

DEPARTMENT OF SYSTEMS AND CONTROL

Developments and applications

Jožef Stefan Institute Department of Systems and Control **DEVELOPMENTS AND APPLICATIONS**

Published by Jožef Stefan Institute, Ljubljana Department of Systems and Control

Editor Maja Janežič

English language editing Paul Mc Guiness, Barbara Žvelc

Design Sonja Eržen

Photo on cover Shutterstock

Printing Birografika BORI

Ljubljana, July 2011

Foreword

The earliest roots of the **Department of Systems and Control** date back to the late 1950s and early 1960s, a period marked by intensive developments at the Jožef Stefan Institute in the area of electronics design for nuclearreactor technologies. The initiator and leader of the activities was Professor France Bremšak, known for his important contributions to analogue computing and simulation. Professor Bremšak is credited with being the first person in the Slovenian scientific community to recognise the relevance and need for systematic research on control theory and its practical applications. With this in mind he founded the Department of Analogue Technique and Servo-Mechanisms, which evolved in the early 1970s into the Department of Automatic Control, Biocybernetics and Robotics. With the expansion of the field of control in the years that followed, the Automatic Control Group, which made up part of the former department, expanded into the new Department of Computer Automation and Control being established in 1986 by Professor Stanko Strmčnik who also had been its head for more than 25 years. As the range of activities continued to increase, the current title of the Department of Systems and Control was adopted.

Since its very beginnings our department has been focused on the transfer and exchange of knowledge with industry, in accordance with the department's mission statement "**to bridge the gap between theory and practice**". To achieve this goal a broad spectrum of activities has been developed, ranging from basic and applied research, to development, industrial applications and teaching. As a result, the activities of the department can be divided into several areas.

Jožef Stefan Institute
 DEPARTMENT OF SYSTEMS AND CONTROL

In the area of basic research, the aim is to contribute knowledge, methods and algorithms for a better analysis of systems' behaviour, the design of control actions and the optimisation of performance. The results from these various activities have been summarised in numerous journal publications, books and conference proceedings.

Our contribution in the area of education falls into three main categories. First, the department has been providing opportunities for postgraduate study, and as a result of this many PhD and MSc theses have been completed over the years. Second, a number of our staff are lecturers and assistants in regular graduate and postgraduate programmes at the University of Ljubljana, the University of Nova Gorica, the University of Maribor and the Jožef Stefan International Postgraduate School. Third, our staff have been organizing and contributing regular curricula for the continuing education of engineers from industry.

One of our most important areas of activity is the development of new tools, devices, systems and technologies based on results achieved through applied research and development. The aim of this booklet is to provide a summary of the key results from the past 25 years. Two types of results are described: results from our own development that were later implemented in commercial applications, and results from our work with partners from industry. Several smaller projects are also presented, because they are very interesting from the technological point of view, even though their results have not yet found their way to the market.

1985 1986

1987

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Jožef Stefan Institute DEPARTMENT OF SYSTEMS AND CONTROL

What the presented achievements have in common is the fact that at the time they came into being they represented either a technological breakthrough or an innovation, not only locally but also in the wider sense, and have, as such, influenced technological development.

This review is intended to draw attention to the tradition and continuity of our department in the area of technological advancement as well as to stress our ability to extend these ambitions to our future work.

In what follows is a review of our most important application and development achievements, placed in the context of the time when they occurred or the application they were intended for. At the end we have provided a complete list of projects carried out by our staff for industrial and other partners.

Let me stress that some of the achievements below have resulted from joint endeavours with other research and development teams. In particular, it is my pleasure to acknowledge a long and fruitful cooperation with the Laboratory of Modelling, Simulation and Control and the Laboratory of Autonomous Mobile Systems at the Faculty of Electrical Engineering in Ljubljana as well as the INEA company from Ljubljana.

Head of the Department: dr. Vladimir Jovan

The system for real-time analysis of operating characteristics of the family of electronically commutated electric motors

- **CUSTOMER** Domel, d. o. o.
- **OBJECTIVES** the diagnostic system enables semiautomatic end quality assessment of electronically commutated (EC) electric motors as well as diagnostics of manufacturing faults and detection of deviations of the quality of the components.
- **DESCRIPTION** the diagnostic system measures the characteristic features of each produced electric motor based on the information from two accelerometers' signals, input power, voltage between phases and phase currents. After an advanced signal processing and diagnostic algorithms are carried out, 'birth certificate' of each complete motor is produced. For faulty motors, the most likely cause of quality deviation is indicated. Data on the diagnostic findings are stored in the company's information database.
- INNOVATION the system consists of an innovative test set-up, which allows simultaneous measurement of rotor unbalance and defects in the bearings. The application of Hilbert's transformation in signal processing enables a very effective detection and evaluation of defects in the bearings. Monitoring of the induced voltage is used for the diagnostics of irregular magnetisation of permanent magnets.
 - **BENEFITS** the diagnostic system allows 100-percent quality control of ECmotors without operator intervention. The operator provides only for the proper location of the motor on a test stand and sticking labels onto the corresponding motor. This way "human factor" is eliminated from the diagnostic process and only faultfree products go to the market. Using this diagnostic system has enabled the company Domel, d. o. o. to gain trust of new customers in the global market.
 - INFO janko.petrovcic@ijs.si, bojan.musizza@ijs.si

б

DPP 822 – a prototype system for real-time detection and localization of faults in mechanical drives

- **CUSTOMER** an internal project within the research programme
- **OBJECTIVES** DPP 822 is a prototype device that allows real-time noninvasive condition monitoring of the rotational machinery and mechanical drives, automatic detection and localization of faults and prediction of the remaining useful life.
- **DESCRIPTION** the device is based on a digital signal processor (DSP) that performs real-time acquisition and processing of signals and allows communication with the operator and maintenance centre. The device can be connected with a wide range of sensors, such as vibration, sound, rotational speed sensors, sensors for electrical parameters, real-time oil analyzers etc. The sensor fusion procedures are available to reach high diagnostic requirements in industry. The design and the system configuration are carried out in Matlab/Simulink environment.
- **INNOVATION** DPP 822 enables the use of advanced diagnostic algorithms. The inexpensive equipment and versatile configuration environment guarantee low cost implementation. The latter is particularly easy since thanks to the radio frequency communication minimal local wiring is needed.
 - **BENEFITS** reliable equipment monitoring (predictive maintenance), reduced maintenance costs, reduced breakdowns and increased availability of equipment. Since it is relatively cheap, the system is accessible to a wide range of users in industry, transport and power engineering.

INFO • dani.juricic@ijs.si

Communication module -GSM RTU 2200MB SIBA

- **OBJECTIVES** an industrial module for remote control and diagnostics of geographically remote processes.
- DESCRIPTION GSM RTU 2200MB SIBA module serves as a communication gateway between a remote control centre and a local communication network. Remote connection is relayed over a GPRS/GSM connection. On the other hand, the local communication is supported by Modbus TCP protocol via Ethernet connection. The module allows an integration of an additional universal communication module which enables a substantial increase of the range of supported industrial buses (Bluetooth, CANopen, CC-Link, DeviceNET, Ethernet, EtherCAT, GSM, Profibus, Wifi...). Furthermore, the module can perform the function of programmable logic controller with two dedicated digital inputs and outputs.
- INNOVATION cost effective and compact industrial communication module, based on ARM Cortex-M3 microcontroller. The GSM RTU 2200MB module supports over 25 standard industrial buses. In addition to providing versatile communication hub functionality, it also serves as a basic programmable logic controller.
 - **BENEFITS** as a key element of the company lnea, d.o.o., this module has enabled realization of new projects in the field of remote monitoring and control.

INFO • ales.svetek@ijs.si

Fuel-cell stack freezing prevention system

- CUSTOMER Inea d. o. o.
- **OBJECTIVES** the system for prevention of fuel-cell stack freezing allows the use of systems with PEM fuel-cells even at ambient temperatures below the freezing point of water. Power systems with fuel-cells can be thus kept at temperatures to about -20 °C. Also immediate startup of these devices is possible at subzero ambient temperatures.
- **DESCRIPTION** a system for freezing prevention with regulated re-heating of the coolant in the primary cooling loop replaces the heat loss caused by radiation and convection. Temperature drops of the fuel-cell stack below 0 °C cause water freezing in the cooling loop and on the cell membranes. This might cause permanent damage to the stack or to the cooling components. When the system detects a drop in temperature below +2 °C, it turns on the circulation pumps and compensates for the loss of heat with the battery power.
- **INNOVATION** the system allows real-time replacement of heat losses and, unlike the systems that perform preheating, it ensures non-problematic conservation of fuel cells in stand-by mode and allows instant startup. Moreover, the requirements of the battery current capacity are considerably lower. Reliable and efficient regulated heaters provide only as much heat as required to maintain the system above the freezing point. Precise thermostats turn on the circulation pumps or alert the user in time.
 - BENEFITS the system for prevention of fuel-cell stack freezing is integrated in two different systems of auxiliary power units in military vehicles. At external temperatures down to -18 °C during winter time the system ensured survival of power units with fuel-cells and allowed their immediate startup. This solution is suitable for all similar power units which must operate in conditions with low temperatures.
 - INFO janko.petrovcic@ijs.si, vladimir.jovan@ijs.si

-	at Stort @ bet	et				
5. Ad	inter a state h	the N Sold Street of	Distantion Item	and Raced Face. X 21	nii Ramel P	
Pert	ipek Eriote					
	1=== [T]	302as bee Domi	e antino et	87		
	Opiana lane p	aleande 1090 Sprad	e 1090 Epresti eneto ob koncu?			
	Razrad Enote	Durlad	i ob vetavbaniu s recept?	C		
	Pres.: 298/700 Shitpes 1	Bather 2	Dispec 3	Despect	1*	
1	Secondantie Box	Special Res		Belards See		
2		Bentranje CPB Rex	Roobugartije Son	Contraction of the		
3		@asalerjorffeceftedatks #				
4		Bernejiter But				
8		Besteunfe AME Bas				
٩.		Property Plane				
		Shot Zon				
7.	Tanperkinspa For	Approxitio fint				
1	Taxable in Concision Manual	Previ Bet	Readman 125 Feb			
7.1	seagentines, a sea					
7 8 8 10 10	Tespectracys For	Schemiter Ros				

Resin synthesis batch process control system

		1989
CUSTOMER	• Inea d. o. o.	1990
	Color, d. d.	1991
ODIECTIVES	modernization of the racin synthesis batch process	1992
OBJECTIVES	control system, aimed at increasing the reliability, safety,	1993
	flexibility, repeatability, traceability end efficiency of the	1004
	process control.	
		1995
DESCRIPTION	resin synthesis batch process control, consisting of basic control, proceedural control, constrol, and	1996
	recipe control of six batch resin synthesis lines	1997
	····	1998
INNOVATION	• the first application of the PLCbatch tool for recipe control	_
	of batch processes on industrial controllers platform. The	1999
	tool is a result of a common development effort of IJS	2000
	and Inea, which, together with consistent performing of	2001
	all the needed life-cycle activities, has resulted in high quality of the control system	2002
	quality of the control system.	
BENEFITS	shorter batch cycles	
	 high process repeatability and stable product quality 	2004
	flexibility of control	2005
	more accurate dosing of materials	2006
	reduced risk of operator errors	
	Increased safety and improved work conditions	2007
	reduced environmental impact	2008
	reduced energy consumption per product unit	-
	traceability and possibility of process operation analysis	2009
INFO		2010
	- giovarini.goacria@jjs.si	L

