input-output form (7) or in the very common state-
space form:

x(k + 1) = F (x(k), u(k)) + ǫ1(k)

y(k) = G (x(k), u(k)) + ǫ2(k) (10)

where x, u and y are the state, input and output variables
respectively, ǫi(k); i = 1, 2 are Gaussian disturbances, and
F,G are nonlinear continuous functions.

Corresponding input and state constraints of the general
form are:

u(k) ∈ U ; (11)

x(k) ∈X (12)

where U and X are sets of possible inputs and feasible
states respectively and the optimisation problem is

Jopt(k) = min
u

J(u,x(k), r(k), u(k − 1)) (13)

where the cost function of a general form is

Proceedings Volume from the Special International Conference on Complex Systems: 

 Synergy of Control, Communications and Computing - COSY 2011 

Hotel Metropol Resort, Ohrid, Republic of Macedonia, September, 16–20 2011

72



J(u,x(k), r(k), u(k − 1)) =
N−1∑

j=0

L (x̂(k + j|k), û(k + j − 1|k)) (14)

where L is a nonlinear continuous function and it is
assumed that the cost falls to zero once the state has
entered the set of optimal states X0, namely L(x, u) = 0
if x ∈ X0. The following terminal constraint is imposed:

x̂(k +N |k) ∈ X0. (15)

This is a general form and MPC formulations vary with
various models, cost functions and parameters.

Frequently used cost function in MPC literature is:

J(k) = ||E{y(k +N |k)} − r(k)||2P +
N−1∑

j=0

[
||E{y(k + j|k)} − r(k)||2Q + ||∆uk+j ||2R

]

(16)

where N is a finite horizon and ‖x‖A =
√
xTAx; A =

P,Q,R are positive definite matrices and the notation
E{·} denotes an ‘expectation’ conditional upon data avail-
able up to and including current time instant k.

There are many alternative ways of how NMPC can be
realised with Gaussian process models:

Cost function. The cost function (14) is a general one
and various special cost functions can be derived out of
it. It is well known that the selection of the cost function
has a major impact on the amount of computation.

Optimization problem for ∆u instead of u. This is
not just a change of the formalism, but also enables
forms of MPC containing integral action.

Process model. The process model can be determined
off-line and fixed for the time of operation or determined
on-line during the operation of controller. The on-line
model identification is described in Section 3.4.

Soft constraints. Using constraint optimization algo-
rithms is very demanding for computation and soft con-
strains. In other words weights on constrained variables
in cost function, can be used to decrease the amount
of computation. More on this topic can be found in
Maciejowski (2002).

Linear MPC. It is worth to remark that even though
this is a constrained nonlinear MPC problem it can be
used in its specialized form as a robust linear MPC.

Various predictive control methods can be applied with
GP models depending on designers choice and imposed
constraints. Using GP models does not impose any partic-
ular constraint on cost function, optimisation method or
any other element of choice for predictive control design.

An application of model predictive control with the GP
model using the general cost function described with
equation (16) can be found in Grancharova and Kocijan
(2007). Investigations of three special forms of MPC are
more frequent in the literature. These three algorithms
are: Internal Model Control (IMC), Predictive Functional
Control (PFC), and the approximate explicit control,
which are described in subsequent subsections. A principle
different from the listed, where control is based on the

estimation and the multiple-step prediction of system
output in combination with fuzzy models is given in (Palm,
2007).

Internal Model Control

In this strategy the controller is chosen to be an inverse of
the plant model. Internal model control is one of the most
commonly used model–based techniques for the control of
nonlinear systems. It can be considered also as the simplest
form of MPC with prediction and control horizon equal
to one step. IMC with the GP model is elaborated in
Gregorčič and Lightbody (2002), Gregorčič and Lightbody
(2003a) and Gregorčič and Lightbody (2005). The descrip-
tion of IMC with the GP model hereafter is adopted from
these references.

