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Abstract

As various faults alter the PEM fuel cell impedance characteristic over a broad frequency range, the electrochemical
impedance spectroscopy is frequently employed for the purpose of condition monitoring. The proposed methodology
treats the impedance components among different frequencies as dependent complex random variables. The informa-
tion about fuel cell condition is incorporated into the dependence structure of these complex random variables. This
dependence is described through the corresponding joint cumulative density function by employing copula functions.
The benefits of such an approach are threefold: (i) the estimation of the joint cumulative density function requires
only several measurements of a fuel cell in a fault-free condition, (ii) the procedure is computationally efficient, and
(iii) the output of the copula function is directly used as an overall unit-free condition indicator. The approach was
evaluated on a kW-range PEM fuel cell stack subjected to water management faults of various severities. The results
show that the condition indicator corresponds with the severity of the induced faults.
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1. Introduction

A proton exchange membrane (PEM) fuel cell is an
electrochemical device that converts the chemical en-
ergy of hydrogen directly into electrical energy [1].
When both electricity and heat are utilised in a cogen-
eration system, the overall efficiency of such a system
can reach up to 90% [2]. However, the large-scale mar-
ket penetration of PEM fuel cell technology is still im-
peded due to the durability and reliability issues of the
technology [3–5]. Studies conducted over the last two
decades have pointed out several kinds of faults influ-
encing the optimal exploitation of PEM fuel cell sys-
tems [6, 7]. These faults include corrosion of the elec-
trodes and degradation of membranes [8–11], catalyst
and membrane poisoning [12–15], and water manage-
ment faults (i.e., flooding of gas channels and mem-
brane drying) [16–18]. Detection of these faults can
be achieved by employing effectual diagnostics tech-
niques [19, 20]. Such effective diagnostic information
can be beneficial in various applications [21–23].
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The majority of faults occurring in a PEM fuel
cell affect its impedance characteristic. Consequently,
the faults can be detected with a multitude of ap-
proaches based on electrochemical impedance spec-
troscopy (EIS) [24–28]. EIS is a technique of analysing
electrochemical device through measurements of its
electrical impedance characteristic. Typically, small-
amplitude electrical current perturbation signals in the
form of sine waves are applied to the fuel cell. By
measuring the voltage response of the fuel cell, the
impedance characteristic can be easily estimated [29].
In the field of PEM fuel cells, the EIS technique was al-
ready proven to be effective in detecting fuel cell flood-
ing, membrane drying, and anode poisoning [30–35].

Despite the effectiveness of the EIS technique, cur-
rent implementations have three major drawbacks:

1. The application of sine waves as perturbation sig-
nals covering a wide frequency region is time-
consuming, hence inappropriate for online condi-
tion monitoring (CM).

2. Determining appropriate threshold values requires
a priori characterisation of a fuel cell, which in
many cases is infeasible.

3. Performing EIS characterisation over a large num-
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Figure 1: Schematic representation of the complete condition monitoring process

ber of frequencies results in a feature set with large
cardinality. Therefore, specifying a single overall
value describing the fuel cell condition is of signif-
icant practical merit.

The first issue can be resolved by employing a
pseudo-random binary sequence (PRBS) perturbation
signal and continuous wavelet transform (CWT) [36],
which significantly decreases the time for impedance
estimation. In an attempt to address the second is-
sue, Boškoski and Debenjak [37] provided a solution
in which the individual impedance components are
treated as complex random variables. Consequently,
the probability density functions (PDFs) of the com-
plex impedance components at a particular frequency
exist and were mathematically derived [37]. The cor-
responding threshold values were determined by spec-
ifying the probability of false alarm (PFA). This study
deals with the third issue by treating the impedance val-
ues at individual frequencies as dependent complex ran-
dom variables. Using copula functions, their joint cu-
mulative distribution function (CDF) is estimated and
used to calculate the fuel cell condition indicator (CI).
The complete condition monitoring process, from the
data acquisition to the calculation of the CI, is shown in
Figure 1.