The AVTO 1985 testing line control system, 1986 1987 Danfoss Trata 1988 1989 1990 **CUSTOMER** • Danfoss Trata, d. o. o. 1991 **OBJECTIVES** • a control system for the AVTQ testing line for testing the 1992 components used in district-heating systems 1993 **DESCRIPTION** • simulation of conditions in district heating; 1994 repeatable autonomous execution of experiments; • possible testing of different components, standard 1995 valves, control valves and substation for district heating; 1996 supervision system for configuration of the testing line 1997 and automatic generation of reports. 1998 **INNOVATION** • specially developed control schemes, allowing time 1999 monitoring of temperatures, pressures and flows which are defined by the user; 2000 • control schemes are automatically adapted to the con-2001 figuration of testing lines; 2002 • a special-purpose developed supervision system with emphasis on extremely fast and responsive commu-2003 nication with the controller: 2004 **BENEFITS** • the possibility of testing various components of district 2005 heating, 2006 demonstration to customers and users. 2007 education. 2008 INFO • gregor.dolanc@ijs.si 2009 2010

SmartModule - a control and supervisory module for the fuelcell- based cogeneration power unit for combined production of electric and heat energy

- **CUSTOMER** Domel, d. o. o., PlugPower Inc.
- **OBJECTIVES** SmartModule control and supervisory module for the fuelcell- based cogeneration power unit is a special-purpose electronic module for the control of the reformer and other sub-units of the cogeneration power system. The reformer is designed to extract hydrogen from natural gas. Hydrogen is used to power fuel-cells, while the generated heat is used for heating of sanitary water or central heating system.
- DESCRIPTION SmartModule control and supervisory module measures signals from sensors in the power system and based on the integrated algorithms and remote commands through CAN-bus adjusts the position of two stepper motors. SmartModule can measure signals from two air mass flow meters, two pressure sensors, 12 thermocouples, 4 standard sensors with voltage output and three digital sensors. It influences the operation of the reformer by two outputs for stepper motor actuators, by two voltage outputs 0-10 V, by a PWM output and by 10 digital outputs.
- **INNOVATION** SmartModule is a compact solution to control and monitor the process of reforming. In addition to the required functions, the integrated ARM Microcontroller also performs automated real-time calibration of temperature inputs, where stability of temperature readout is crucial for managing the process of the autothermal reforming.
 - **BENEFITS** SmartModule modules are manufactured by Domel, d. o. o. and then supplied to the American company PlugPower Inc. The end client uses the modules to equip the latest systems for the PEM fuel-cell-based cogeneration power systems. These power systems equipped with our control modules have been presented on the world's most prestigious technology trade fairs.
 - INFO janko.petrovcic@ijs.si, ales.svetek@ijs.si

TESTLAB – Mobile test laboratory with fuel-cell power unit

- **CUSTOMER** Ministry of Defence of Republic of Slovenia
- **OBJECTIVES** mobile test laboratory with in-built fuel-cell-based generator set for testing and validation of various sub-systems used in hydrogen technologies.
- **DESCRIPTION** installed subsystems (electrolyser, photovoltaic panels, methanol reformer, metalhydrid storage, fuel cells, electric and thermal storages) enable the production of electric and heat energy from hydrogen. Installed measuring equipment makes possible on line testing and analysis of newly developed subsystems and devices.
- **INNOVATION** demonstration object for electrical and thermal energy production from hydrogen; experimental environment for the design, testing and validation of various newly developed special purpose components for fuel-cell-based applications.
 - **BENEFITS** on-line testing of newly developed .subsystems and devices
 - on-line validation of fuel-cell-based applications
 - INFO vladimir.jovan@ijs.si

	Batch ld g	'n				10	
	Reope state	amig			Reope duration	00 d 00 h	12 min
			P	rocedure unit			
Sho	rtname: Neutraks	•	Descriptive name	NeutralisationOfW	asteVValuer		1
1	Column: 1	Column: 2	Column 3	Column: 4	Column 5	1	
1		CondAnalog	1	1	1		
2	NOOWANCOWCE	The second second					Recipe command
3	Bentheid	Circulation				0	Terral 1
4	Discharge	1.1	3				
5	Addiator	CondAnalog	(i)				Pause
6	1.00000000	Circulation		1			Hold
7	Delay						1000
8.	Discharge	1				0	906
9					1		Abort
10		1			Ji.		- personal statements
		0		0			
-	in Basic	Pracedura	A227003 A22	Distan Transal	- Productor	0	16:40:45

PLCbatch – a S88.01 compliant batch process control tool for controller platform

CUSTOMER • Inea d. o. o.

OBJECTIVES • simplify batch process control systems without loss of expressive power and transfer the execution of recipes from the PC platform to the more reliable industrial controllers platform.

DESCRIPTION • two-level tabular recipes

- general unit-class based recipes
- execution of an extended and adaptable state machine of individual phases

INNOVATION • two-level tabular representation of SFC diagrams

- phases behavior model based on the concept of extended state machines on a high abstraction level
- object model of equipment and recipes based on overlapping equipment classes, conceived for minimizing repetition of information in recipes and maximizing recipe reuse
- **BENEFITS** a simple yet efficient batch process control tool for industrial controllers platform has been developed, which enables a better mastering of batch process control systems development and assures considerably higher reliability of these systems.

INFO • giovanni.godena@ijs.si

Development of intelligent valve

CUSTOMER • Danfoss Trata, d. o. o.

- **OBJECTIVES** design of electronics for the new generation of valve positioners and development of the function for automatic reduction of oscillations in the system
- **DESCRIPTION** we have developed three types of valve positioners, where we have met the requirements of constant speed and the end force of the valve. We have also developed a feature for automatic reduction of the dynamic valve gain in case of oscillations in the system.
- **INNOVATION** our developed speed control system with the system for achieving repeatable end force on the shaft for BLDC motors is one of the most innovative solutions in the field of control systems. Automatic elimination of oscillations in the system is the only system of this kind, implemented on the valves.
 - **BENEFITS** reduction of the necessary electrical power drive due to the use of BLDC motors and reduction of the valve's wear due to the anti-oscillation function.
 - **INFO** damir.vrancic@ijs.si

Implementation of fuelcell-based cogeneration system in mobile dwelling container

CUSTOMER • [Domel, d. o. o.	1990
•	nea d. o. o. Ministry of Defence of Republic of Slovenia	1991
• 1		1992
OBJECTIVES • i	mplementation of fuel-cell based cogeneration system	1993
l S	n mobile dweiling container in accordance with military standards	1994
		1995
DESCRIPTION • i	n addition to meeting the basic needs for heating/	1996
t	the energy needs of the installed special-purpose	1997
r	military communication and computer equipment in a	1998
r	esidential unit - container.	1999
INNOVATION • t	the use of PEM fuel cell system as the power source for	2000
t	the cogeneration system;	2001
• (ine use of hydrogen as an energy source.	2002
BENEFITS • r	no-carbon exhaust;	2003
•	ow noise and thermal profile levels;	- 2004
• ĉ	a successful test of fuel cell technology as an energy	- 2005
-		- 2006
INFO • \	vladimir.jovan@ijs.si	_
		2007
		2008
	_	2009
		2010

1985

1986

1987 1988

Electronic assembly 3D LANC MASTER

- **CUSTOMER** School Centre Šentjur
 - VLS Computers d. o. o.
- **OBJECTIVES** synchronization of two photographic or video cameras for stereoscopic shooting. Stereoscopic image/video allows the positioning of an object in space.
- DESCRIPTION the device synchronizes the photographic or video cameras with LANC or ACC inputs and allows for the simultaneous capture of two images or video clips. Synchronization is enabled by simultaneous activation of two cameras and in some cases also by a permanent maintenance of synchronization. The device shows the difference in synchronization of both cameras and allows for synchronous use of certain camera functions (e.g. zoom, sharpness, access of menu functions, etc.).
- **INNOVATION** the device is unique in the world, allowing continuous synchronization on some older non-professional Sony cameras. This is achieved by changing the frequency of the internal oscillator.
 - **BENEFITS** the developed device can be used for effective synchronization of two video cameras and to capture a stereoscopic image.
 - **INFO** damir.vrancic@ijs.si

Rapid testing of advanced control algorithms in industrial environment

CUSTOMER •	Slovenian Research Agency		
	co-financers: Technology centre ARI , Inea d.o.o.,		
	Mitol, d. d., Liko Pris, d. o. o.		

- **OBJECTIVES** helping the user tune the parameters of advanced control algorithms, such as predictive controllers, multivariable regulators and regulators with feed-forward control
- **DESCRIPTION** selection of appropriate OPC signals, performing the experiment on the process (manual and automatic), the calculation of the process model and controller parameters, performing the closed-loop experiment on the process and automatic report generation in Microsoft Word format
- **INNOVATION** the calculation of the process model and parameters for advanced control algorithms is based on new methods which have been developed within the research work of our research group
 - **BENEFITS** new procedures for setting the controller parameters allow the user to work more efficiently, save energy and enable a cleaner production. The developed tool can directly show the efficiency of advanced control methods compared with PID controllers.

INFO • damir.vrancic@ijs.si

30 | 31

Fuel-cells system as an auxiliary power supply to extend the autonomy of military vehicles

- CUSTOMER Ministry of Defence of Republic of Slovenia
 OBJECTIVES fuel-cells-based auxiliary power supply for electronic equipment of special military vehicles.
- **DESCRIPTION** the auxiliary power source operates on the basis of the PEM fuel-cells stack which converts the electrochemical energy of hydrogen in the electrical energy. The integrated system allows power supply to DC loads with rated voltage of 28 V and AC loads with rated voltage at 230 V, 50 Hz. Direct current provides power up to 6.5 kW, whereas alternating current power output reaches 2 kW.
- INNOVATION the power supply for electronic equipment is enabled by PEM fuel-cells based system which operates at low operating temperature and with negligible noise emission. It provides low thermal footprint and nearsilent operation. The innovative solutions include antifreezing cooling system, alarm system for hydrogen leakage, connection to the uninterruptible power supply system and auxiliary diagnostic system.
 - **BENEFITS** the auxiliary fuel-cells based generator setis a novelty of the Slovenian Armed Forces equipment. It is also an innovation in comparison with the neighbouring armies of NATO. The system has been tested in daily activities of the Slovenian Armed Forces and during military exercises. It is capable of regular functioning also at very low outer temperatures.
 - INFO janko.petrovcic@ijs.si
 - vladimir.jovan@ijs.si

Cardio&Brain Signals Measurement System

CUSTOMER • • • •	Lancaster University, Department of Physics, Great Britain, Royal Lancaster Infirmary, Great Britain, Ulleval University Hospital, Oslo, Norway, Institute of Pathophysiology, Faculty of Medicine, Univer- sity of Ljubljana, Slovenia Neurology Clinic, University Medical Centre in Ljubljana, Slovenia Department of Endocrinology, University Medical Centre in Ljubljana, Slovenia
OBJECTIVES •	the measuring system Cardio & Brain signals allows non-invasive measurement and monitoring of various physiological functions.
DESCRIPTION •	the system allows simultaneous monitoring of electrical activity of the heart and brain, the dynamics of blood pressure, breathing patterns, skin conductance and temperature variation. It is also possible to connect other measuring equipment for monitoring physiological signals over two auxiliary channels, which are intended for general use. The Cardio&Brain measurement system digitizes captured signals and sends them via the USB connection to a personal computer. The personal computer is equipped with a dedicated software for storing, analysing and evaluating the signals.
INNOVATION •	a dedicated instrument for the analysis of coupling between brain waves and cardio-respiratory system;
BENEFITS •	it enables the in-depth studies of the interactions between brain waves and cardiovascular system with possible applications in many areas of medicine, especially in monitoring the depth of anaesthesia. Simple use and

possibility of connecting additional equipment make the

system attractive for multi-disciplinary studies.