The main difference between the various internal model
control approaches is in the choice of the internal model
and its inverse. It was shown in Gregorčič and Light-
body (2003b) that the GP model based on the squared-
exponential covariance function is not analytically invert-
ible. Instead of calculating the exact inverse, a numerical
approach such as successive approximation or Newton-
Raphson optimisation method, can be used to find the
control effort to solve the following equation:

H(u(k),y(k))− q(k) = 0, (17)

where u(k) = [u(k) . . . u(k − m)]T ,y(k) = [y(k)...y(k −
n)]T , H(u(k),y(k)) = ŷ(k + 1) and q(k) is the controller
input.

The GP model is trained as a one-step ahead prediction
model. The IMC strategy requires the use of the parallel
model of equation ŷ(k + 1) = Ĥ(u(k), ŷ(k)). This GP
model is then included in the IMC structure and the
numerical inverse of the equation (17) is found at each
sample. The IMC works well when the control input and
the output of the system are in the region where the model
was trained. As soon as the system moves away from the
well modelled region this can cause sluggish and, in certain
cases, also unstable closed-loop system behaviour.

Since poor closed-loop performance is the result of the
the model being driven outside its trained region, the
naive approach would be to constrain the control input.
When the system is driven in this untrained portion of
the operating space, the increase of the predicted variance
will indicate a reduced confidence in the prediction. This
increase of variance can be used as a constraint in the
optimisation algorithm utilised to solve equation (17). This
concept is shown in Fig. 5.

F i l t e r P r o c e s s

G P  m o d e l

C o n t r o l l e r
S e t - p o i n t r u y

y

V a r i a n c e

Fig. 5. Variance-constrained Internal Model Control Struc-
ture

The basic idea of the algorithm is to optimise the control
effort so that the variance does not increase above its
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predefined limit. Since the GP model is not analytically
invertible and numerical approaches have to be utilised
to find the inverse of the model at each sample time, the
associated computation load rises rapidly with the number
of training data points. This is the main drawback of the
GP modelling approach for IMC.

Predictive Functional Control

Predictive functional control is a form of the predictive
control that in principle is no different to a general
predictive control. Its distinct features are relatively low
number of so called coincidence points, the use of a
reference trajectory, which is distinct from the set-point
trajectory and the assumption that the future input is a
linear combination of a few simple basis functions. More
details can be found in, e.g., Maciejowski (2002).

In the following description the PFC with one coincidence
point and constant output within the control horizon
is used. Variants of this kind of predictive control with
the GP model are described in Kocijan et al. (2003),
Kocijan and Leith (2004), Kocijan et al. (2004), Kocijan
and Murray-Smith (2005), Likar and Kocijan (2007) and
Ažman and Kocijan (2008). The predictive control based
on the GP model was for the first time introduced in
published reference in Kocijan et al. (2003).

A moving-horizon minimisation problem of the form (Ma-
ciejowski, 2002)

Jopt(k) = min
u(k)

[r(k + P )− E{ŷ(k + P )}]2 (18)

subject to constraints:

var ŷ(k + P )≤ kv

| u(k) | ≤ kih

| ∆u(k) | ≤ kir

| x(k) | ≤ ksh

| ∆x(k) | ≤ ksr (19)

is applied as the first presented choice, where u(k) =
[u(k) . . . u(k+P )] is the input signal, P is the coincidence
point, i.e., the point where a match between output
and the reference value is expected, and inequalities (19)
represent constraint on the output variance kv, the input
hard constraint kih, the input rate constraint kir, the
state hard constraint ksh and the state rate constraint ksr
respectively. These constraints are in general functions of
some scheduling variable in the general form, but are many
times set to be constant values. The process model is a GP
model.

The optimisation algorithm, which is constrained nonlin-
ear programming, is solved at each sample time over a
prediction horizon of length P , for a series of moves which
equals to control horizon.