Since the fuel cell condition affects the impedance
components over a broad frequency range, in the statis-
tical context, this implies that the complex impedance
values at various frequencies should be regarded as de-
pendent random variables. An appropriate description
of the dependence among random variables is their mul-
tidimensional joint CDF. Specifying the joint CDF is a
difficult task especially for a large number of dimen-
sions [38], such as the issue at hand. Copula func-
tions offer a solution to this problem by estimating the
joint CDF using the marginal distributions. In the con-
text of EIS, the marginal distributions are the CDFs of
impedance at specific frequencies of interest. The multi-

variate joint CDF, specified in such a way, is capable of
describing various types of dependences, including non-
linear ones. So far, copulas were successfully applied in
the petroleum industry [39], finance [40, 41], hydrol-
ogy [42], biology [43], change detection in images [44],
quality control [45], and machine learning [46]. To the
authors’ knowledge, this is the first application of this
concept for condition monitoring of fuel cell systems.

The application of this concept has three practical
merits. First, the initial estimation of the fault-free mul-
tivariate joint CDF is time efficient since it relies only
on several measurements acquired while a fuel cell is in
a fault-free condition. Second, the evaluation process
is computationally efficient, which makes it suitable for
implementation as an online CM system. Finally, as the
copula function itself is a CDF, its output is a probabil-
ity of observing a particular impedance characteristic.
Therefore, the output is regarded as a unit-free CI de-
scribing the overall fuel cell condition.

The paper is organised as follows: Section 2 presents
the way features are generated and discusses the statis-
tical properties of the complex impedance values. The
concept of copula functions is presented in Section 3.
The complete CI computation process is presented in
Section 4. Finally, Section 5 presents the evaluation re-
sults of the proposed technique, employed on an 8.5 kW
fuel cell stack.

2. Feature set

The straightforward approach for impedance estima-
tion is to excite the fuel cell using sine current excitation
signal i(t) with frequency f0 and to measure the corre-
sponding voltage signal u(t). The impedance Z( f0) is
then calculated as a ratio between the Fourier transform
coefficients of the two signals [29]:

Z( f0) =
F [u(t)]
F [i(t)]

∣∣∣∣∣
f0

(1)
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In order to cover a broad frequency range, the sine sig-
nals have to be separately generated and applied for
each frequency of interest, which is time inefficient. An
attempt to overcome this issue is by using compound
multisine signals [47]. However, even in such a case,
the impedance values are calculated only at discrete fre-
quencies that are present in the generated multisine sig-
nal.

2.1. Impedance estimation with PRBS and CWT

In order to jointly cover a broad frequency range
and perform the required measurements in a reasonably
short time period, a broadband excitation is required.
In this study, the PRBS signal is used as proposed by
Debenjak et al. [36]. The PRBS can be regarded as suffi-
ciently close to stationary random noise, and in a prede-
fined frequency band, it exhibits power spectral density
similar to the one of the white noise. Furthermore, the
amplitudes of its frequency components have Gaussian
distribution [48].

Using such an excitation signal, the Fourier analysis
is unable to describe transient phenomena, located in a
narrow time interval. Therefore, it is necessary to per-
form time-frequency analysis for the estimation of the
impedance. The possible candidates are the short-time
Fourier transform or wavelet transform. The former of-
fers only fixed time-frequency resolution, whereas the
latter one allows flexibility in the time-frequency resolu-
tion by interchangeably achieving good time resolution
for the high-frequency events, and good frequency res-
olution for the low-frequency events. Therefore, in this
study, the CWT approach based on the Morlet mother
wavelet was employed for the impedance estimation.
With properly tuned CWT parameters, this approach
provides reliable impedance results along the entire fre-
quency band. Additionally, it yields statistical infor-
mation about the confidence interval of the impedance
measurement.

The process of impedance estimation starts by super-
imposing the PRBS on the DC current idc(t) supplied by
the fuel cell. As a result, the fuel cell responds with the
corresponding voltage u(t) signal, which is directly re-
lated to the cell impedance. Performing the CWT with
the Morlet mother wavelet on both i(t) and u(t) signals
results in two sets of complex wavelet coefficients:

Wi(τ, s) =
〈
i(t), ψτ,s(t)

〉
=

∫ ∞

−∞

i(t)ψ∗τ,s(t) dt,

Wu(τ, s) =
〈
u(t), ψτ,s(t)

〉
=

∫ ∞

−∞

u(t)ψ∗τ,s(t) dt,
(2)

where ψτ,s(t) is the translated and scaled version of the

Morlet wavelet [49]:

ψτ,s(t) =
1
√

s
ψ

( t − τ
s

)
(3)

and
ψ(t) = π−1/4

(
e− jω0t − e−ω

2
0/2

)
e−t2/2. (4)

The relation between scale s and frequency f reads as
follows:

1
f

=
4πs

ω0 +

√
2 + ω2

0

(5)

and, since the translation τ directly corresponds to time
t, the impedance z(t, f ) is calculated as a ratio of the
corresponding complex wavelet coefficients (2) [36]:

z(t, f ) =
Wu(t, f )
Wi(t, f )

. (6)

This segment of the condition monitoring process is pre-
sented by the first two modules in Figure 1.

2.2. Probability distribution function of impedance at
individual frequency

By treating the fuel cell as a piecewise linear system,
the response to such an excitation preserves the statis-
tical properties of the PRBS excitation signal. Since
the CWT is a linear transformation, the signal’s proper-
ties are preserved in the calculated wavelet coefficients.
Therefore, the wavelet coefficients (2) should be re-
garded as random variables as well.

In order to perform a statistical analysis of the
impedance components, the PDF of the impedance
components at a particular frequency z(t, f )| f = f0 has to
be determined. This is a two-step process. First, the
PDFs of the wavelet coefficients (2) have to be derived.
Second, the PDF of their ratio (i.e., z(t, f )| f = f0 ) has to be
derived in a closed form, bearing in mind that wavelet
coefficients Wi(t, f ) and Wu(t, f ) are dependent com-
plex random variables.

The wavelet coefficients Wi(t, f ) and Wu(t, f ) can be
rewritten as

Wi(t, f ) = <{Wi(t, f )} + j={Wi(t, f )},
Wu(t, f ) = <{Wu(t, f )} + j={Wu(t, f )}.

(7)

Since the voltage u(t) is the fuel cell response to the
current excitation i(t), and the excitation has the shape
of PRBS, these coefficients are dependent zero-mean
Gaussian circular complex random variables [37, 50]:

<{Wi(t, f )},={Wi(t, f )} ∼ N
0, σ2

i

2


<{Wu(t, f )},={Wu(t, f )} ∼ N

(
0,
σ2

u

2

)
.

(8)
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Under these conditions, the PDF of the complex
impedance (6) at a particular frequency f0 reads as fol-
lows [37]:

pZ(z) =
1 − |ρ|2

πσ2
uσ

2
i

 |z|2
σ2

u
+

1
σ2

i

− 2
ρrzr − ρizi

σuσi

−2

, (9)

where zr and zi are real and imaginary components and
ρ = ρr + jρi is a complex correlation coefficient, such
that |ρ| ≤ 1. For the purpose of condition monitoring,
the module |z| of the complex impedance is of particular
interest. Under the same assumption for the stochastic
nature of the impedance z, the PDF of its module reads
as follows [37]:

p|Z|(|z|) =
2σ2

i σ
2
u(1 − ρ2)|z|(σ2

i |z| + σ2
u)[

(σ2
i |z|

2 + σ2
u)2 − 4ρ2σ2

uσ
2
i |z|

2
]3/2 , |z| ≥ 0,

(10)
where |ρ| ≤ 1 is the correlation coefficient. The CDF of
|z| reads as follows [51]:

P|Z|(z) =
1
2
−

σ2
u − z2σ2

i

2
√

4z2 (
1 − ρ2)σ2

i σ
2
u +

(
σ2

u − z2σ2
i

)
2
,

(11)
where z ≥ 0.

The parameters σu, σi and the correlation coefficient
ρ can be estimated through the calculated wavelet coef-
ficients as [52, 53]:

E{Wu(t, f0)Wu(t, f0)∗} =
σ2

u

2

E{Wi(t, f0)Wi(t, f0)∗} =
σ2

i

2

E{Wi(t, f0)Wu(t, f0)∗} =
σuσi

2
ρ.

(12)

2.3. Dependence structure among the impedance com-
ponents

The deterioration of the fuel cell condition alters the
impedance characteristic over a wide frequency range.
Since the impedance at individual frequency is a ran-
dom variable, the impedance values should be regarded
as dependent random variables. Therefore, in order to
properly determine the presence and the root cause of
the fault, the overall change in the impedance character-
istics has to be characterised. A proper way of describ-
ing the joint behaviour of random variables is through
the corresponding joint CDF. In this study, the joint
CDF is estimated by using copula functions.