INFO • janko.petrovcic@ijs.si

• bojan.musizza@ijs.si

	The algorithm for	1985
	smoothing of the steam	1986
	consumption in	1987
	Cinkarna Celie	1988
		1989
CUSTOMER	• Cinkarna Celje, d. d.	1990
OBJECTIVES	 reduced oscillations in steam consumption in the process of preparation of raw materials 	1991
DESCRIPTION	, batch scheduling for the payt 24 hours considering the	1993
DESCRIPTION	number and duration of batches and steam consumption	1994
	per batch	1995
INNOVATION	• the algorithm for optimal selection of the batch schedule, where the fluctuations of steam consumption	1990
	are minimum, taking into account all the limitations.	1998
BENEFITS	 support to operators at triggering batches in the 	1999
	preparation of raw materials, lower investment compared	2000
	to buying a steam accumulator, pressure reduction in the steam boiler and reduction of excess steam releases.	2001
		2002
INFO	• darko.vrecko@ijs.si	2003
		2004
		2005
		2006
		2007
		2008
		2009

	A control system		1985
	for magnetically		1986
	concentrated plasma wire		1987
	processing machine		1988
	processing machine		1989
CUSTOMER •	PlasmaBull GmbH, Lebring, Austria		1990
OBJECTIVES •	development and implementation of a system for		1991
	automatic control of the new series of wire processing		1992
	machines based on induction-generated plasma		1993
DESCRIPTION .	the new series of machines is based on two types of the		1994
	source of plasma, i.e. induction and electric field. A control		1995
	system to stabilize the power of induction-generated		1996
	been developed especially for this series of machines.		1997
	The control system also manages all peripheral plants		1998
	the atmosphere in the electrodes).		1999
			2000
INNOVATION •	the process of plasma generation with induction has		2001
	with standard control principles. Based on the analysis,		2002
	we have developed a completely new control scheme		2003
	for the proper functioning of the machine.		2004
			2005
BENEFITS •	the developed control system is one of the necessary subsystems of the new series of wire processing		2006
	machines. The new series of machines represent a new	_	2007
	market product for the customer.	_	2008
INFO		-	2009

INFO • gregor.dolanc@ijs.si

Model-based control of semi-batch process

CUSTOMER •	Mitol, d. d. Project within 6 th Framework Programme
OBJECTIVES •	development of a mathematical model and its imple- mentation in the simulation environment gPROMS for the optimization and improvement of the control process of polymerization in the company Mitol, d. d., Sežana
DESCRIPTION •	model-based control of the semi-batch polymerization process in an industrial reactor
INNOVATION •	development of a complex mathematical model of chemical reactions, the energy balance model, adjusting the model to real data, implementation in the simulation environment; development of algorithms for dynamic dosing of reagents.
BENEFITS •	lower temperature variations in the reactor lower variations of quality parameters.
INFO •	nadja.hvala@ijs.si gregor.kandare@ijs.si

40 | 41

Control of the nitrogen removal process in wastewater treatment

CUSTOMER •	Domžale-Kamnik Wastewater Treatment Plant, co-financer: European Regional Development Fund	
OBJECTIVES •	improvement of the nitrification and denitrification processes in wastewater treatment plant and conse- quently lower concentration of total nitrogen in the wastewater treatment plant effluent	
DESCRIPTION •	control of the nitrate nitrogen concentration in anoxic reactors of wastewater treatment plant by dynamically adjusting the internal recycle flow; control of the ammonium nitrogen concentration in aerobic reactors of wastewater treatment plant by dynamically adjusting the set-point of dissolved oxygen concentration.	
INNOVATION •	control of nitrification and denitrification processes using on-line measurements of ammonium and nitrate nitrogen in wastewater; dynamic adjustment of the internal recycle flow in the wastewater treatment plant.	
BENEFITS • • •	optimum utilization of the carbon source in the influent wastewater for the denitrification process; adjustment of the dissolved oxygen concentration in aerobic reactors according to variable input load; lower concentrations of total nitrogen in the wastewater treatment plant effluent; lower aeration costs due to optimum utilization of carbon in anoxic reactors and consequently lower transfer of carbon to aerobic reactors, where oxygen is needed for their biodegradation.	
INFO •	nadja.hvala@ijs.si	

• darko.vrecko@ijs.si

System for the automatic end-quality assessment of vacuum-cleaner motors

- **CUSTOMER** Domel, d. o. o.
- **OBJECTIVES** to provide a complete quality assessment of every vacuum-cleaner motor at the end of the assembly line and to isolate any faults and find their root causes.
- **DESCRIPTION** the system consists of three test cells that operate in sequence. Each test cell performs a different set of performance tests (basic characteristics, commutation, vibrations and acoustical tests). The set of measured signals is used to calculate a vector of features for each motor. If some of the features exceed the prescribed thresholds, the underlying motor is recognized as having faults and the root cause for the reduced quality is identified.
- **INNOVATION** an innovative design of clamping system that isolates the motor under test from environmental disturbances. Use of a servo system to scan the vibration profile along the motor body using a laser vibrometer. A patented system for acquiring the histogram of the commutator's sparking. Application of the acoustical noise measurement in a noisy industrial environment.
 - **BENEFITS** the fully automatic quality assessment of the electrical motors precludes any need for additional manual checks. From the measurement point of view, the subjective "human factor" is entirely eliminated. Only motors that fully comply with the quality standards are delivered to the market. Better working conditions result in a healthier environment for operators. In particular, there are fewer hearing- and back-related problems.
 - INFO janko.petrovcic@ijs.si
 - dani.juricic@ijs.si

Programme package for automatic controller tuning

- **OBJECTIVES** to help industrial customers with the efficient tuning of PID and cascade controllers.
- **DESCRIPTION** selection of the OPC signals, fully autonomous design of the experiment and its realisation directly on the process, identification of the process model and calculation of the optimum parameters of the PID controller, automatic report generation in Microsoft Word files.
- **INNOVATION** model identification and controller design rely on original methods developed in the department during the past ten years.
 - highly increased efficiency of the control-loop **BENEFITS** • tuning (e.g., in the commissioning phase) as well as maintenance. Better tuned controllers result in energy savings and reduced waste.

INFO • damir.vrancic@ijs.si

CUSTOMER • Lekd.d.

1985

1986

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003 2004

Modelling tool with automatic code and documentation generation

Programmable logic controller software code

Prototype of a tool for automatic code generation for programmable logic controllers (PLCs)

- **CUSTOMER** internal project in the framework of a research programme
- **OBJECTIVES** to simplify and speed up the process of software development, while ensuring higher quality of the resulting code for controllers.
- **DESCRIPTION** automatic mapping of specifications into PLC code.
- **INNOVATION** development and application of domain-specific software tools for setting up specifications and the generation of programme code together with the documentation.
 - **BENEFITS** compared to the classical conversion of specifications into programme code "by hand", which is often time consuming and prone to errors, code generation takes almost no time and is error free. This results in a better quality of the code, reduced development costs and, consequently, increased efficiency of the development process.
 - INFO gregor.kandare@ijs.si
 - giovanni.godena@ijs.si

A prototype of a system for the quality assessment of electrical motors

- **CUSTOMER** Domel, d. o. o.
- **OBJECTIVES** to determine the quality of electrical motors as well as to detect and isolate any faults.
- DESCRIPTION a dedicated diagnostic algorithm calculates the features of the motor on the basis of measurements of electrical quantities, vibrations, sound, sparking and axial backlash. If all the features are within the prescribed limits, the motor is considered to be of appropriate quality. Otherwise, it is marked as defective and the algorithm reveals the location of the fault.
- **INNOVATION** several original algorithms have been designed, i.e., assessment of the sparking intensity, non-invasive isolation of the mechanical faults on the basis of acoustic measurements and a procedure for an extremely precise determination of the axial backlash of the rotor.
 - **BENEFITS** the fracion of defective motors delivered to the market is expected to be reduced by an order of magnitude
 - reduced production costs
 - better image of the manufacturer
 - better working environment
 - INFO dani.juricic@ijs.si

SMArt Control of wastewater systems

CUSTOMER • Domžale-Kamnik Wastewater Treatment Plant Project within 5th Framework Programme **OBJECTIVES** • improvement of the nitrification process in wastewater treatment plant and consequently lower concentration of ammonium nitrogen in the wastewater treatment plant effluent as well as consumption of electrical energy for aerobic tanks aeration **DESCRIPTION** • control of aerobic tanks aeration by implementing ammonium nitrogen control **INNOVATION** • upgrading of the dissolved oxygen control by ammonia nitrogen control using on-line measurement of ammonium nitrogen in wastewater • dynamic adjustment of the dissolved oxygen control setpoint in aerobic tanks measurement of the concentration of ammonium nitrogen in the influent wastewater and in the aerobic tanks • application of feedforward and feedback control application of predictive control **BENEFITS** • more stable concentrations of ammonium nitrogen in the aerobic tanks and consequently also in the wastewater treatment plant effluent (lower average values and lower peaks) • significantly lower electrical energy consumption for aerobic tanks aeration (up to 45%) INFO • nadja.hvala@ijs.si darko.vrecko@ijs.si

1985

1991 1992

1993

1994

1995 1996

1997 1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

A prototype of a system for batch scheduling in the process of gel washing in Cinkarna

- **CUSTOMER** Cinkarna Celje, d. d.
- **OBJECTIVES** to ensure uniform production and the required capacity of the two-stage gel-washing process.
- **DESCRIPTION** determination of the starting times for individual batches by taking into account the current process states, technological constraints and required capacity.
- **INNOVATION** an online batch-scheduling algorithm for predicting the appropriate starting time for a single new batch, which takes into account the shared resources, blocking and no-wait constraints of the two-stage gel-washing process.

BENEFITS • more uniform production

- more stable product quality
- · decision support for the process operators
- INFO vladimir.jovan@ijs.si

A system for the control of a plasma wiretreatment machine

CUSTOMER •	Niedermair&Sackl GmbH, Deutschlandsberg, Austria Plasmalt GmbH, Lebring, Austria	_
OBJECTIVES •	design and implementation of a control system for a wire-treatment machine based on a new technology of magnetically focused plasma.	
DESCRIPTION •	complete electrode power management, including the control and monitoring of all the electrical parameters of the electrodes. Control of additional units (pre-heating, cooling, preparation and maintenance of the atmosphere inside the electrodes, gas-pressure control, etc.).	
INNOVATION •	new algorithms for power control meeting various demands (robustness at high wire speed, accuracy at low speed, fast control response during wire acceleration/ deceleration to prevent wire from underheating/ overheating, taking into account the variation of the process conditions within the electrodes).	
BENEFITS •	mastering difficult processes related to the plasma and the entirely automated control of the machine.	_
INFO •	gregor.dolanc@ijs.si	

A system for the control of the pressure difference at the LAV testing line in Danfoss Trata

- **CUSTOMER** Danfoss Trata, d. o. o.
- **OBJECTIVES** design and implementation of a control system to control the line for testing and assessment of various types of control valves used in district-heating systems.
- **DESCRIPTION** the control of the pressure difference on the valve under test by adjusting the speed of the pumps.
- **INNOVATION** model-based self-tuning control of the pressure difference, taking into account the nonlinearity of the valve characteristics, which varies with different types of valves.
 - **BENEFITS** simple, fully autonomous testing of different types of valves under different configurations of the testing line.
 - INFO gregor.dolanc@ijs.si

Programmable Logic Controller Mitsubishi A1S with coprocessor INEA SPAC20

User interface Beijers E700

Extremely non-linear static characteristic (titration curve)

12

Online Learning Non-linear model

Automatic tuning

Advanced control algorithms

	ASPECT - Advanced		1985
	control algorithmS for		1986
	ProgrammablE logiC		1987
	conTrollers (PLCs)		1988
	controllers (LCS)		1989
CUSTOMER	• Inea d. o. o.		1990
	Start, Indelec Europe S.A., Athens, Greece Start Engineering ISCo. Sofia Bulgaria		1991
	 European Commission (5th Frame-work Programme - 		1992
	CRAFT)		1993
OBJECTIVES	• implementation of advanced control algorithms for		1994
	demanding nonlinear and time-varying processes using		1995
	programmable logic controllers.		1996
DESCRIPTION	 nonlinear control algorithm 		1997
	 online learning of a nonlinear model from process 		1998
	measurements • control-loop performance monitoring		1999
	self-tuning procedures		2000
		-	2001
INNOVATION	are used to improve the accuracy and reliability of online		2002
	experimental modelling and to enable autonomous		2003
	operation.		2004
BENEFITS	 new opportunities for the application of controllers with 		2005
	parameter scheduling in industrial practice.		2006
INFO	• ius.kocijan@ijs.sj		2007
	• samo.gerksic@ijs.si		2008
		-	2009
			2010

A system for the control of a steel-strip slitting line

CUSTOMER •	Sip Mobil,	Šempeter
-------------------	------------	----------

- Acroni d. o. o.
- **OBJECTIVES** design and implementation of an advanced control system allowing for extended functionality of the steel-strip slitting line and operation under various conditions.
- DESCRIPTION basic control of DC drives: armature and field voltage/ current control. Advanced DC drive functionality: linear speed control, jog speed control, tension control, dynamic compensation of accelerating/decelerating torque, field current reference calculation, variable coildiameter compensation, loop level control.
- **INNOVATION** the first microcomputer control of DC drives at the Cold Rolling Mill in Acroni. Replacement of the input relieving loop with specially tailored control, which ensures minimum, i.e., zero force between the uncoiler roll and the slitter roll, not only in the stationary condition but also during acceleration and deceleration, compensating the variable uncoiler roll diameter.
 - **BENEFITS** extension of the production process to a new type of thin metal strips, thus resulting in increased production at Acroni.

