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Abstract: Dynamic system identification with Gaussian-process prior model is a probabilistic, nonparametric mod-
elling method for identification. Gaussian-process models provide, besides the prediction, also the information
about prediction uncertainty based on the availability or uncertainty of the data used for the modelling. An ad-
vantage of this kind of model is a small number of training parameters, a facilitated structure determination and
the possibility to include various sorts of prior knowledge into the model. One of possibilities is to include block-
structure knowledge like Hammerstein model structure. The identification procedure of Gaussian-process model
with Hammerstein model structure will be presented and illustrated with an example.
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1 Introduction
Gaussian-process (GP) models [1] form a new, emerg-
ing, complementary method in the field of computa-
tional intelligence that can be used for dynamic sys-
tem identification. The GP model is a probabilistic,
nonparametric, black-box model that has generated
interest in the machine-learning community in the past
decade. Because of its properties, for example, the
ability of the models to provide a measure of confi-
dence for their prediction, these models are also inter-
esting for solving engineering problems.

The modelling of dynamic systems from data or
dynamic systems identification is a widespread engi-
neering tool. It frequently provides, but not always,
models of the input-output behaviour that are used for
various purposes. Computational intelligence meth-
ods have been shown to be very efficient for the mod-
elling of nonlinear systems.

Most of the computational intelligence methods
for regression modelling are meant for the modelling
of the mapping between input and output data. This is
the mapping of a static function between the given in-
put data set and the output or target data set. Dynam-
ics can be introduced into these models if the lagged
samples of the input and output signals are fed back
and used as regressors. In general, it is the same case
with GP models. This method of dynamic systems,
black-box identification with GP models is described
in, e.g., [2], [3]. The way that GP models handle
noisy, uncertain and outlier data as well as model un-
certainties [2] is attractive from the engineering point
of view.

The aim of this paper is to propose a possible
framework for the modelling of a particular type of
nonlinear dynamic systems such as GP models, i.e.,
the Hammerstein models [4].

GP models, even though nonparametric, are well
suited for the incorporation of prior knowledge about
the modelled system [1]. Prior knowledge in the form
of a known structure such as the Wiener and Hammer-
stein models are attractive for the engineering com-
munity. Regardless of the well-established methods
relating to this topic, new research and application re-
sults emerge continuously (e.g., [5]), because of the
facilitated analysis and control design of the nonlin-
ear systems frequently found in practice.

This paper is organized as follows. In the next
section the fundamentals of GP modelling are pre-
sented. Section 3 presents the GP modelling of Ham-
merstein models, which is demonstrated in Section 4.
The last section summarizes the main results and con-
cludes the paper.

2 Gaussian Process Modelling
A GP model is a probabilistic, non-parametric model
for the prediction of output-variable distributions. Its
use and properties for modelling are thoroughly de-
scribed in [1]. Here, only a brief description, neces-
sary for the paper’s understanding, is given.

The GP is a Gaussian random function, fully
described by its mean and variance. GPs can
be viewed as a collection of random variables
f(xi) with a joint multivariate Gaussian distribution:
f(x1), . . . , f(xn) ∼ N (0,Σ). The elements Σij
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of the covariance matrix Σ are covariances between
the values of the functions f(xi) and f(xj), and are
functions of the corresponding arguments xi and xj :
Σij = cov(f(xi), f(xj)) = C(xi,xj). Any function
C(xi,xj) can be a covariance function, providing it
generates a positive, semi-definite, covariance matrix
Σ.

The covariance function C(xi,xj) can be inter-
preted as a measure of the distance between the input
points xi and xj . For systems modelling it is usually
composed of two main parts:

C(xi,xj) = Cf (xi,xj) + Cn(xi,xj) (1)

where Cf represents the functional part and describes
the unknown system we are modelling and Cn repre-
sents the noise part. The covariance function for the
modelling of noise is usually a constant one represent-
ing white noise.

Some possible choices for Cf are:

- the squared exponential or Gaussian covariance
function, which is most frequently used in the
functional part

Cf (xi,xj) = v exp

[
− 1

2

D∑
d=1

wd(xid − xjd)
2

]

= v exp

[
−1

2
(xi − xj)

TW−1(xi − xj)

]
,

(2)

the squared exponential covariance function is
used when a smooth and stationary functional
part is assumed,

- linear covariance function

Cf (xi,xj) =
D∑

d=1

wdxidxjd

= xT
i Wxj , (3)

the linear covariance function is used when a lin-
ear functional part is assumed.