3. Basics of copula functions

The joint PDF of two continuous random variables
X1 and X2 is equal to:

pX1,X2 (x1, x2) = pX2 |X1 (x2|x1)pX1 (x1) = pX1 |X2 (x1|x2)pX2 (x2),
(13)

where pX1 (x1) and pX2 (x2) are the marginal PDFs, and
pX1 |X2 (x1|x2) and pX2 |X1 (x2|x1) are the corresponding
conditional PDFs. The marginal distributions either are
known or can be easily estimated from the available
data. On the other hand, when x1 and x2 are dependent,
the conditional PDFs are generally unknown and are
usually difficult to estimate. Consequently, the deriva-
tion of the joint PDF is not trivial. An elegant way to
connect the marginal PDFs of the random variables with
their joint PDF is given through copulas.

3.1. Copula functions
For two random variables X1 and X2, which are de-

fined on the same probability space, the joint CDF
PX1,X2 (x1, x2) defines the probability of events in terms
of the simultaneous occurrences of X1 and X2. An ex-
plicit estimation of the joint CDF is a difficult task due
to possibly complicated forms and the dimensionality
issues [38]. Copulas simplify this process by express-
ing the joint CDF of dependent random variables as a
function of their marginal distributions.

A bivariate copula function C : [0, 1]2 → [0, 1] is an
aggregation function that satisfies [54]:

1. C(x, 0) = C(0, x) = 0 and C(x, 1) = C(1, x) = x for
all x ∈ [0, 1] (boundary conditions);

2. C(x1, y1) − C(x1, y2) − C(x2, y1) + C(x2, y2) ≥ 0,
for all x1, y1, x2, y2 ∈ [0, 1] such that x1 ≤ x2 and
y1 ≤ y2 (2-increasing property).

Let the two random variables X1 and X2 have
marginal CDFs PX1 (x1) and PX2 (x2), respectively, and
joint CDF PX1,X2 (x1, x2). According to Sklar’s theorem
[54, 55], there exists a multivariate CDF Cθ(u, v), where
θ is a parameter that has to be estimated, and u and v
are uniformly distributed random variables on the unit
interval [0, 1]. Therefore, the joint CDF PX1,X2 (x1, x2)
reads as follows:

PX1,X2 (x1, x2) = Cθ(PX1 (x1), PX2 (x2)) = Cθ(u, v), (14)

where u and v are obtained by using the inverse proba-
bility integral transform [56]:

u = PX1 (x1), u ∼ U(0, 1),
v = PX2 (x2), v ∼ U(0, 1).

(15)
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From (14), it follows that copula Cθ(u, v) is a function
that couples the marginal CDFs PX1 (x1) and PX2 (x2) of
the random variable X = (X1, X2) with its joint distribu-
tion PX1,X2 (x1, x2).

From the large collection of bivariate copulas, the pa-
per addresses the Archimedean family, where copulas
are constructed by using the following relation [57]:

Cθ(u, v) = ϕ[−1]
θ (ϕθ(u) + ϕθ(v)) (16)

where u = PX1 (x1), v = PX2 (x2), and ϕθ(·) is called a
generator function and ϕ[−1]

θ (·) is

ϕ[−1]
θ (t) =

ϕ−1
θ (t), if 0 ≤ t ≤ ϕθ(0);

0, if ϕθ(0) ≤ t ≤ ∞.
(17)

The generator function ϕθ(t) : [0, 1] → [0,∞] must be
continuous and strictly decreasing. Table 1 shows dif-
ferent types of Archimedean copulas constructed with
the different generators ϕθ(t) [54]. Each of the families
in Table 1 describes a different dependence structure.
The selection is performed intuitively, as shown in Fig-
ure 2, Clayton and Gumbel copulas exhibit best results
in the tails of the distribution, while Frank copula per-
forms best under the bell of the distribution.
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Figure 2: Regions of best performance for different Archimedean cop-
ulas

3.2. From bivariate to multivariate copulas
The copula, as defined by (14), couples two random

variables into their joint CDF, hence the name bi-variate
copula. However, majority of problems are multidi-
mensional, and thus, the bivariate copulas should be ex-
tended to accommodate multidimensional cases. There
are two approaches to extending to higher dimensional
copulas [40, 58]:

1. The first approach extends the bivariate copula to
multivariate copula using only one dependence pa-
rameter θ. Such copulas are known as exchange-

able Archimedean copulas [59]. The main draw-
back is that copulas for higher dimensions are te-
dious to derive [60].