INFO • gregor.dolanc@ijs.si

SPAC20 - a coprocessor module for PLCs

CUSTOMER • Mitsubishi Electric Europe BV

- **OBJECTIVES** the SPAC20 is a coprocessor module that makes possible the control of demanding industrial processes using standard industrial PLCs from the MITSUBISHI AnS and QnA series of modular programmable controllers.
- **DESCRIPTION** the SPAC20 coprocessor module and the related SW package IDR BLOK transforms the standard PLC into a highly efficient system for the control and monitoring of industrial processes.
- **INNOVATION** allows the utilisation of relatively low-cost industrial controllers for the control of fast and/or problematic continuous processes, where fast sampling and extensive signal processing are often required. The SPAC20 operates as a "controller within a controller".
 - **BENEFITS** the SPAC20 coprocessor has already been applied in a number of applications that demand sophisticated control, such as blow-moulding plastic extruders, energy consumption smoothing, a wire annealing machine using magneto-focused plasma, a machine for the production of rubber strips, a steel slitting machine, etc.

INFO • janko.petrovcic@ijs.si

CARDIOSIGNALS - Signalconditioning system for physiological signals

CUSTOMER • • •	Lancaster University, Department of Physics, UK Department of Endocrinology and Department of Intensive Internal Medicine, Clinical Centre, Ljubljana Institute of Pathophysiology, Faculty of Medicine, Ljubljana Faculty of Electrical Engineering, Ljubljana.
OBJECTIVES •	CARDIOSIGNALS makes possible non-invasive measure- ments and monitoring of various physiological functions in the human body.
DESCRIPTION •	CARDIOSIGNALS enables safe and efficient signal conditioning and the simultaneous acquisition of basic physiological signals, e.g., ECG, respiratory effort, dynamic blood pressure (plethysmograph) and minute variations in body temperature. The signal-conditioning system is connected to a personal computer, where the analysis of the acquired signals is proceeded by the use of standard data-processing SW tools.
INNOVATION •	CARDIOSIGNALS has a very intuitive user interface and can detect changes of less than 1/1000°C in body temperature.
BENEFITS •	the system is intended for in-depth research of the dynamics of the cardio-vascular system. It can be used for

dynamics of the cardio-vascular system. It can be used for research in many fields of medicine, especially for research on procedures for controlling the depth of anaesthesia.

INFO • janko.petrovcic@ijs.si

System for the condition 1985 monitoring of sensors 1986 and control loops in a 1987 process for incinerating 1988 vulcanisation gases 1989 1990 **CUSTOMER** • Sava d d 1991 **OBJECTIVES** • online detection and localisation of faults in vital control 1992 loops as well as in sensors and actuators (bias, drift, 1993 precision loss). 1994 **DESCRIPTION** • the diagnostic system classifies sampled signals into 1995 characteristic patterns and then provides fault locali-1996 sation by means of pattern matching. 1997 **INNOVATION** • the classification of signal patterns is based on a robust 1998 estimation of the basic statistical parameters of the signals (first two moments) and an analysis of the oscillations. 1999 Detection and localisation are performed by means of 2000 simple logical rules and approximate reasoning. 2001 **BENEFITS** • automatic detection of malfunctions in sensors and 2002 actuators results in: 2003 decreased maintenance costs - fewer emergency shutdowns 2004 - reduced load on the operator 2005 - improved monitoring of critical emission sensors (e.g., 2006 (O concentrations) 2007 INFO • dani.juricic@ijs.si 2008 2009

A system for the control of the selective catalytic reduction of NOx

- **CUSTOMER** internal research project
- **OBJECTIVES** design and implementation of a control system for the process of the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from flue gases after combustion.
- **DESCRIPTION** combination of feedback and feedforward control of ammonia flow rate, with the aim to maintain a minimal NOx concentration in the flue gases at the output from the SCR reactor. Feedforward control predicts the required ammonia flow rate on the basis of two signals: input NOx concentration and flue-gas flow rate. These two signals are not measured, rather they are estimated using software sensors based on the measured fuel flow rate and excess oxygen concentration in the combustion process. Thus, a significant part of the expensive measuring equipment is omitted. The prediction error of the feedforward control is corrected by the feedback control, which is based on the measured NOx concentration at the output of the SCR reactor.
- **INNOVATION** software sensors contain a mathematical model of the combustion. They estimate the concentration of NOx in the flue gases during combustion and the flow rate of the flue gases. The estimation is based on the existing measurements of the excess oxygen concentration and fuel flow rate, which are included in standard combustion control systems.
 - **BENEFITS** efficient control of the output NOx concentration in both stationary and dynamic conditions, omitting the expensive measurement equipment that is normally required to achieve a comparable control performance.

INFO • gregor.dolanc@ijs.si

PECS - Control system for 1985 plastic extruders 1986 1987 1988 1989 1990 **CUSTOMER** • Mitsubishi Electric Europe Techne Spa 1991 Ineadoo 1992 **OBJECTIVES** • complete automatic control of the operation of plastic 1993 extruders, particularly blow-moulding machines. 1994 **DESCRIPTION** • self-tuning and adaptive temperature control of heating 1995 zones 1996 parison control 1997 hydraulic positioning sequential control 1998 man-machine interface 1999 **INNOVATION** • new approach to the self-tuning of the temperature 2000 controllers of heating zones 2001 • cost-effective implementation using standard modular 2002 programmable controllers from the Mitsubishi Electric and the SPAC20 coprocessor module 2003 2004 **BENEFITS** • open control system, successfully used by a number of manufacturers of plastic extruders and blow-moulding 2005 machines, like Techne Spa, Italy, Picoplast GmbH, 2006 Germany, BBM GmbH, Germany. 2007 INFO • janko.petrovcic@ijs.si 2008 2009 2010

Measuring sphere for the characterisation of the dynamics and forces affecting particles in the natural environment

- **CUSTOMER** Faculty of Civil Engineering and Geodesy, Ljubljana
- **OBJECTIVES** design of a device for measuring the characteristic parameters of the dynamics of rocks in water streams.
- **DESCRIPTION** with the use of in-built accelerometers, the device is able to register the intensity and position of erosive forces; moreover, by means of additional offline signal processing it is possible to calculate the trajectory of the motion of pebble-stones.
- **INNOVATION** the measuring sphere is an autonomous measurement device that simulates the motion of the pebble-stones in water channels. At the end of the experiment the acquired data are transferred to the computer for further signal processing. The device is very robust to mechanical disturbances and shocks and is easy to operate. The device is triggered by means of an external magnetic field.
 - **BENEFITS** new perspectives in the research of water-stream dynamics.
 - INFO janko.petrovcic@ijs.si

A system for control of a sintering process

- **CUSTOMER** Jozef Stefan Institute, Electronic Ceramics Department
- **OBJECTIVES** design and implementation of a control system for the process of sintering ferrite products (cores and beds).
- **DESCRIPTION** automatic and very precise control of oxygen concentration and temperature during the sintering process. Also included is a system for monitoring and report generation.
- INNOVATION during the sintering process oxygen concentration must follow the prescribed time profile. This is achieved by a special model-based controller, which adjusts the oxygen and nitrogen flow rates, taking into account the dynamics of the gas mixing. In addition, a special combination of solenoid valves and mass-flow control valves is used to provide a smooth switchover between the mass-flow control valves with different ranges, which are needed to achieve the very high required control ratio.
 - **BENEFITS** very precise control of oxygen concentration and high control ratio (from 100 vol% to 0.001 vol%).
 - INFO gregor.dolanc@ijs.si

IP1 DP2	10/3	104 1 0	-	12	Telkahema Anis alike	Mar Parent
elause for Bailar	211010589829	Hermoti	194983705	1,1547		ninaj GasTo Yata Pa
Zadult Chrotyvonja	<u> </u>	Vara openio	Cer \$3.87	1983 Andra and and T	Ac D Bays	(side 13.5
						Jaijon (
			1000	A VIOLOGIA		
Service.	Railing .	Casta Shorts	200 March 1997	Deutte Lade serve	PAL DO	no Poes lavelen
ACTINANA TY #	38.41		8.89			territ in the second second
CLUMME II AI	1.04		3.58	314314		and and a state of the local division of the local division of the local division of the local division of the
10.1.8	18.08		2.76	20541	2011	and the second second
						and the second sec
THEN TALK MITTE	10.11		10.00	and the second second		1000
FRANKLAR & THE	3.54	185 8	3.54	314914		Spill Easts

Production control system for PVA glues

		1989
CUSTOMER •	Mitol d. d.	1990
OBJECTIVES	balictic bighty automated reliable and cafe batch control	1991
OBJECTIVES •	holistic, highly automated, reliable and sale batch control	1992
DESCRIPTION •	control of the physical and production level complying	1993
	with the S88.01 standard for batch control including:	1994
	– procedural control	1995
	– coordination control	1996
	 transfer of recipes and work orders from the production 	1997
	- transfer of information	 1998
	- information about production events and the	 1999
	consumption of raw materials from the physical level	 2000
		 2001
INNOVATION •	the control system is designed to encourage the operator	2002
	to be creative during his/her work, while ensuring reliability and safety in the case of operator error. This	 2002
	results from consistent implementation of the activities	2003
	of quality assurance and product assessment at the end	2004
	of particular phases of the lifecycle.	 2005
BENEFITS •	improved quality of products, reduced waste, better	2006
	repeatability, flexibility, safety and reliability (the system	2007
	1999, with no reports of failure).	2008
		 2009
INFO •	giovanni.godena@ijs.si	2010

A system for the automatic analysis of friction phenomena

CUSTOMER •	Faculty of Mechanical Engineering, Centre for Tribology
	and Technical Diagnostics

- **OBJECTIVES** design and implementation of a computer-based system for observation, analysis and data acquisition for an existing friction testing device. The device is used for onand offline observation of the friction phenomena within the standard contacts (ball, cylinder or ring-on-flat).
- **DESCRIPTION** the system is connected to the existing friction-testing device. The main function is fast data acquisition of the tangential friction force and ball displacement, along with other signals, the automatic calculation of various indexes, and the online graphical display of results.
- **INNOVATION** the particular method of design allows pre-programmed quick sampling and data storage, exceeding the limits of standard data-acquisition equipment.
 - **BENEFITS** simple experimentation and documentation of experiments, online graphical display of the friction curve (i.e., force/displacement relation).
 - INFO gregor.dolanc@ijs.si