Θ = [w1 . . . wD v v0]
T are the ‘hyperparameters’ of

the covariance functions, xid and xjd are the dth com-
ponents of the input vectors xi,xj and D is the input
dimension.

A regression problem is that from some noisy
measurements of a dependent variable, at certain val-
ues of the independent variable (or several variables)
one tries to find what is the best estimate of the depen-
dent variable at a new value of independent variable
(or several variables). In the context of GP regression
this means that based on the data (X,y), and given

a new input vector x∗, we wish to find the predictive
distribution of the corresponding output y∗. The map-
ping function f between independent variable and de-
pendent variable is sought. Most of the effort in the
design of GP model consists in tuning the parameters
of the covariance function. The hyperparameters are
learned, i.e., identified, using the data at hand. This is
done by maximisation of the log-likelihood

L(Θ) = log(p(y|X))

= −1

2
log(| K |)− 1

2
yTK−1y − N

2
log(2π)

(4)

where X = [x1,x2, . . . ,xN ] is a set of N D-
dimensional input vectors, y = [y1, y2, . . . , yN ]T is a
vector of output data, Θ is the vector of hyperparam-
eters and K is the N ×N training covariance matrix.
The calculation of the log-likelihood and its deriva-
tives due to the optimisation algorithm involves the
computation of the inverse of the N × N covariance
matrix K at every iteration, which can become com-
putationally demanding for large N . Nevertheless, the
number of parameters to be optimised is small, which
means that optimisation convergence might be faster
and that the ‘curse of dimensionality’ known in other
data-based modelling methods is circumvented or at
least decreased.

After the hyperparameters have been estimated,
we can obtain a prediction of the GP model at the in-
put xN+1 that is Gaussian distribution with a mean
and variance:

µ(xN+1) = kTK−1y (5)
σ2(xN+1) = κ(xN+1)− kTK−1k (6)

where k = k(xN+1) =
[C(x1,xN+1), . . . , C(xN ,xN+1)]

T is the N × 1
vector of covariances between the training inputs and
the test input, and κ(xN+1) = C(xN+1,xN+1) is the
autocovariance of the test input.

The vector kT (xN+1) K−1 in (5) can be inter-
preted as a vector of smoothing terms that weights
the training outputs y to make a prediction at the test
point xN+1. If the new input is far away from the data
points, the term kT (xN+1) K

−1 k(xN+1) in (6) will
be small, so that the predicted variance σ2(xN+1) will
be large. The regions of the input space where there
are few data or where the data have high complexity,
or are corrupted with noise, are in this way indicated
through a higher variance.

2.1 Modelling and simulation of dynamic
systems

The above modelling procedure was developed for
modelling static nonlinearities, but it can be readily
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applied for modelling dynamic systems, as shown in
[6],[3]. It is important to stress that the model predic-
tion in the form of GP is just an approximation when
the Gaussian assumption is not fulfilled, which is in
line with common engineering practice. Consider a
dynamic system in the ARX representation, where the
output at time step k depends on the delayed outputs
y and the exogenous control inputs u:

y(k) = f(y(k − 1), . . . , y(k − L),

u(k − 1), . . . , u(k − L)) + ϵ(k) (7)

where ϵ(k) is white noise and the output y(k) de-
pends on the state vector x(k) = [y(k − 1), y(k −
2), . . . , y(k−L), u(k− 1), u(k− 2), . . . , u(k−L)]T

at time step k. For the discussion on advantages and
disadvantages of GP models for the identification of
dynamic systems see, e.g., [7].

Assuming the signal is known up to k, we wish
to predict the output of the system n steps ahead, i.e.,
we need to find the predictive distribution of y(k+n)
corresponding to x(k + n). Multiple-step-ahead pre-
dictions of a system modelled by (7) can be achieved
by iteratively making repeated one-step-ahead predic-
tions, up to the desired horizon. A naive way of doing
so is, at each time-step, to feed back the mean of the
predictive distribution (the estimate of the output) by
considering x(k+n) = [ŷ(k+n−1), . . . , ŷ(k+n−
L), u(k+n−1), . . . , u(k+n−L)]T , where ŷ(k+n−i)
is the point estimate of y(k+n− i). This way of gen-
erating multiple-step-ahead predictions is commonly
referred to as “output error” or “parallel model” in the
identification literature.