A possible alternative selection of the cost function that
avoids constrained optimisation and is therefore computa-
tionally less demanding would be

J(k) = E{[r(k + P )− ŷ(k + P )]2}. (20)

Using the fact that var{ŷ} = E{ŷ2} − E{ŷ}2, the cost
function can be written as

J(k) = [r(k+ P )−E{ŷ(k+ P )}]2 + var{ŷ(k+ P )}. (21)

The control strategy with cost function (21) is ‘to avoid’
going into regions with higher variance. The term ‘higher
variance’ does not specify any specific value. In the case
that controller does not seem to be ‘cautious’ enough, a
‘quick-and-dirty’ option is that the variance term can be
weighted with a constant λvar to enable shaping of the
closed-loop response according to variance information:

J(k) = [r(k+P )−E{ŷ(k+P )}]2+λvarvar{ŷ(k+P )} (22)

Beside the difference in the optimisation algorithm the
presented options give also a design choice on how ‘safe’
the control algorithm is. In the case when it is very
undesirable to go into ‘unknown’ regions the constrained
version may be better option.

Approximate explicit stochastic nonlinear predictive con-
trol

Bemporad et al. Bemporad et al. (2000) have proposed an
approach to implement the MPC, where the computation
effort is moved off-line. The MPC formulation described
up-to-now provides the control action u(k) as a function
of states x(k) defined implicitly by the cost function and
constraints. By treating x(k) as a vector of parameters,
the goal of the proposed method is to solve MPC problem
off-line with the respect to all values of x(k) of interest
and make this dependence explicit. Solving this problem
means solving a multi-parametric Quadratic Programme
(mp-QP). The solution of the mp-QP is a continuous
and piecewise affine function of x. When the problem
involves the nonlinear model of the system, then solving a
multi-parametric Quadratic Programme becomes solving
a multi-parametric NonLinear Programme (mp-NLP).

The benefits of an explicit solution, in addition to the
efficient on-line computations, include also the verifiability
of implementation, which is an essential issue in safety-
critical applications. For the nonlinear and stochastic
MPC the benefits of explicit solutions are even higher
than for linear MPC, since the computational efficiency
and verifiability are even more important. Grancharova
et al. (2007b) propose an approach for off-line compu-
tation of explicit suboptimal stochastic NMPC controller
for constrained nonlinear systems based on a GP model.
The approach is based on the multi-parametric Nonlinear
Programming (mp-NLP) ideas and represents an extension
of the approximate methods in Grancharova et al. (2007a)
and Johansen (2004). Approximate explicit nonlinear pre-
dictive control based on the GP model has been elaborated
in Grancharova et al. (2007b) and Grancharova et al.
(2008).

3.3 Gain-scheduling control

The gain-scheduling method is probably the most wide
spread nonlinear control design method. It has been suc-
cessfully applied in fields ranging from process control to
aerospace engineering. The basic idea behind the approach
is called divide-and-conquer method where a nonlinear
system is divided into local subsystems that are modelled
as linear dynamic systems. A linear control problem is then
solved for each of these subsystems. The global control
solution – called gain-scheduling control – is afterwards
put together from partial local solutions. Overviews of the
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gain-scheduling method and its applications can be found
in Rugh (1991), Rugh and Shamma (2000) and Leith and
Leithead (2000).

The traditional gain-scheduled controller, which is ad-
justed with reference to an externally measured vector of
variables, ̺(x(t)u(t)), has the form

ẋ=Ac(̺(t))x+Bc(̺(t))u

y=Cc(̺(t))x+Dc(̺(t))u (23)

where Ac(̺(t)),Bc(̺(t)),Cc(̺(t)),Dc(̺(t)) are matrix
functions. Dynamic properties change with so called
scheduling vector ̺(x(t)u(t)) but, provided that the rate
of change is not too rapid, then the dynamic properties of
the time-varying controller are similar to those of the linear
controllers obtained by ‘freezing’ the value of ̺(t); that is,
the nonlinear controller inherits the dynamic properties of
the family of linear controllers (Leith and Leithead, 1998).