	-											
1	-	_	_		_	_	_	_	_	-		
		Ļ										
		¢	UNT	FALT	6.0	011	Hit	HE	ю	П		
	1		nyat	Searcey (NUC	LOW		HIGH	нóн		٥		
	Ŧ.,		injut.	Tearing (high)						囬	-	71
l	1		LT1	"service lide (see low)"	HOH	104	108	HIGH	1804	11		41
	4		673	"serverial (an law)"		104		HQH	1801	11		
	5		L71	"METER-100 (34 (bu))	****		Arites	HGH		11		
	6		L th	"14F101-18 (0F 04)"				nin		11		
	7		MU.	"MARKING (MILLE)	LOW	10W	HIGH	нерн	HEOH	11		
	1		MUV.	Tearries (Hall)		104		нон	HIGH	11		
	8		and put	Tearning (high)	FOR		HIGH	нірн		11		
	10		SM(DV)	"bearing (high?"				HOH		11		
			12	'step suiter'	1.0W	104	HIGH	NGH	1804	11		
	12		12	'tring suller.'		10W		1001	1801	11		
	10		PE .	189 au81*	1.007		10014	HIDH		11		
	14		10	336g 8.88**				нюн		11		
	10		12	'68g Her?'	HOH	104	108	10H	HIGH	Ð.		
1					4 4				E F	Π		

Program package for diagnostic rules synthesis in G2

CUSTOMER •	realised in the frame of an EU Copernicus project
OBJECTIVES •	diagnostic systems design for process engineering based on a user-friendly graphical interface (GUI).
DESCRIPTION •	the system relies on a library of diagnostic models related to various items of equipment (valves, reservoirs, etc.). Each component is associated with a model in terms of directed graph. The user has to provide a process flowsheet via a graphical environment, while an automatic procedure derives event trees and fault trees and diagnostic rules for the entire process. Rules can be applied online to the measured signals acquired from the process.
INNOVATION •	automatic procedure for the synthesis of diagnostic rules modern reasoning mechanism based on a transferable belief model graphical user interface that allows simple data entry and interaction with the design procedures (e.g., manual rules setting in the rule base)
BENEFITS •	shorter design times the package is suitable for educational purposes
INFO •	dani.juricic@ijs.si

Control system for a tiledrying process

	1989
CUSTOMER • Goriške opekarne d. d.	1990
 Wienerberger Opekarna Ormož d. d. 	1991
OBJECTIVES • optimised control of the drying process for tile products	1992
in chambers and tunnel driers.	1993
DESCRIPTION • automatic control of drying rooms with respect to the	1994
prescribed technological parameters (following the	1995
time profiles of temperature, moisture, pressure, recipe	1996
	1997
INNOVATION • the control system makes it possible to achieve the	1998
with regard to the type of product and the required	1999
capacity.	2000
BENEFITS • high and evenly distributed product quality	2001
 significantly reduced amount of waste 	2002
reduced energy consumption	2003
INFO • vladimir.jovan@ijs.si	2004
	2005
	2006
	2007
	2008
	2009
	2010

MK300 Oxygen analyzer

CUSTOMER • RACI d. o. o.

- Magneti d. o. o
- Altex d. o. o.
- **OBJECTIVES** the MK300 oxygen analyzer is primarily intended for measuring the oxygen concentration in the exhaust lines of industrial boilers. It is used for optimum control of the fuel/air ratio, so that accurate and economic operation of industrial power systems can be achieved. Because of its very wide measuring range it is also possible to measure trace amounts of oxygen in certain other gases.
- **DESCRIPTION** the MK300 oxygen analyzer performs continuous measurements of oxygen concentration across a very wide range, i.e., from 1ppm to 99.9%. The analyzer measures the electrochemical potential of a solid cell made of doped ZrO₂ ceramic. The microprocessor-based instrument provides accurate cell-temperature control and signal processing, while direct fuel/air ratio control is also possible.
- **INNOVATION** the microprocessor-based analyzer also allows some additional online measurements, e.g., temperature of the flue gases (by means of additional sensors) as well as calculation and display of the losses caused by an excess of oxygen in the flue gases. Fuel/air ratio control is also possible.

BENEFITS • improved control of industrial heating systems

- control of the purity of some industrial gases, e.g., nitrogen and argon
- INFO janko.petrovcic@ijs.si

A prototype of a catalytic gas burner for domestic applications

CUSTOMER •	Zeltron Spa Electrolux Group
OBJECTIVES •	to design a prototype for a cooking hob based on catalytic gas burners and a ceramic-glass top plate.
DESCRIPTION •	the prototype makes possible the catalytic burning of gas (without a flame), resulting in radiation from the catalytic mesh. The heat is radiated through the ceramic-glass plate to the cooking pot on the hob. By constructing an operating prototype the process was shown to be feasible and safe, and good control of the fuel-to-air ratio was ensured.
INNOVATION •	first introduction of a ceramic-glass-based hob for domestic application using catalytic burning. The glass plate has no opening at the top, so providing for easy cleaning. Innovative ignition of the burner by means of an electrical pre-heat of the catalytic mesh.
BENEFITS •	a kitchen technology of the future a domestic hob for countries with extensive gas distri- bution systems or countries with a low capacity for electricity distribution easy cleaning of the gas hob
INFO •	janko.petrovcic@ijs.si

CRA2000 Corrosion analyzer

- **CUSTOMER** ZAG Zavod za gradbeništvo, Ljubljana (Slovenian National Building and Civil Engineering Institute)
- **OBJECTIVES** short-term as well as long-term monitoring of the corrosion in reinforced concrete constructions, buildings, industrial plants, etc.
- **DESCRIPTION** cumulative corrosion monitoring by means of a resistance-measuring method or online prediction of the corrosion thread by means of a noise-measuring method.
- **INNOVATION** the device is able to collect data autonomously for several months.
 - **BENEFITS** based on the long-term data acquisition the device is able to evaluate the progress of the corrosion, thus enabling early corrective actions.
 - INFO janko.petrovcic@ijs.si

	A system for the	1985
	combustion control of	1986
	industrial boilers	1987
		1988
		1989
CUSTOMER	• Cinkarna Celje, d. d.	1990
	Sugar Factory Ormož	1991
		1992
OBJECTIVES	• computer control of the combustion in industrial boilers.	1993
DESCRIPTION	• temperature control, control of pressure, flow, level, O ₃ %	1994
	in exhaust gases, etc.	1995
	 alarm system data display 	1996
		1997
INNOVATION	• the control system takes into account the dynamically	1998
	optimum air/fuel ratio. The control algorithms are based	1999
	on a mathematical model of the process.	2000
BENEFITS	 decreased consumption of reagents 	2001
	increased reliability of operation	2002
	 established a spin-off company, RACI, based on the developed technology at the Technology Park Liubliana 	2003
	developed technology, at the rechnology rank Ejdoljana	2004
INFO	• vladimir.jovan@ijs.si	2005
		2006
		2007
		2008
		2009
		2010

A computer-control system for a pulp cooking process

CUSTOMER •	Pulp and paper mill "Đuro Salaj", Krško
OBJECTIVES •	to maximize yield, increase product quality and reduce the oscillations in steam consumption.
DESCRIPTION	process monitoring, batch sequencing, temperature and pressure control, online estimation of the Kappa number, smoothing steam consumption, etc.
INNOVATION	model-based approach to the estimation of the Kappa number, algorithms for control of the steam consumption implemented on a network of multiloop microcomputer controllers developed in our laboratory.
BENEFITS •	savings of approximately € 200,000 per year, just on the basis of reduced energy consumption.
INFO ·	stanko.strmcnik@ijs.si

MMC-90 Microprocessorbased multiloop controller

- **CUSTOMER** several Slovenian industrial companies: Vipap Videm (pulp and paper production), Cinkarna Celje, d. d. (TiO₂ production), TAM (hot-water boiler), Tovarna sladkorja Ormož (sugar production)
- **OBJECTIVES** advanced process control of processes with multiple interacting control loops.
- **DESCRIPTION** signal processing; data visualization; control; sequencing; alarm systems, etc.
- **INNOVATION** six control loops can be handled at the same time; advanced and computationally demanding control algorithms can be freely programmed and performed; data can be graphically displayed on a PC; manual control possible even in the case of a loss of power.
 - **BENEFITS** significant technological leap forward for the department in terms of HW and SW development.
 - INFO janko.petrovcic@ijs.si

MK100 and MK200 oxygen analyzers

CUSTOMER •	about 40 units have been delivered to various customers in ex-Yugoslavia.
OBJECTIVES •	the instruments are intended mainly for the optimization of the combustion processes in industrial power plants, testing the purity of technical gases, assessing the appropriateness of nitrogen and other inert protective atmospheres.
DESCRIPTION •	continuous sampling of the oxygen concentration in incombustible gases, from 1 ppm to 99.9 vol %. The measurement procedure relies on measuring the electrochemical potential of a solid-state cell made of doped ZrO_2 ceramic, heated up to 820°C.
INNOVATION •	robust electronic design resulting in high reliability and ease of maintenance.
BENEFITS •	reduced energy consumption and pollution when using the instrument for combustion control increased product quality when using the analyzer to test for traces of oxygen in pure gases increased product quality and production safety when using the analyzer to test for the presence of oxygen in inert protective atmospheres.
INFO •	janko.petrovcic@ijs.si

ANA - Programme package for the analysis and design of control systems

- **CUSTOMER** delivered to a number of companies, schools and universities in ex-Yugoslavia and Germany, including IBM (Germany) and Schenk (Germany).
- **OBJECTIVES** to improve the efficiency of control systems' design.
- **DESCRIPTION** analysis of measured data, development of mathematical models, design of control loops, analysis of control systems.
- **INNOVATION** ability to deal with either continuous or discrete univariable, as well as multivariable, systems, interactive and batch processing.
 - **BENEFITS** new and improved control solutions for systems and processes in industry
 - important educational aid in schools and universities
 - INFO stanko.strmcnik@ijs.si

Computer control of elevators

CUSTOMER • IMP Dvigalo **OBJECTIVES** • computer control of a cluster of elevators. **DESCRIPTION** • optimised assignment of calls; priority assignment to various operational modes; accommodation of operational modes to the current situation; handling of exceptional situations. **INNOVATION** • hierarchical multi-computer control system equipped with software that makes it possible to take advantage of a cluster of elevators in an optimised way. **BENEFITS** • reduced waiting times • uniform loading of a cluster of elevators • reduced consumption of electrical energy **INFO** • vladimir.jovan@ijs.si

DEPARTMENT OF SYSTEMS AND CONTROL

Application and development projects for various customers

1985-2010

1<mark>985</mark>

- 1. Software for an elevator control system Customer: IMP – DO EMOND, TOZD Dvigalo, Ljubljana Type of project: development of application software
- 2. Improvement of combustion control in a leach boiler Customer: Pulp and paper mill "Đuro Salaj", Krško Type of project: measurements, conceptual design
- **3. Computer automation of pulp cooking** *Customer:* Pulp and paper mill "Đuro Salaj", Krško *Type of project:* conceptual design

1986

4. Computer automation of pulp cooking (phase 1) Customer: Pulp and paper mill "Đuro Salaj", Krško Type of project: computer-control system design and implementation 5. Glass furnace control system Customer: Glass Factory Hrastnik *Type of project*: development of a model-based control system 6. Software package ANA for analysis and design of control systems Customer: Iskra Electrooptics Centre, Ljubljana *Type of project*: customization of a general-purpose SW package 7. Analysis of the combustion control in a leach boiler (phase 2) Customer: Pulp and paper mill "Đuro Salaj", Krško Type of project: upgrade of the computer-control system 8. Analysis of the combustion control in the glass factory Straža - Hum Customer: Glass Factory Straža, Hum Type of project: measurements and conceptual design 9. SIMCOS - language for continuous system simulation Customers: - Belinka, Ljubljana - Energoinvest, Sarajevo Type of project: customization of a general-purpose SW package