2. The second approach uses bivariate copulas to
form a hierarchical structure with at most n − 1
dependence parameters θi for n random variables.
This construction of multivariate copulas is called
fully nested Archimedean copula (FNAC) [59, 61].

As shown in Figure 3, FNAC is a treelike structure
that is obtained using an iterative procedure that starts
with coupling two random variables. For this particu-
lar FNAC structure, u1 and u2 are coupled into copula
Cθ1 (u1, u2) with parameter θ1. In all subsequent itera-
tions, the obtained copula is coupled with a new ran-
dom variable; for example, copula Cθ1 is coupled with
u3 into Cθ2 (Cθ1 , u2) with parameter θ2 and so on. The
final output of the topmost copula reads

Cθ4 (u1, u2, u3, u4, u5) =

= Cθ4

(
u5,Cθ3

(
u4,Cθ2

(
u3,Cθ1 (u1, u2)

)))
.

(18)

u1 u2 u3 u4 u5

Cθ1 (u1, u2)

Cθ2 (Cθ1 , u3)

Cθ3 (Cθ2 , u4)

Cθ4 (Cθ3 , u5)

Input level

Level 1

Level 2

Level 3

Level 4

Figure 3: Fully nested Archimedean copula

Generally, a FNAC structure with n input variables
has n − 1 parameters θi. The final function (18) repre-
sents a valid copula only if the following condition is
fulfilled [62]:

θ1 > θ2 > ... > θn−1 (19)

where θ1 is the parameter of the most nested copula, θ2
is the parameter of the second most nested copula, and
so on. The estimations of the values of θi, i = 1, . . . , n−
1 are obtained using the maximum likelihood algorithm.

Sometimes, it is not possible to build a FNAC struc-
ture that satisfies condition (19) for the desired or-
der of variables in the FNAC. In such a case, a valid
FNAC could be found in the set of all FNACs obtained
by permuting the order of the variables entering the
FNAC [63].
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Cθ(u, v) ϕθ(t) Solve
(
∂Cθ(u,v)

∂u = q, v
)

Clayton
[
max

(
u−θ + v−θ − 1, 0

)]−1/θ 1
θ

(
t−θ − 1

)
(1 − u−θ + (qu1+θ)−

θ
1+θ )−

1
θ

Frank −
1
θ

ln
(
1 +

(e−θu − 1)(e−θv − 1)
e−θ − 1

)
− ln

e−θt − 1
e−θ − 1

1
θ log −eθ(1−q+qeθu)

−eθ+qeθ−qeθu

Gumbel-Hougaard exp
(
−

[
(ln u)θ + (− ln v)θ

]1/θ
)

ln
1 − θ(1 − t)

t
only numerical solution

Table 1: Archimedean copulas

4. Condition indicator formation

The process of computing the CI by using the
impedance joint CDF is composed of several steps.
First, from the available frequency range, a low cardi-
nality frequency set is selected, in a way that the fuel
cell characteristic is preserved. Second, the impedance
values (6) are calculated at the selected frequencies by
using CWT (2). Afterwards, the parameters of the
PDFs (9)–(10) are estimated by employing relation (12).
It has to be noted that for each frequency fi, the PDF of
the wavelet coefficients (2) has different parameters. As
a result, n different sets of parameters are calculated,
one for each frequency fi. In order to use the copula
concept, the selected impedance values are transformed
into a uniform random variable by using the CDF (11).
Finally, the CI is computed as the output of the esti-
mated multivariate copula.

4.1. Selection of the appropriate frequencies

Impedance values (6) are calculated on a broad fre-
quency range. The results are represented by a Nyquist
plot, as shown in Figure 4. Usually, the number of se-
lected frequencies is quite large, which leads to a high
cardinality feature set. The first step is to reduce the
number of features while at the same time preserving
the necessary diagnostic information.