A block scheme showing a general principle of gain-
scheduling control is given in Fig. 6.

" d a p t a t i o n

o #  p a r a m e t e r s

x ! " ! F $ x # ! u %

y ! " ! G $ x # ! u %
" o n t r o l l e r

S c & e d u l e d
p a r a m e t e r s

r $ % & u $ % & y $ % &

x $ % &

.

Fig. 6. General block scheme of the closed-loop system
with a gain-scheduling controller

Number of nonlinear identification methods including con-
ventional nonparametric GP model identification meth-
ods provide models that can be used only with model
based predictive control. A Fixed-Structure Gaussian-
Process (FSGP) model is introduced in Ažman and Ko-
cijan (2006). The FSGP model is a model with prede-
termined linear structure with varying and probabilistic
parameters represented by Gaussian-process models.

FSGP can be used for wider range of control design
methods and not only those which are based on black-box
GP models. One possible control design approach is the
gain-scheduling control design. In this case local controllers
are designed for selected local model of the process. Gain-
scheduling control based on GP model, namely on FSGP
model, is described in Ažman and Kocijan (2006) and
Ažman and Kocijan (2009).

Selection of local process models for control design depends
on region where closed-loop dynamics is expected and is
in general not the same as the set of local models used for
process modelling. It is sensible to keep the system where
its model is good, i.e., where variances of local models’
parameters are small. Variances of GP models contained
in the FSGP model provide this information. Parameters
of the local controllers depend on the same scheduling
variables as the associated process local model parameters.

3.4 Adaptive control

Adaptive controller is the controller that continuously
adapts to some changing process. Adaptive controllers
emerged in early sixties of the previous century. At the be-
ginning these controllers were mainly adapting themselves
based on linear models with changing parameters. Since
then several authors have proposed the use of non-linear
models as a base to build nonlinear adaptive controllers.
These are meant for the control of time-varying nonlinear
systems or of time-invariant nonlinear systems that are
modelled as parameter-varying simplified nonlinear mod-
els.

Various divisions of adaptive control structures are possi-
ble. One possible division (Isermann et al., 1992) is into
open-loop and closed-loop adaptive systems.

Open-loop adaptive systems are gain-scheduling or param-
eter-scheduling controllers already described in Section
3.3. Closed-loop adaptive systems can be further divided
to dual and non-dual adaptive systems.

Dual adaptive systems (Filatov and Unbehauen, 2000;
Wittenmark, 2002) are those where the optimisation of the
information collection and the control action are pursued
at the same time. The control signal should ensure that
the system output cautiously tracks the desired reference
value and at the same time excites the plant sufficiently to
accelerate the identification process. The solution to the
dual control problem is based on dynamic programming
and the resulting functional equation is often the Bellman
equation. Not a large number of such controllers have been
developed.

The difficulties to find the optimal solution for dual adap-
tive control lead to suboptimal adaptive dual controllers
(Filatov and Unbehauen, 2000; Wittenmark, 2002) ob-
tained by either various approximations or by reformulat-
ing the problem. Such a reformulated adaptive dual control
problem is when a special cost function is considered,
which consists of two added parts: control losses and an
uncertainty measure. This is appealing for application with
the Gaussian process model that provides measures of
uncertainty.

Many adaptive controllers in general are based on the sep-
aration principle (Wittenmark, 2002) that implies separate
estimation of system model, i.e., system parameters, and
the application of this model for control design. When the
identified model used for control design and adaptation
is presumed to be the same as the true system then the
adaptive controller of this kind is said to be based on
certainty equivalence principle and such adaptive control
is named non-dual adaptive control. The control actions in
non-dual adaptive control do not take any active actions
that will influence the uncertainty.