1987		1985
10. Computer automation of pulp cooking (phase 3) <i>Customer:</i> Pulp and paper mill "Đuro Salaj", Krško		1986 1987
Type of project: upgrade of the computer-control system	_	1988
11. Computer automation of titanium dioxide production process <i>Customer</i> : Cinkarna Celje <i>Type of project</i> : conceptual design		1989
12. ANA - software package for analysis and control design		1990
Customer: – Steelworks Ravne		1991
 Iskra Electrooptics Centre, Ljubljana 		1992
Type of project, customization of a general purpose sw package		1993
1988		1994
12 Computer automation of titanium diavida production, the		1995
crystallization sub-process		1996
<i>Customer:</i> Cinkarna Celje		1997
<i>Type of project</i> : specification of the control system		1998
Customer: Pulp and paper mill VIDEM, Krško		1999
<i>Type of project:</i> design and implementation of a system for smoothing steam consumption		2000
15. ANA - software package for analysis and control design		2001
Customers: – Centre of Navy High Schools "Maršal Tito", Split		2002
building, Split		2003
Type of project: customization of a general-purpose SW package		2004
		2005
1989		2006
16. Computer automation of titanium dioxide production: the		2007
reduction sub-process		2008
<i>Customer:</i> Cinkarna Celje <i>Type of project:</i> specification of the control system		2009
Type of project, specification of the control system		2010

1985	17	• ANA - software package for analysis and control design Customers: – Cinkarna Celie
1986		 Faculty of Process Engineering – Institute of Petroche-
1987		mistry, Gas, Oil and Chemical Engineering, Novi Sad – Industrial Energetics, Domžale
1988		<i>Type of project:</i> customization of a general-purpose SW package
1989	18	. Steam boiler control in Cinkarna Celje
1990		<i>Customer:</i> Cinkarna Celje <i>Type of project:</i> Mathematical modelling of a steam boiler
1991	19	. Computer automation of pulp cooking (phase 5)
1992	_	<i>Customer:</i> Pulp and paper mill VIDEM, Krško <i>Type of project:</i> upgrade of the computer-control system
1993	_ 20	. MK-100 oxygen-concentration sensor
1994	_	Customer: various customers
1995		<i>Type of project:</i> small-series production, 25 pieces in the period 1986– 1989
1996		
1997		1990
1998		
	21	. MMC-90 microcomputer controller
1999	21	. MMC-90 microcomputer controller <i>Customer:</i> Faculty of Electrical Engineering and Computer Science,
1999 2000	21	. MMC-90 microcomputer controller <i>Customer:</i> Faculty of Electrical Engineering and Computer Science, Ljubljana <i>Type of project:</i> development of a powerful multi-loop controller
1999 2000 2001	21	 MMC-90 microcomputer controller <i>Customer</i>: Faculty of Electrical Engineering and Computer Science, Ljubljana <i>Type of project</i>: development of a powerful multi-loop controller Control of 40MW steam boiler
1999 2000 2001 2002	21 22	 MMC-90 microcomputer controller <i>Customer:</i> Faculty of Electrical Engineering and Computer Science, Ljubljana <i>Type of project:</i> development of a powerful multi-loop controller Control of 40MW steam boiler <i>Customer:</i> Cinkarna Celje
1999 2000 2001 2002 2003	21 22	 MMC-90 microcomputer controller <i>Customer:</i> Faculty of Electrical Engineering and Computer Science, Ljubljana <i>Type of project:</i> development of a powerful multi-loop controller Control of 40MW steam boiler <i>Customer:</i> Cinkarna Celje <i>Type of project:</i> control-system design and implementation
1999 2000 2001 2002 2003 2004	21 22 	 MMC-90 microcomputer controller <i>Customer</i>: Faculty of Electrical Engineering and Computer Science, Ljubljana <i>Type of project</i>: development of a powerful multi-loop controller Control of 40MW steam boiler <i>Customer</i>: Cinkarna Celje <i>Type of project</i>: control-system design and implementation 1991
1999 2000 2001 2002 2003 2004 2005	21 22 22 22	 MMC-90 microcomputer controller <i>Customer:</i> Faculty of Electrical Engineering and Computer Science, Ljubljana <i>Type of project:</i> development of a powerful multi-loop controller Control of 40MW steam boiler <i>Customer:</i> Cinkarna Celje <i>Type of project:</i> control-system design and implementation SIMCOS - continuous system simulation language
1999 2000 2001 2002 2003 2004 2005 2006	21 22 22 23	 MMC-90 microcomputer controller <i>Customer</i>: Faculty of Electrical Engineering and Computer Science, Ljubljana <i>Type of project</i>: development of a powerful multi-loop controller Control of 40MW steam boiler <i>Customer</i>: Cinkarna Celje <i>Type of project</i>: control-system design and implementation SIMCOS - continuous system simulation language <i>Customers</i>: – Korona, Ljubljana
1999 2000 2001 2002 2003 2004 2005 2006 2007	21 22 22 23	 MMC-90 microcomputer controller <i>Customer:</i> Faculty of Electrical Engineering and Computer Science, Ljubljana <i>Type of project:</i> development of a powerful multi-loop controller Control of 40MW steam boiler <i>Customer:</i> Cinkarna Celje <i>Type of project:</i> control-system design and implementation SIMCOS - continuous system simulation language <i>Customers:</i> – Korona, Ljubljana Fachhochschule, FB Maschinenbau, Konstanz Hartmannn & Braun, Frankfurt (3 licences)
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008	21 22 22 23 23	 MMC-90 microcomputer controller <i>Customer</i>: Faculty of Electrical Engineering and Computer Science, Ljubljana
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009	21 22 22 23 23 23	 MMC-90 microcomputer controller <i>Customer:</i> Faculty of Electrical Engineering and Computer Science, Ljubljana
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010	21	 MMC-90 microcomputer controller Customer: Faculty of Electrical Engineering and Computer Science, Ljubljana Type of project: development of a powerful multi-loop controller Control of 40MW steam boiler Customer: Cinkarna Celje Type of project: control-system design and implementation 1991 SIMCOS - continuous system simulation language Customers: – Korona, Ljubljana – Fachhochschule, FB Maschinenbau, Konstanz – Hartmannn & Braun, Frankfurt (3 licences) Type of project: customization of the simulation package Hydraulic test rig Customer: Basic Computer Systems, Klagenfurt Type of project: construction of the test rig and control design

25. Information system application and automation of production <i>Customer</i> : Brest, Cerknica	1985
<i>Type of project:</i> conceptual design	1986
26. ANA - software package for analysis and control design	1987
Customer: – Faculty of Mechanical Engineering, Ljubljana	1988
 – IBM Deutschland GmbH, Mainz 	1989
– H. Kuhnke GmbH, Malente	1990
 Carl Schenck AG, Darmstadt Type of project: customization of a general-purpose simulation package 	1991
27. Rationalization of combustion processes in Krka	— 1992
Customer: Krka, Division of Technical Support and Energy Supply,	1993
Novo mesto <i>Type of project:</i> conceptual design	1094
28. Rationalization of combustion processes	1005
<i>Customer:</i> Ministry of Energy, Ljubljana	
<i>Type of project:</i> creation of a database of industrial combustion	1996
Chambers and power plants	1997
<i>Customer</i> : TAM, Maribor	1998
Type of project: Design and implementation of a control system	1999
30. Control system for the sub-process of precipitation	2000
Customer: Cinkarna Celje Type of project: specifications of the control system	2001
21 Automatic production of minoral plates	2002
<i>Customer:</i> Mineralka, Cerknica	2003
<i>Type of project:</i> conceptual design	2004
1992	
32. Improved control of the production of mineral plates	
Customer: Brest, Cerknica	
a system of give mixing	
<i>Customer:</i> Cinkarna Celje	2009
Type of project: specification of the control system	2010

1985	34.	Contribution to the conceptual design of the Central Waste- water Treatment Plant in Ljubljana
1986	_	Customer: Hidroinžinering, Ljubljana
1987		Type of project. Conceptual design
1988	35.	Steam boiler control system Customer: Sugar factory Ormož, Ormož
1989		<i>Type of project</i> : conceptual design
1990 1991	36.	Computer control of the production of wainscot plates Customer: Javor - Management, marketing, finances and develop-
1992		ment, Pivka <i>Type of project:</i> conceptual design
1993	37.	Control of the batch chemical treatment
1994		<i>Type of project</i> : design of the density control
1995	38.	Computer control of the pigmentation sub-process
1996	_	<i>Customer:</i> Cinkarna Celje <i>Type of project:</i> specification of the control system
1997	39.	Professional support and consulting
1998	_	<i>Customer:</i> Cinkarna Celje <i>Type of project:</i> evaluation of realized projects over a 5-year period
1999		Control of the process of titanium puddle proparation
2000		<i>Customer:</i> Cinkarna Celje
2001		Type of project: specifications for the control system
2002	41.	Control of 80MW steam boiler
2003		<i>Customer:</i> Sugar factory Ormoz <i>Type of project:</i> realization of a control system for a steam boiler
2004		
2005		1993
2006	42.	Development of special-purpose instruments
2007		Customer: Faculty of Electrical Engineering and Information Science,
2008		<i>Type of project:</i> construction of electronic modules (amplifiers)
2009		
2010		

43.	Catalytic combustion in a gas burner Customer: Zeltron S.p.A., Udine	1985
	<i>Type of project:</i> development of an industrial prototype for a new generation of burners for domestic cookers	1986
44.	Computer-aided control of wastewater treatment plant Customer: Central wastewater treatment plant Domžale –Kamnik Type of project: conceptual design	1987 1988 1989
45.	Optimization and computer control of spray dryer	1990 1991
46.	Control of titanium puddle preparation process Customer: Cinkarna Celje Type of project: cooperation in control system design, implementation and commissioning	1992 1993 1994
47.	Computer-aided plant-wide control of Central Wastewater Treatment Plant Ljubljana Customer: Hidroinženiring, Ljubljana Type of project: development project	1995 1996 1997
48.	Determination of the optimal operating parameters for waste- water treatment plants — Customer: Central Wastewater Treatment Plant Domžale–Kamnik, — Domžale — — Type of project: measurements, conceptual design —	1998 1999 2000
49.	Upgrade of the batch chemical treatment	2001 2002 2003
50.	Computer-aided plant-wide control of wastewater treatment	2004 2005 2006
51.	Preparation of the guidelines, precepts and ordinances Customer: Ministry of the Environment and Spatial Planning, Institute of Environmental Protection and Water Management, Ljubljana Type of project: preparation of the materials for legislation purposes	2007 2008 2009 2010

1985		52. Computer control of an SBR reactor <i>Customer:</i> National Chemical Institute, Ljubljana
1986		Type of project: design and implementation of the control system
1987		53. Application of modern control procedures in lift construction
1988	_	<i>Customer:</i> Lift Inzeniring, Ljubijana <i>Type of project:</i> feasibility study
1989	_	54. Computer control of hydrolysis
1990		<i>Customer:</i> Cinkarna Celje <i>Type of project:</i> preparation of the system specifications
1991		FF. Control of the SiQ presidint tion process
1992		<i>Customer:</i> National Chemical Institute, Ljubljana
1993	_	Type of project, design and implementation of the control system
1994		56. Aeration control in wastewater treatment plants <i>Customer:</i> Wastewater Treatment Plant Domžale–Kamnik, Domžale
1995	_	<i>Type of project:</i> measurements, realisation of the oxygen control in reactors
1996		
1997	_	57. CRA-2000 corrosion analyser <i>Customer:</i> Jožef Stefan Institute, Department of Physical and Organic
1998		Chemistry, Ljubljana
1999		<i>Type of project:</i> realisation of a special-purpose sensor
2000	_	1994
2001		
2002		58. Catalytic burner <i>Customer:</i> Zeltron S.p.A., Udine
2003		<i>Type of project:</i> realisation of a prototype of the catalytic burner
2004	_	59. Modernization of steam-boiler control
2005		<i>Type of project:</i> measurements and conceptual design
2006		60. Control of a cascade heat exchanger
2007		<i>Customer:</i> RC Pivka - Information Engineering, Pivka, Javor-Belsko <i>Type of project:</i> control-system design and implementation
2008		61. Computer control of TiO, final processing, technology update
2009		and improvement of the surface-treatment capacity
2010		<i>Type of project:</i> specifications for the upgrade of three sub-processes