In [6] the iterative, multiple-step-ahead prediction
is done by feeding back the mean of the predictive
distribution as well as the variance of the predictive
distribution at each time-step, thus taking the uncer-
tainty attached to each intermediate prediction into ac-
count. In this way, each input for which we wish to
predict becomes a normally distributed random vari-
able. However, this is still an approximation, as will
be explained in the following section.

3 GP Modelling Used in the Ham-
merstein Model

The Hammerstein structure consists of a nonlinear
static block followed by a linear dynamic block, as
is depicted in Fig. 1. It is a frequently applied, nonlin-
ear dynamic systems modelling approach. This kind
of model can be used where the actuator dominates
the system behaviour with its nonlinear static charac-
teristics.

The structure of the Hammerstein model can be
linearly parameterized, which can be reflected in the

GN
u yx

Figure 1: Principial scheme of the Hammerstein
model

choice of regressors when modelling with the GP
model. The idea behind this approach is to repre-
sent a static nonlinearity with a polynomial approxi-
mation and in that case the overall input-output rela-
tionship is linear in the parameters. In the case of a GP
model identification with a linear covariance function
this approach requires the manual or automated selec-
tion of polynomial regressors, which are at the same
time also regressors of the complete GP Hammer-
stein model. The identification procedure is mainly
composed of regressors’ selection, which might be a
lengthy operation, and the input-output identification,
which are both tightly interconnected.

In the case that the nonlinearity requires a com-
plicated polynomial representation, a two-stage pro-
cedure might be an alternative choice. Therefore, we
are focusing on the concept of a two-stage procedure
with the identification of the static nonlinearity first
and the identification of the dynamic part in the next
step.

3.1 Modelling of the Static Part

There are at least three possible ways to acquire the
nonlinear static part of the system to be modelled. The
most common in practice is measuring the static char-
acteristics, which means that the equilibrium points
of the system are acquired systematically with mea-
surements of the constant-input and constant-output
signals in the steady state.

The second approach is that the curve of equi-
libria is obtained with the training of the GP model
for a static mapping from the system input to the sys-
tem output, but based on samples from variable in-
put and output signals. Most commonly, the majority
of the measured samples of input and output signals
can be found in the vicinity of the equilibria. The GP
model, because of its smoothing abilities [1],[3], will
smooth all the excursions away from the equilibria
and, provided that the output response is symmetric
in the excursions around the equilibrium points, the
mean-value predictions will approximate the curve of
the equilibria. The mean value of the GP model pre-
dictions can therefore be considered as an approxima-
tions of the system’s nonlinear static part.

In the case that the distributions of measured sam-
ples of the input and output signals are spread very
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widely over the nonlinear region away from the equi-
libria, then these samples can be brought closely to
equilibria with filtering, or only the samples lying in a
selected vicinity of the equilibria may be used.

The nonlinearity is identified with a GP model
that contains a covariance function that reflects prior
knowledge about the static nonlinearity. If there is no
particular prior knowledge, then an assumption about
the smoothness and the stationarity might be consid-
ered and consequently a squared exponential covari-
ance function (2) selected.

3.2 Modelling of the Dynamic Part

When the GP model of static nonlinearity is obtained,
the intermediate signal ξ̂ can be inferred from the in-
put signal with this model. The output of the GP
model is the predictive distribution that will form the
input for the linear dynamic part of the Hammerstein
model. These predictive distributions can be consid-
ered as an uncertain input signal for the linear dy-
namic part. Therefore, we need to consider the learn-
ing of the dynamic GP model with a linear covariance
function with inputs that have a random distribution.
The assumption is made that the inputs are indepen-
dent and normally distributed. The derivation for the
general covariance function is given firstly, adopted
from [8].

In the situation where the inputs are modelled as
normally distributed random inputs it can be written

yi = f(xi) with xi ∼ N (ui,Σxi) (8)

Although the process in the general case is not Gaus-
sian anymore, the mean and covariance function of the
random process can still be determined.