When using the GP model for the adaptive control,
different from gain-scheduling control described in Section
3.3, the GP model is identified on-line and this model is
used in the control algorithm. The block scheme showing
the general principle of adaptive control with the GP
model identification is given in Fig. 7. It is sensible that
advantages of GP models are considered in the control
design, which relates the GP model-based adaptive control
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Fig. 7. General block scheme of the closed-loop system
with adaptive controller

at least to suboptimal dual adaptive control principles.
The uncertainty of model predictions obtained with the
GP model prediction are dependent, among others, on
local learning-data density, and the model complexity is
automatically related to the amount and the distribution
of the available data – more complex models need more
evidence to make them likely. Both aspects are very
useful in sparsely-populated transient regimes. Moreover,
since weaker prior assumptions are typically applied in a
nonparametric model, the bias is typically lower than in
parametric models.

The above ideas are indeed related to the work done
on the dual adaptive control, where the main effort has
been concentrated on the analysis and design of adaptive
controllers based on the use of the uncertainty associated
with parameters of models with a fixed structure (Filatov
and Unbehauen, 2000; Sbarbaro and Murray-Smith, 2005).

The major differences in up-to-now published adaptive
systems based on GP models are in the way how the on-
line model identification is pursued.

Increasing the size of the covariance matrix, i.e., ‘blow-
up model’, with the in-streaming data and repeating
model optimisation is used in papers (Murray-Smith and
Sbarbaro, 2002), (Murray-Smith et al., 2003), (Sbarbaro
et al., 2004), (Sbarbaro and Murray-smith, 2005) and
(Sbarbaro and Murray-Smith, 2005), where more attention
is devoted to control algorithms and their benefits based
on information gained from the GP model and not on the
model identification itself.

Another adaptive control algorithm implementation is
control with feedback for cancelling nonlinearities, de-
scribed already in Section 3.1 with the on-line learning
of the inverse model. This sort of adaptive control with
the increasing covariance matrix with the in-streaming
data is described in Nguyen-Tuong and Peters (2008). Two
sorts of on-line learning for the mentioned feedforward con-
tained control is described in Nguyen-Tuong et al. (2010).
The first sort is with moving window strategy, where the
old data are dropped from the on-line learned model, while
the new data is accommodated, the second one accommo-
dates only new data with sufficient information gain. These
applications of referenced inverse GP models do not use
entire information from the prediction distribution, but
like those non-adaptive based on the same principle from
Section 3.1 they focus on the mean value of prediction.

Alternatively to listed adaptive controllers, the adaptive
control system principle described by Petelin and Kocijan

(2011) is based on the evolving GP model. The basic idea
of the control based on the evolving system model is that
the system GP model evolves with the in-streaming data
and the information about system from the model is then
used for its control. One option is that the information
can be in the form of the GP model prediction for one
or several steps ahead which is then used to calculate the
optimal control input in the controlled system. Different
possibilities exist for the evolving GP model depending on
the level of changes we accommodate in the evolving sys-
tem model. On the other hand, various control algorithms
can be used depending on the GP model or closed-loop
requirements.

A lot of GP model-based adaptive-control algorithms from
the referenced publications are based on the Minimum
Variance controller. One of the reasons is that the Min-
imum Variance controller explores the variance that is
readily available with the GP model prediction.

The Minimum Variance controller in general (Isermann
et al., 1992) looks for a control signal u(k) in time instant
k, that will minimize the following cost function:

JMV = E{(r(k)− y(k +m))2} (24)

Taking the expected value of a variable squared gives the
variance of that variable. In this case, JMV therefore refers
to the variance of the error between set-point r(k) and the
controlled output m-time steps in the future, y(k + m).
The desired controller is thus the one that minimizes this
variance, hence the name Minimum Variance control. The
optimal control signal uopt can be obtained by minimising
selected cost function. The minimisation can be done
analytically, but also numerically, using any appropriate
optimisation method.