62. Update of the production process by means of computer auto- mation	1985
Customer: Goriške opekarne, Renče-Bilje	1986
<i>Type of project:</i> feasibility study	1987
63. Plant-wide control of wastewater treatment plants - phase 2 <i>Customer:</i> Ministry of the Environment and Spatial Planning, Institute	1988
of Environmental Protection and Water Management, Ljubljana <i>Type of project:</i> preparation of the materials for legislation purposes	1989
64. Linking technology and organization in computer-aided	1990
production	1991
Customer: Javor–Koncern, Pivka Type of project: modelling of business processes	1992
65. Linking technology and organization in computer-aided	1993
production	1994
Customer: Cinkarna Celje Type of project: modelling of the business processes	1995
66 System analysis for a database design	1996
<i>Customer:</i> Ministry of the Economy, Ljubljana	1997
<i>Type of project</i> : preparation of the documentation	1998
	1999
1995	2000
67. Stirring system for adhesive in the production of mineral	2001
plates	2002
<i>Customer:</i> Mineralka, Cerknica <i>Type of project:</i> realisation of a system for glue preparation	2003
68. Development of electronic modules for the MK200 oxygen	2004
sensor	2005
Customer: Raci, Ljubljana Tura of project: realisation of choscial nurpose hardware	2006
60 AEI2000 gas flow indicator	2007
<i>Customer:</i> Inea, Domžale	2008
Type of project: instrumentation design	2009
	2010

70. Construction of three R/I converter units Customer: Raci, Ljubljana *Type of project*: construction of special-purpose converters 71. Computer-aided control of three sub-processes in Cinkarna Celje Customer: Cinkarna Celje Type of project: control system specifications 72. Cutting system for Al profiles Customer: Inea, Domžale Type of project: design of a procedure for cutting during movement 73. MK-200 oxygen-concentration sensor Customer various Type of project: small-series production, 15 pieces in the period 1990– 1995 1996 74. Control system for an SBR reactor Customer: National Chemical Institute, Ljubljana Type of project: requirements analysis and design of an SBR pilot bed 75. Automation and informatization of the glue production Customer: Mitol, Sežana Type of project: conceptual design 76. Informatization of the production of polyurethane products Customer: Poliuretani - Plama, Podgrad Type of project: conceptual design

77. Update of a tunnel furnace by means of computer automation *Customer:* Goriške opekarne, Renče-Bilje *Type of project:* conceptual design

78. Re-engineering of the plastic extruder machine *Customer:* Inea, Domžale *Type of project:* design and implementation of the adaptive control of temperature profiles

1997	1985
79. Re-engineering of a control system for a blow-moulding plastic extruder using standard control-system components	1986
<i>Customer:</i> Inea, Domžale	1987
<i>Type of project</i> : system development	1988
80. Integration of the computer-based control of the production level and physical level	1989
<i>Customer:</i> Inea, Domžale <i>Type of project:</i> system conceptual design	1990
81. Update of a polyvinyl acetate glue production (phase I) Customer: Mitol, Sežana	1992
Type of project: system design and implementation	1993
82. Modelling and simulation of wastewater treatment plant Domžale-Kamnik	1994
Customer: Central Wastewater Treatment Plant Domžale-Kamnik	
<i>Type of project:</i> synthesis of the mathematical model of the plant designed for plant simulation and an analysis of the root causes of	1996
limited hitrification	1998
83. Update of the tunnel dryer in brick production <i>Customer:</i> Brickworks Ormož	1999
<i>Type of project:</i> conceptual design	2000
84. Automation of melting-glue production in the MITOL company <i>Customer:</i> Mitol, Sežana	2001
<i>Type of project</i> : implementation of a control system	2002
85. Automation of a dryer chamber in Goriške opekarne, plant	2003
Rence III Customer: Goriške opekarne, Renče-Bilie	2004
<i>Type of project</i> : realisation of the temperature and moisture control	2005
86. Automation of PVA glue production in the MITOL company (phase 2)	2006
<i>Customer:</i> Mitol, Sežana	2007
Type of project: upgrade of the control system	2008
87. Development of a hydraulic test rig	2009
<i>Customer:</i> Faculty of Electrical Engineering, Ljubljana <i>Type of project:</i> design and construction	2010

88. Information system for Central Wastewater Treatment Plant Domžale-Kamnik *Customer:* Central Wastewater Treatment Plant Domžale-Kamnik *Type of project:* realisation of the project documentation

89. Modernization of the drying process in tunnel dryers *Customer:* Opekarna Ormož *Type of project:* conceptual design

90. Control of a furnace for sintering ferrite cores Customer: Jožef Stefan Institute, Department of Ceramics Type of project: realisation of the furnace control including temperature and oxygen control

1<mark>998</mark>

91.	Improving the efficiency of production by applying automation and optimization <i>Customer:</i> Krka, Novo mesto <i>Type of project:</i> conceptual design
92.	Automation of the tunnel dryers in the brickworks Opekarna Ormož, 1997-98 Customer: Opekarna Ormož Type of project: realisation of the temperature and moisture control
93.	Automation of melting-glue production in the MITOL company II <i>Customer:</i> Mitol, Sežana <i>Type of project:</i> system analysis, control-system upgrade
94.	Control of a plastic extruder machine <i>Customer:</i> Inea, Domžale; Techne Spa, Italija <i>Type of project:</i> system design and implementation
95.	Update of a tunnel dryer's performance <i>Customer:</i> Opekarna Ormož <i>Type of project:</i> conceptual design
96.	Online measurements of phenol pitch viscosity <i>Customer:</i> Fenolit, Borovnica <i>Type of project:</i> measurements, selection of equipment

97.	Measurement of pebble-stones dynamics in streams <i>Customer:</i> Faculty of Civil Engineering, Ljubljana <i>Type of project:</i> realisation of a special-purpose accelerometer	1985 1986
98.	Design optimization and operation of wastewater treatment plants	1987
	<i>Customer:</i> Central Wastewater Treatment Plant Domžale-Kamnik <i>Type of project:</i> design of mathematical models for conventional and MBBR technologies; comparative study of performance by means of simulation	 1988 1989 1990
99.	Efficient control and management of biological waste-water treatment plants <i>Customer</i> : National Chemical Institute, Ljubljana <i>Type of project</i> : review of the technologies for information support in wastewater treatment plants	 1991 1992 1993 1994
100.	Auto-tuning temperature controller <i>Customer:</i> Inea, Domžale, Techne Udine <i>Type of project:</i> development of a control system for plastic extruders	1995 1996
101.	IDR-10F diagnostic module <i>Customer:</i> Mitsubishi Electric Europe; Inea, Domžale <i>Type of project:</i> development of a new functional module for the Mitsubishi family of programmable logic controllers	1997 1998 1999
	1999	2000
102.	Parison control <i>Customer:</i> Inea, Domžale, Techne Udine <i>Type of project:</i> development of a control system for thickness control in production of blown plastic products	2002 2003 2004
103.	Automated measurement system for analysing friction mechanisms Customer: Faculty of Mechanical Engineering, Ljubljana Type of project: development of a special-purpose control system	2005
104.	Requirements analysis and specifications for PIS production information system at Gorenje, the new Division of Cooling Technology Customer: Gorenje, Velenje	2007 2008 2009 2010
	lype of project: conceptual design	2010

- 105. Requirements analysis for production control in the MITOL company Customer: Mitol, Sežana Type of project: conceptual design
- **106.** System for oxygen concentration and temperature control in the sintering process of ferromagnetic products Customer: Jožef Stefan Institute, Department of Ceramics Type of project: development of a special-purpose control system
- 107. Update of titanium dioxide production Customer: Cinkarna Celje Type of project: system specifications and quality assurance for five sub-processes

2000

- 108. Requirements analysis and specifications for the productionmanagement information system Customer: Polycom, Škofja Loka Type of project: conceptual design
- **109.** Module IDR20SPAC for Mitsubishi AnS and AnQ controllers *Customer*: Mitsubishi Electric Europe, Inea, Domžale *Type of project*: development of a special-purpose module for PLC
- **110. Integrated information system for production management** *Customer:* Salonit Anhovo *Type of project:* conceptual design
- **111. Interface for a mass spectrometer** *Customer:* Eotvos Lorand University, Budapest *Type of project:* realisation of special-purpose electronic equipment
- **112.** Automation of a reactor for the production of glues and pitches *Customer:* Lesonit, Ilirska Bistrica *Type of project:* conceptual design
- **113. PECS software toolset for the SPAC20 coprocessor** *Customer:* Inea, Domžale *Type of project:* development of special-purpose application SW

2001	1985
114. Cardiosignals: measurement system for physiological parameters	1986
<i>Customer:</i> Clinical Centre, Ljubljana <i>Type of project:</i> development of special-purpose measurement	1987
equipment	1988
115. Feasibility study regarding replacement of mechanical commu- tation with electronic commutation	1989
<i>Customer:</i> Kolektor, Idrija	1990
<i>Type of project:</i> feasibility study	1991
116. Automatic control of motor quality based on vibration analysis	1992
<i>Type of project:</i> development of a prototype for the quality assessment	1993
of electrical motors	1994
117. Control of a a steel-strip slitting line	1995
Type of project: realisation of the control system for a demanding	1996
cutting process	1997
118. Conceptual design for using a modern information system in leather production	1998
Customer: IUV, Vrhnika	1999
<i>Type of project:</i> conceptual design	2000
119. Production information system Customer: Metal Ravne	2001
<i>Type of project:</i> conceptual design	2002
120. A supervision system for sensors and control loops in the	2003
process in an incineration plant Customer: Sava, Krani	2004
Type of project: design and implementation of a rule-based diagnostic	2005
system	2006
	2007

1985		2002
1986		121. Upgrade of the computer-control system in PVA glue production
1987		<i>Customer:</i> Mitol, Sežana <i>Type of project:</i> control-system upgrade
1988	_	122. Application of modern algorithms in industrial practice
1989	_	Customer: Inea, Ljubljana Type of project: development, of advanced control algorithms for
1990	_	industrial use
1991	_	123. Upgrade of sub-processes in TiO ₂ production: gel washing and
1992	_	calcinate cooling <i>Customer:</i> Cinkarna Celje
1993	_	Type of project: quality assurance
1994	_	124. Information support to production planning
1995	_	Customer: LIV Postojna Type of project: conceptual design
1996	_	125. Information monitoring and production management in
1997	_	wood manufacturing
1998	_	Type of project: feasibility study
1999	_	126. Computer subsystem for the end-quality assessment of a
2000	_	vacuum-cleaner motor based on vibration analysis Customer: Domel, Železniki
2001	_	<i>Type of project:</i> prototype development
2002	_	127. Optimal control of biological wastewater treatment plants
2003	_	Type of project: modelling and simulation of MBBR pilot plant and
2004	_	controller design for aeration process
2005	_	128. Flexible technological line for the production of special emulsions
2006	_	<i>Type of project:</i> control-system specifications
2007	_	129. Assessment of investments in the rationalization of energy
2008	_	consumption Customer Mitol Sežana
2009	_	<i>Type of project:</i> expert opinion
2010		