In the context of PEM fuel cells, the shape of the
Nyquist plot suggests that the characteristic is predomi-
nantly capacitive, and it embodies two depressed semi-
circles, as shown in Figure 4:

• The low-frequency one, f ≤ 5 Hz, which is at-
tributed to diffusion processes

• The high-frequency semicircle, f > 5 Hz, which is
attributed to kinetic processes

Therefore, it is reasonable to choose a similar number
of impedance values from both frequency regions sam-
pled at logarithmically equal intervals. As a result, the
final feature set comprises N f = 10 impedance val-
ues that preserve the information about the impedance

shape. This feature set with reduced cardinality is sub-
sequently used for the estimation of the fuel cell con-
dition. A possible future improvement of the feature
selection process can be achieved by employing, for in-
stance, correlation-based feature selection methods, se-
quential forward(backward) feature selection, or min-
imum redundancy maximum relevance feature selec-
tion [64, 65].
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Figure 4: Nyquist plot of the PEM fuel cell impedance.

4.2. Estimating the copula parameters

First, the impedance is calculated by using the mea-
sured current i(t) and voltage u(t) signals. For each
measurement, a complex matrix Z(t, f ) is obtained as
a result of the CWT (6), which represents the instan-
taneous amplitude and phase of the impedance at each
time moment over the selected frequency range. The
complex matrix Z(t, f ) has dimensions m × N f , where
m = sampling f requency × duration is the number of
time moments at which u(t) and i(t) were measured, in
the case at hand, m = 40000, N f = 10.

By using the calculated impedance values at each of
the selected frequencies fi, i = 1, . . . ,N f , the corre-
sponding parameters (12) of the CDFs are estimated.
Afterwards, using the corresponding CDF, each value
of the matrix Z(t, f ) is transformed into its uniform fea-
ture. As a result, a matrix U with dimension m × N f
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is obtained. Finally, the copula θi parameters (19) are
estimated by employing the matrix U.

4.3. Copula output as a fuel cell condition indicator
Since the copula function is a CDF, its output is

a probability of observing a particular combination
of uniformly distributed values U = [u1, . . . , uN f ].
Through the experiment, for each measurement se-
quence q, a FNAC structure is built using uniform ma-
trix Uq. The process is shown in Figure 5.
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Impedance
estimation

PDF
estimation

FNAC
construction

CI1
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PDF
estimation

FNAC
construction
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Figure 5: Measurement sequences in time

The calculated values from the initial fault-free mea-
surements q = 1 are used as a baseline for CI. Since a
deterioration in the condition will alter the impedance
statistical characteristics, for the initially calculated
copula, such a state will be regarded as a random event
with a low likelihood. The low likelihood events (i.e.,
faults) lie in the tails of the PDF. As the output of CDFs
is the probability P[U ≤ u], the output of the copula
will be close to one for events that lie in the tail that is
in the (+,+, . . . ,+) hyperoctant.1 On the other hand, the
output of the copula will be close to zero for events that
lie in the tail that is in the (−,−, . . . ,−) hyperoctant. For
a two-dimensional PDF, the (+,+) quadrant is marked
with 1 and the (−,−) quadrant is marked with 2 in Fig-
ure 6. The CI baseline will be located somewhere in
between.

5. Evaluation results

For the purpose of evaluation of the proposed ap-
proach, a set of q ∈ [1, 105] impedance characteris-
tics were estimated, each based on 40-second measure-
ments. Figure 7 shows an example of the measured

1The notation (+,+, . . . ,+) specifies the area determined by pos-
itive semiaxes in all dimensions. A two-dimensional special case is
shown in Figure 6.

x
y

L
ik

e
li
h
o
o
d

2 1-3
-2

-1
0

1
2

3 -3
-2

-1
0

1
2

3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Figure 6: Description of the regions for high and low copula outputs

current i(t) and voltage u(t) signals, which were further
used for feature extraction.
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Figure 7: Example of current and voltage signals during the experi-
ment

5.1. Experimental procedure
The experiment was performed on a commercially

available PEM fuel cell system HyPM HD 8 produced
by the Hydrogenics Corporation. The stack consists of
80 PEM fuel cells, each with surface area of 200 cm2,
providing 8.5 kW of electric power in total. The fuel
cell system operates on pure hydrogen and ambient air.
The impedance was measured on individual cells of the
stack, where the PRBS perturbation signal was applied
in galvanostatic mode.