The cost function (24) can be expanded with a penalty
term λu on the control effort:

JMV2
= E{(r(k)− y(k +m))2}+ λuu

2(k) (25)

The term λu can be used for ‘tuning’ of the closed-loop
system performance. As mentioned by Murray-Smith and
Sbarbaro (2002), this cost function can be written as:

JMV2
=

(r(k)− E{y(k +m)})2 + var{y(k +m)}+ λuu
2(k)

(26)

where the second therm represents the model uncertainty
which is available from the GP model prediction and
can be used in the optimal control signal minimization.
Note that the most of conventional work has ignored it,
or have added extra terms to the cost function, or has
pursued other sub-optimal solutions. The simplest form
of the cost function (25) is when m = 1 and therefore
only the one-step-ahead prediction is used. The case when
m > 1 is elaborated in Section 3.2 and the adaptive-
control application, though with increasing dimensions of
the covariance matrix with in-streaming data, is given in
Murray-Smith et al. (2003) and can be considered as an
adaptive model predictive control.

The cost function (25) can be further expanded with other
forms of penalty leading to Generalized Minimum Variance
control. Possible alternative to cost function (26) is
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JGMV =Q(q−1)(r(k)− E{y(k +m)})2

+ var{y(k +m)}+R(q−1)u2(k) (27)

where polynomials Q(q−1) and R(q−1) are defined as:

Q(q−1) =Q0 +Q1q
−1 + . . .+Qnq

qnq (28)

R(q−1) =R0 +R1q
−1 + . . .+Rnr

qnr (29)

where q−1 is a unit backward shift operator. The polyno-
mial coefficients can be used as tuning parameters. Sim-
ilar cost function is used in Sbarbaro and Murray-Smith
(2005).

Yet another possibility, suggested in Sbarbaro and Murray-
smith (2005) in the context of GP models is the en-
hanced version of Generalized Minimum Variance con-
troller known as Generalized Linearising controller (Good-
win et al., 2001):

JGLC = (1− ν)E{(r(k)− y(k +m))2}
+ ν(R(q−1)u(k)− ur)

2 (30)

where ur is the input associated to r, the coefficients
of R(q−1) and ν are tuning parameters. When ν = 0,
the cost function corresponds to the minimum variance
cost function, and when ν = 1, the minimum of the
cost function corresponds to a simple feedforward control.
On the other hand if the open-loop system is stable but
with an unstable inverse, then ν = 1 provides a stable
controller.

Furtherly, papers Murray-Smith and Sbarbaro (2002) and
Sbarbaro and Murray-smith (2005) describe the control of
an affine nonlinear system of the form

y(k + 1) = f(x(k)) + g(x(k))u(k) + ξ(k + 1), (31)

which allows the combination of squared exponential and
linear covariance function for the GP model and the com-
bination with Minimum Variance control. This application
is generalised to multiple-input multiple-output case in
Sbarbaro et al. (2004).

Gaussian process dynamic programming

The method named Gaussian Process Dynamic Program-
ming (GPDP) is a Gaussian-process model-based adaptive
control algorithm with the closest proximity to dual adap-
tive control. The details of the method are described in
Deisenroth et al. (2009). The following description is sum-
marised from Deisenroth et al. (2009), Deisenroth (2010)
and Deisenroth and Rasmussen (2009a). The evolution of
method can be followed through time with publications
Rasmussen and Kuss (2004); Deisenroth et al. (2008a,b);
Rasmussen and Deisenroth (2008); Deisenroth and Ras-
mussen (2009a); Deisenroth et al. (2009); Deisenroth and
Rasmussen (2009b) and Deisenroth (2010), where the
method is named more generally as Probabilistic Inference
and Learning for COntrol (PILCO).

The general idea of the method is to learn the system
model on-line and control the closed-loop system taking
into account the probabilistic model of the process. The
algorithm can be divided into three layers: top level for
controller adaptation, intermediate layer for approximate
inference for long-term predictions and bottom layer for
learning the model dynamics.