2	2003	1985
130. In	n tegrated computer-based production management	1986
Cι	<i>ustomer:</i> Kovinoplastika, Lož	
Τγ	<i>ype of project:</i> development project	1987
131. In	nformation system for production monitoring in a plywood	1988
pl	lant	1989
<i>Cι</i>	ustomer: Bohor	1990
<i>Ty</i>	ype of project: conceptual design	
132. A j	pplication of an information system to a wood manufacturing	1991
pl	lant	1992
Cu	<i>ustomer:</i> Svea	1993
Ty	<i>ype of project</i> : conceptual design	
133. Re	equirements analysis and conceptual design of information	1994
sy	ystem for scheduling support	1995
Cu	ustomer: Kovinoplastika, Lož	1996
Ty	ype of project: conceptual design	
134. Со Си Ту	ontrol of a valve-testing line <i>ustomer</i> : Danfoss Trata, Ljubljana <i>ype of project</i> : realisation of a special-purpose control system	1997
135. D	Design of a pilot process for chemical synthesis	1999
Си	<i>ustomer:</i> Krka, Novo mesto	2000
Ту	<i>upe of project:</i> participation in the development of the production	2001
pr	rocess for a new product	
136. Fl ש כנ Ty	lexible technological line for the production of dispersions rith special properties ustomer: Mitol, Sežana upe of project: development project	2002 2003 2004
137. М Си Ту	IK-300 oxygen-concentration sensor <i>ustomer</i> : Altex, Ljubljana <i>ype of project</i> : realisation of a measurement unit	2005
138. U	pgrade of sub-processes in TiO₂ production: calcinate cooling	2009
Си	<i>ustomer:</i> Cinkarna Celje	2009
Ту	<i>ype of project</i> : quality assurance	2010

1985		139. Automatic tuner for air-conditioning control systems <i>Customer:</i> Lek, Ljubljana
1986		Type of project: special-purpose application SW
1987		140. System for end-assessment of electrical motors Customer: Domel. Železniki
1988		<i>Type of project</i> : development project
1989		141. HMI interface for control of a blow-moulding extruder machine
1990 1991		<i>Type of project:</i> design and implementation of a communication link
1992		extruder machine
1993		142. Use of OLAP tools for production supervision Customer: Eta Cerkno, Cerkno
1994		Type of project: feasibility study
1995		143. Control of a wire treatment device using plasma
1996	_	<i>Type of project:</i> realisation of a special-purpose control system
1997	_	144. Batch-production scheduling in a two-stage gel-washing
1998	_	process <i>Customer:</i> Cinkarna Celje
2000	_	Type of project: development of the control algorithms
2000	_	2004
2001		2004
2002		145. Functional verification of diagnostic cells Customer: Domel. Železniki
2004	-	<i>Type of project:</i> realisation of a prototype for testing the axial gap in electrical motors
2005		146. Monomer flow control in a polymerization plant
2006		Customer: Mitol, Sežana
2007		lype of project: design and implementation of the control algorithms
2008	_	147. Development of a programme package for tuning, optimi- sation and documentation of control loops
2009		Customer: Lek, Ljubljana
2010		type of project: development of special-purpose application SW

148. Design and implementation of pH control in the batch che- mical treatment of TiO2 Customer: Cinkarna Celje	1985
<i>Type of project:</i> realisation of pH control	1987
149. Specifications for a process in drug production (Krka) <i>Customer:</i> Metronik, Liubliana	1988
<i>Type of project:</i> participation in preparation of FDS specifications for the control system	1989
150 Control and supervision system for a hydraulic testing line	1990
HWS	1991
Customer: Danfoss Trata, Ljubljana	1992
Type of project: realisation of a special-purpose control system	
151. Control of the nitrogen removal process in wastewater	
treatment	1994
<i>Customer:</i> Domžale-Kamnik Wastewater Treatment Plant; co-financer European Regional Development Fund	1995
Type of project: realisation of a special-purpose control system	1996
152. Model-based control of semi-batch process	1997
<i>Customer:</i> Mitol, Sežana, project within 6 th Framework Programme	1998
implementation	1999
	2000
2005	_
2005	
153. A control system for magnetically concentrated plasma wire	2002
processing machine	2003
Customer: PlasmaBull GmbH, Lebring, Austria	2004
Type of project. Control system implementation	
154. The algorithm for smoothing of the steam consumption in	2005
Cinkarna Celje Customer: Cinkarna Celje	2006
<i>Type of project:</i> implementation of special-purpose software	2007
	2008
	2009

1985	2006
1986	155. Cardio & Brain Signals Measurement System
1987	Customer: – Department of Physics, Lancaster University, Great Britain
1988	– Ulleval University Hospital, Oslo, Norway
1989	 Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Slovenia
1990	– Neurology Clinic, University Medical Centre in Ljubljana,
1991	Siovenia – Department of Endocrinology, University Medical Centre
1992	in Ljubljana, Slovenia
1993	<i>Type of project:</i> implementation of a special-purpose device
1994	156. Fuel-cells system as an auxiliary power supply to extend the autonomy of military vehicles
1995	<i>Customer:</i> Ministry of Defence of Republic of Slovenia
1996	157 Draduction of a protecture of interreted as if a dentive system
1997	<i>Customer:</i> Danfoss Trata, Ljubljana
1998	<i>Type of project:</i> prototype development
1999	2007
2000	2007
2001	158. Rapid testing of advanced control algorithms in industrial environment
2002	Customer: – Slovenian Research Agency
2003	– Technology centre ARI, Ljubljana – Mitol, Sežana
2004	– Inea, Ljubljana
2005	– Liko Pris, Vrhnika <i>Type of project:</i> applied research project
2006	159. Electronic assembly 3D LANC MASTER
2007	Customer: – School Centre Šentjur
2008	Type of project: implementation of a special-purpose module
2009	
2010	

160. Implementation of fuel-cell-based cogeneration system in mobile dwelling container	1985
<i>Customer:</i> – Domel, Železniki – Inea, Ljubljana	1986
 Ministry of Defence of Republic of Slovenia Type of project: design and implementation project 	1987
161. Development of intelligent valve <i>Customer</i> : Danfoss Trata, Ljubljana	
Type of project: development project	1990
162. PLCbatch – a S88.01 compliant batch process control tool for controller platform	1991
<i>Customer:</i> Inea, Ljubljana <i>Type of project:</i> conceptual design and specifications of a special-	1993
purpose software	1994
163. KeraPro - Ceramic processor for fuel reforming and cleaning of exhaust gases	1995
<i>Customer</i> : Ministry of Defence of Republic of Slovenia <i>Type of project</i> : design and implementation project	1996 — 1997
164. TESTLAB – Mobile test laboratory with fuel-cell power unit <i>Customer:</i> Ministry of Defence of Republic of Slovenia <i>Type of project:</i> design and implementation project	1998 1999
165 SmartModule - a control and supervisiony module for the fuel	
cell-based cogeneration power unit for combined production	
<i>Customer:</i> – Domel, Železniki	2002
 PlugPower Inc., Latham, New York Type of project: implementation of a special-purpose module 	2003
166. Development of printed circuit boards and software	2004
<i>Customer</i> : Danfoss Trata, Ljubljana <i>Type of project</i> : prototype development	2005
167. Specifications' production for a procedural control of the	2006
Synthesis process	2007
Type of project: specifications of the control system	2008
	2009
	2010

168. Education for the GPS-X programme package Customer: Domžale-Kamnik Wastewater Treatment Plant Type of project: education 169. Analysis of the opportunities for real-time fault detection Customer: Technology centre ARI, Ljubljana Type of project: conceptual design 170. Realization of the course for the software package "LEK Tuner" Customer: Cinkarna Celje *Type of project:* realization of the course 2008 171. The AVTQ testing line control system – Danfoss Trata Customer: Danfoss Trata, Ljubljana Type of project: control system implementation 172. Resin-synthesis batch-process control system Customer: - Inea, Ljubljana - Color, Medvode

Type of project: specifications for controlling the technology

- **173. Feasibility study for improved production control** *Customer:* Technology centre ARI, Ljubljana *Type of project:* prospective study
- **174. Expert opinion on KPTE project** *Customer:* Inea, Ljubljana *Type of project:* expert opinion
- 175. Feasibility study: Anti-freezing system for fuel-cell cooling circuit of the aggregate *Customer:* Technology centre ARI, Ljubljana

Type of project: prospective study

176. Participation in the development of software for the testing line

Customer: Technology centre ARI, Ljubljana *Type of project:* production of special-purpose software

2009	1985
177. Fuel-cell stack freezing prevention system	1986
<i>Type of project:</i> implementation of a special-purpose module	1987
178. Communication module - GSM RTU 2200MB SIBA	1988
<i>Customer:</i> Inea Ljubljana <i>Type of project:</i> implementation of a special-purpose module	1989
179. DPP 822 - a prototype system for real-time detection and	1990
localization of faults in mechanical drives <i>Customer:</i> an internal project within the research programme Trace function development environt	1992
<i>Type of project:</i> development project	1993
180. The system for real-time analysis of operating characteristics of the family of electronically commutated electric motors	1994
<i>Customer:</i> Domel, Železniki Type of project: special-purpose system implementation	1995
191 Specifications of models and control instructions according to	1996
S88.01	1997
<i>Customer:</i> Inea, Ljubljana <i>Type of project:</i> analysis and specifications	1998
182. Participation in the development of the algorithm for deter-	1999
mining the distance to objects from the imaging information	2000
<i>Customer:</i> Luka Koper <i>Type of project:</i> algorithm specification	2001
183. Batch server specifications	2002
Customer: Inea, Ljubljana	2003
<i>Type of project:</i> preparation of specifications	2004
184. Participation in the KIBERNET project Customer: Inea. Liubliana	2005
<i>Type of project:</i> production of special-purpose software	2006
185. Feasibility study for EC motors	2007
<i>Type of project</i> : prospective study	2008
	2009
	2010
	L

1985	186. Participation within HyCORE project
1986	<i>Type of project:</i> design and application of the prototype control
1987	algorithms in complex industrial processes
1988	187. Service work on the aggregate with fuel cells Customer: STMMsistemi, Ljubljana
1989	<i>Type of project:</i> service work
1990	
1991	2010
1992	188. Specifications of the batch client Customer: Inea, Ljubljana
1993	Type of project: preparation of specifications
1994	189. Evaluation of the laboratory environment of the batch client
1995	<i>Type of project:</i> verification and validation of the software
1996	190. Development of the module for fuel cell stack heating
1997	<i>Customer:</i> Inea, Ljubljana <i>Type of project:</i> implementation of a pecial-purpose module
1990	191. Study of coating and agglomeration process control
1999	<i>Customer</i> : Brinox, Medvode
2000	Type of project: prospective study with experimental measurements
2001	192. Functional updates of the diagnostic systems
2002	
2003	
2004	193. Specifications of the operator panel interface Customer: Inea, Ljubljana
2005	Type of project: specifications of the control system
2006	194. Conceptual design for the III. phase of WWTP construction
2007	<i>Type of project:</i> expert opinion
2008	195. Implementation and installation of the diagnostic equipment
2009	for the final inspection of the suction units on line ML_7 Customer: Domel, Železniki
2010	<i>Type of project:</i> special-purpose control system implementation

196. Preparation of specifications for the automation of equipment for processing metal plates by plasma	1985
Customer: Plasmalt GmbH, Lebring, Austria	1986
Type of project: specifications of the control system	1987
	1988
	1989
	1990
	1991
	1992
	1993
	1994
	1995
	1996
	1997
	1998
	1999
	2001
	2008
	2009
	2010

1985		
1986		Jožef Stefan Institute DEPARTMENT OF SYSTEMS AND CONTROL
1987		
1988		
1989		
1990		
1991		
1992		
1993		
1994		
1995		
1996		
1997		
1998		
1999		
2000		
2001		
2002		
2003		
2004		
2005		
2006		
2007		
2008		
2009		
2010		

Jamova cesta 39 | 1000 Ljubljana | Slovenia T +386 1 47 73 486 | F +386 1 47 73 994 | E e2@ijs.si | http://dsc.ijs.si