During the experiment, the fuel cell system was kept
at constant operating and environmental conditions at a
temperature of 50◦C, stoichiometry 2.5. The tempera-
ture of the airflow was kept constant at 50◦C, and the
relative humidity was controlled in order to introduce
drying or flooding conditions. At the anode side, the
fuel cell was fed with pure and dry hydrogen at a con-
stant temperature of 20◦C. The DC current operating
point Idc was set to 70 A, resulting in the stack volt-
age of 55 V, whereas the amplitude of the superposed
PRBS waveform was set to 2 A.
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The experiment went through five stages. In the first
stage of approximately 11 minutes, 18 measurement
sets were acquired in the fault-free state at which the
relative humidity of the inlet air was kept at 9%. Then
air fed to the fuel cell was slightly dried down to a rela-
tive humidity of 5% for about 10 minutes, between the
12th and the 22nd minute, in order to induce membrane
drying, and again humidified to 9%. Afterwards, be-
tween the 34th and the 58th minute, saturated air with
a relative humidity of 100% was fed into the fuel cell
system, inducing the flooding of fuel cells. Finally, the
air humidity was decreased down to the initial 9%. Us-
ing such a cycle, the response of the fuel cell under dif-
ferent fault scenarios with various fault severities was
evaluated.

5.2. Time evolution of condition indicator
Following the procedure described in Section 4, the

CI was computed for each of the q ∈ [1, 105] mea-
surements. The time evolution of the CI is presented
in Figure 8, where the experiment time is represented
on x-axis.
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Figure 8: Evolution of the health index (copula output)

At the beginning of the experiment, the copula value
defines the CI baseline of a fault-free condition. Dry in-
let air of 5% relative humidity causes fuel cells to dry
out, hence the increase of the CI. This indicates that
some of the impedance components changed, and con-
sequently, the observed measurements belong to a low
likelihood tail. On the other hand, the saturated inlet air
with a relative humidity of 100% causes the flooding of
fuel cells. As a result, the CI reaches almost zero. At
the end of the experiment, the humidity of the inlet air
was set back to nominal values, resulting in fuel cell re-
covery, causing the CI to return to the baseline values
similar to the ones from the beginning of the experi-
ment.

It has to be noted that the experiment was performed
on an industrial-grade fuel cell system. As such, the

built-in controls managed various parameters such as
air and fuel flow (stoichiometry) as well as tempera-
ture. Therefore, these parameters were not strictly held
within sharp boundaries with laboratory precision. As a
result, some fluctuations can be observed in the CI val-
ues throughout the experiment (Figure 8). Regardless
of these fluctuations, the fault regions are distinctly vis-
ible, which confirms the link between CI and the actual
fuel cell condition.

The results show that the proposed CI (i.e., copula
output) can also be directly related to the fault sever-
ity. The departure of the copula values for the drying
fault from the baseline level is smaller compared with
the copula values during the flooding fault, which cor-
responds to the induced fault severity.

6. Conclusion

This paper presents an approach for fuel cell condi-
tion monitoring by employing PRBS excitation signals,
CWT for impedance estimation and copula functions
for information fusion. The calculated large cardinal-
ity feature set comprises dependent complex random
variables, which represent fuel cell impedance at indi-
vidual frequencies. The fuel cell condition is hidden in
the dependence structure of these complex random vari-
ables. The application of copula functions allows the
proper characterisation of the dependence by estimat-
ing the multidimensional joint CDF. Therefore, the CI,
defined as the output of the copula structure, is a prob-
ability of observing particular impedance values and is
directly related to the fuel cell condition as well as the
severity of the present fault.

The proposed approach has several practical merits.
First, for the purpose of fault detection, the proposed
CI can be implemented without any prior characterisa-
tion of the fuel cell under various faults. The CI base-
line can be estimated from data acquired solely from
measurements under a fault-free operation. Second, the
approach is computationally efficient. Finally, the es-
timation of PDF parameters and the transformation of
the acquired data into uniform random variables exist
in closed form. This makes the proposed approach a
suitable solution for an embedded condition monitoring
system.

The applicability of the proposed approach is not lim-
ited either to PEM fuel cells or to water management
faults. It can be applied in an unmodified form wher-
ever the EIS approach is applicable.
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