The covariances between the outputs can be writ-
ten as [8]

cov[yi, yj |ui,uj ] =

∫ ∫
C(xi,xj)p(xi,xj)dxidxj

(9)
where a noise variation for each input, i.e.

p(xi) = Nxi(ui,Σxi); p(xj) = Nxj (uj ,Σxj ) (10)

is allowed.
Let Cn(ui,uj) denote the ‘random’ covariance

function giving the covariance between yi and yj . As-
suming the inputs are independent given their charac-
teristics, it can be defined

Cn(ui,uj) =

∫ ∫
C(xi,xj)p(xi)p(xj)dxidxj

(11)

Equation (11) with the linear covariance function
is solvable and can be written as

Cn(ui,uj) =

∫ ∫
xT
i Wxjp(xi)p(xj)dxidxj

= uT
i Wuj (12)

The obtained result is the same as it is for data learning
without the input uncertainty, Eq. (3). This means that
the same learning procedure can be pursued.

The validation of the identified GP Hammerstein
model is made in two stages and off-line. Firstly, with
a prediction of the intermediate signal transferring the
input signal through the static nonlinearity and, sec-
ondly, with a simulation of the dynamic GP model
with a propagation of uncertainty.

The theoretical backgrounds for these predictions
and simulations are as follows.

Prediction at a new random input for a GP model
In this part, we are summarising the results from [9]
and [8] of extensions to the GP modelling framework
for dealing with random inputs. We first look at mak-
ing a prediction for a new random input x, when the
training inputs are not random, a situation that might
arise for instance when making a multiple-step-ahead
prediction of a signal by propagation of the uncer-
tainty.

It was explained in Section 2, how based on ob-
served data and on a new input xN+1, the predictive
distribution of the corresponding yN+1 = f(xN+1)
was readily obtained. The index N + 1 is left out for
simplicity in the remaining part of the section. We re-
call from Section 2 that GP model output is Gaussian
with a mean and variance

µ(x) = k(x)Tb =
N∑
i=1

βiC(x,xi) (13)

σ2(x) = C(x,x)− k(x)TK−1k(x)

= C(x,x)−
N∑

i,j=1

K−1
ij C(x,xi)C(x,xj)(14)

where b = K−1y.
If we now wish to make a prediction at x ∼

Nx(u,Σx), where u = E[x] and Σx = var[x], we
need to integrate the predictive distribution over the
possible x’s, that is

p(f(x)|D,u,Σx) =

∫
p(f(x)|D,x)p(x)dx (15)

where p(x) = Nx(u,Σx) and p(f(x)|D,x) has a
mean µ(x) and a variance σ2(x).

As p(f(x)|D,x) is a nonlinear function of x, this
integral cannot be solved analytically without an ap-
proximation.
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One way of solving this integral is to go for a nu-
merical approximation, that is

p(f(x)|D,u,Σx) ≃
1

T

T∑
t=1

p(f(x)|D,xt) (16)

where xt is a sample from p(x). This can be done
using MCMC methods.

An alternative is analytical approximation,
more precisely a Gaussian analytical approximation,
that is, in computing the mean and variance of
p(f(x)|D,u,Σx) only. This is the approximation we
are going to use.

The expressions for the mean and variance are:

m(u,Σx) = Ex[µ(x)] (17)

where m(u,Σx) is the expectation of y|D,u,Σx and

v(u,Σx) = Ex[σ
2(x)] + Ex[µ(x)

2]− (Ex[µ(x)])
2

(18)
where v(u,Σx) is the variance of f(x)|D,u,Σx.

The special case of the linear covariance function
This derivation is necessary for the GP model sim-
ulation of the dynamic part, which is modelled with
the GP model containing a linear covariance function.
The exact derivations can be found in [9]. Here we are
presenting just the final results.

The linear covariance function is considered
given by (3). According to (17), the new predictive
mean is

m(u,Σx) = Ex[µ(x)]

= u(XW)T (XWXT )−1y (19)

According to (18), the variance is given by

v(u,Σx) = Ex[σ
2(x)] + Ex[µ(x)

2]− (Ex[µ(x)])
2

= uαuT +Tr[αΣx] + Tr[γΣx] (20)

where α = W − (XW)T (XWXT )−1(XW). γ =
(XW)TbbT (XW).