A discrete-time system described by equation (32) is
considered throughout the method description

x(k + 1) = f(x(k),u(k)) +w, (32)

where x is a vector of states, u is a control vector and
w ∼ N (0,Σw) a Gaussian distributed noise random
variable, where Σw is diagonal. The model dynamics
or transition function f mapping a pair x(k),u(k) to a
successor state x(k+1) is assumed to evolve smoothly over
time and is time-invariant (Deisenroth et al., 2009). The
dynamics function is modelled with a Gaussian process
model. For a stochastic system, the noise term w in the
system equation (32) is the process noise. The obtained
dynamics GP model of the underlying stochastic dynamics
function f contains two sources of uncertainty: First is
the uncertainty about the underlying system function
itself, and second the uncertainty induced by the process
noise. With the increasing amount of absorbed information
the first source of uncertainty tends to zero, whereas
stochasticity due to the process noise w is always present.
Therefore, only the uncertainty about the model vanishes
with the time of operation.

The learning of the model dynamics is implemented as
an on-line learning of the model. Active learning is the
strategy for optimal data selection to make learning more
efficient. In the case of GPDP method, training data
are selected according to a utility function. The utility
function that rates the quality of candidate data in the
context of GPDP is

U = ρE{Jopt(k)}+
β

2
log var{Jopt(k)}, (33)

where Jopt is the cost function, modelled by another GP
model that satisfied the Bellman equation (see equation
(35)) for all states and with weighting factors ρ, and β.

To find an optimal control law, i.e., a policy, guiding the
system from an initial state to the goal state, Bayesian
active learning is incorporated into GPDP such that only a
relevant part of the state space is explored. The GP model
of the dynamics is built on-line. This on-line algorithm
largely exploits information which is already computed
within GPDP. The combination of active learning and
GPDP is called ALGPDP in the sequel. Instead of globally,
sufficiently accurate value function model, ALGPDP aims
to find a locally appropriate value function model Jopt(k)
in the vicinity of the most promising trajectories from the
initial states to the goal state.

ALGPDP starts from a small initial set of state vectors
X (N), where N is the length of the optimisation horizon.
Using Bayesian active learning, new state vectors are
added to the current set X (k) at any time step k. The
sets X (k) serve as training inputs for both the GP model
describing system and the GP model describing the cost
function. At each time step, GP models are updated to
incorporate the most recent information.

The controller of the adaptive control system optimises
some long-term performance measure. The control law
is a mapping from a state vector into a control vector
that assigns a value of control signal to each state, i.e.,
a nonlinear state controller. For an initial state x(0) and
the selected controller, the expected cumulative cost of a
finite N -step optimisation horizon is
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J(x(0)) = E

{
φ(x(N)) +

N−1∑

k=0

L(x(k),u(k))

}
. (34)

The function φ(N) is a control-independent terminal cost
that incurs at the last time step N . The immediate cost
is denoted as L(x(k),u(k)). An optimal control sequence
u for the N -step problem minimises equation (34) for any
initial state x(0). The associated state-value function Jopt
satisfies the Bellman equation:

Jopt(x(k)) =

min
u

(L(x(k),u(k)) + γE {Jopt(x(k + 1)|(x(k),u(k))}
(35)

for all states x(k). The successor state for a given state-
action pair (x(k),u(k)) is denoted by x(k + 1). Assuming
the time-additive cost and Markovian transitions, the
minimal expected cumulative cost can be calculated by
dynamic programming.

Reader is referred to Deisenroth et al. (2009) for details
and demonstration of the method. Unfortunately, accord-
ing to the method’s authors (Deisenroth et al., 2009),
ALGPDP cannot be directly applied to a dynamic system,
because it is often not possible to experience arbitrary
state transitions. Authors suggest a combination with
ideas from Rasmussen and Deisenroth (2008) to make a
possible adaptation to real-word problems so that algo-
rithm experience most promising trajectories following the
current policy.