As already stated, the simulation of the dynamic
system is pursued as a repeated prediction and the
feedback of the Gaussian random variable resulting
in an L × 1 input into the model x(k + n) = [y(k +
n − 1), . . . , y(k + n − L)]T ∼ N (µx,Σx) at each
time-step with the mean

µx =

 m(x(k + n− 1))
...

m(x(k + n− L)

 (21)

and the covariance matrix

Σx =[
v(x(k + n − 1)) + v0 .. cov(y(k + n − L), y(k + n − 1))

.

.

.
.
.
.

.

.

.
cov(y(k + n − 1), y(k + n − L)) .. v(x(k + n − L)) + v0

]
,

(22)

where m(.) and v(.) are computed using equations
(19) and (20).

In general, at time sample k + l, we have the ran-
dom input vector x(k+l) = [y(k+l−1), . . . , y(k+l−
L)]T ∼ N (µx,Σx) with the mean µx formed by the
mean of the predictive distribution of the lagged out-
puts y(k+ l− τ), τ = 1, . . . , L, given by (19) and the
diagonal elements of the L × L input covariance ma-
trix Σx containing the corresponding predictive co-
variances. The cross-covariance terms cov[y(k + l −
i), y(k + l − j)], for i, j = 1 . . . L with i ̸= j, are
obtained by computing cov[y(k+ l),x(k+ l)], disre-
garding the last, the oldest element of x(k + l):

cov[y(k + l),x(k + l)] =

= E[y(k + l)x(k + l)]− E[y(k + l)]E[x(k + l)]

= wΣx. (23)

For a detailed derivation see [8].
The next section shows an illustrative example

where the presented procedures are used for an iden-
tification of the GP Hammerstein model.

4 Illustrative Example
The nonlinear system that is used in this section for an
illustration of the Hammerstein model identification
in the framework of the GP model is composed of the
static nonlinearity

ξ =
u√

0.1 + 0.9u2
(24)

and the consequent linear dynamic part

y(k + 1) = 1.4138y(k)− 0.6065y(k − 1)

+ 0.1044ξ(k) + 0.0883ξ(k − 1),(25)

The sampling time is one time unit. The input signal
u(k) is a random signal with a hold time, i.e., the pe-
riod of time for which the signal stays constant, of 30
time units.

The two-stage identification procedure is divided
into the four steps.
The modelling of the static part
The nonlinearity is assumed to be continuous and
smooth. The samples from the output and input sig-
nals were filtered and then identified with a GP model
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with a squared exponential covariance function.
The compensation of the static nonlinearity and
the generation of the input signal for the linear sys-
tem identification
Input data for the identification of the linear dynamic
part, i.e., samples from ξ̂, are obtained as predictions
of the static GP model with samples from the input
signal u(t) at its input.
The identification of the dynamic linear part
The obtained input signal and corresponding output
signal are utilized for the training of the GP model
with a linear covariance function.
The validation of the identified model with a simu-
lation
The validation with an input signal different than the
one used for the identification is made. A segment
of the Hammerstein model response is given in Fig.
2. Fig. 2 shows a satisfactory input-output response
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Figure 2: GP model response on a validation signal
and a comparison with the system response (top fig-
ure) and the absolute value of the model residuals with
a 95% confidence band (bottom figure) - the segment
of the first 500 samples.

of the GP-based Hammerstein model on a validation
signal.

5 Conclusion
This paper presents an identification of the Hammer-
stein models within a GP framework. When mod-
elling the GP Hammerstein models the learning part is
pursued with uncertain inputs that are obtained from
a nonlinearity compensation, but it does not change
the expressions for predicted outputs. The simulation
of the GP Hammerstein model has to be pursued with
the uncertainty of the inputs and outputs propagated
through the dynamic part of the model.

The modelling procedure has been illustrated

with a simple example. The obtained model provided
output distributions that can be considered as mea-
sures of the prediction uncertainty, but also as mea-
sures of the confidence in the prediction.

The GP Hammerstein model can be used for the
design of robust nonlinear control and other designs
where these kinds of nonlinear models with informa-
tion about the uncertainty can be utilized. The GP
framework offers a potentially useful tool for mod-
elling input-output systems. Its potential for the field
of engineering, however, remains to be fully explored.
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