4. TRENDS, CHALLENGES AND RESEARCH
OPPORTUNITIES

Several research topics remain not enough explored before
Gaussian-process models will become mature technology
ready to use in the control-engineering practice. The rela-
tive immaturity for engineering practice is evident from a
small number of real-life control applications, i.e., (Likar
and Kocijan, 2007; Ko et al., 2007) and (Deisenroth and
Rasmussen, 2009b), reported in literature until present.

Research opportunities can be roughly divided as follows:
firstly to issues concerning dynamic systems modelling
with Gaussian process models related to the control de-
sign, secondly issues concerning the control design itself
and thirdly some general issues related to the control de-
sign and applications. The given list of issues is subjective
and heavily based on the available information about on-
going research activities throughout the world.

Modelling trends and issues. The computational bur-
den that increases with increasing number of the data
contained in the model, caused mainly by calculation
of the inverse covariance matrix, directs researchers to
find more efficient methods for the inverse covariance
matrix calculation or the input data selection. The issue
of automatically polishing data and finding informative
portions is reported as one of key issues in dynamic
systems identification in general (Ljung, 2008) and re-
mains one of current challenges also in the GP modelling
research.

The issue of recursive model identification is the issue
that is closely linked to adaptive control methods. In the

machine learning community this kind of identification
is known as on-line learning, which is not limited only
to sequentially in-streaming data. The efficient method
for recursive identification of the GP model still remains
an unanswered challenge.

Further, methods for developing GP state-space mod-
els (Turner et al., 2010) still offer a lot of unsolved
research problems.

Control design trends and issues. Most of the re-
ported control methods have not addressed disturbance
rejection, which is crucial in control systems, but have
been more focused on the set-point tracking. The com-
plete assessment of control methods requires also the
disturbance rejection analysis, which in many cases still
remain an unexplored issue.

The current research on control methods deals with
adaptive and predictive control. First results that have
a potential for control applications is also modelling of
switching systems, e.g., (Saatçi et al., 2010).

If control methods are meant to be used in engineering
practice more results on robust control design method-
ologies are necessary. Gaussian process models offer a
lot of potential for the robust control design and offer a
lot of research and application opportunities.

Some general issues that need to be brought-up are
benchmarking of control methods with purpose to assess
different control methods properly and fairly. A giant
step to bring research results closer to the engineering
practice is the integration of knowledge and software
upgrade from pieces scattered around, mainly on the
internet, into the user-friendly integrated software.

Research opportunities lay also in developing methods
and procedures for various kinds analysis of system mod-
els and closed-loop systems. Model-simulations stability
and closed-loop stability are only two, very different, but
important and challenging problems among many to be
addressed.

5. CONCLUSIONS

The control design faces the challenge of more and more
complex systems to be controlled. On the other hand the
development of control technology has given the ability
to design control for increasingly uncertain systems, es-
pecially away from typical engineering fields, e.g., biosys-
tems. The control based on Gaussian process models is an
approach that may be promising for treating such systems
(Ažman and Kocijan, 2007).

This paper provides the state-of-the-art survey of control
algorithms for dynamic systems described in publications
where Gaussian-process models have been used for the
control design or as the part of controller. These methods,
ranging from direct inverse control to advanced forms of
the adaptive control, take or not into account the variance
information provided by the Gaussian-process model.

The survey touched also possible trends, challenges and
research opportunities. It was shown that a number of
challenges and research opportunities that will bring the
method to the level of maturity appropriate for engineering
practice still lie ahead.
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Gregorčič, G. and Lightbody, G. (2003b). Internal model
control based on Gaussian process prior model. In
Proceedings of the 2003 American Control Conference,
ACC 2003, 4981–4986. Denver, CO.
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