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a b s t r a c t

A suboptimal approach to distributed NMPC is proposed based on Gaussian process models of the
interconnected systems dynamics and taking into account the imposed constraints. The suggested
method is based on a sequential linearization of the nonlinear system dynamics and finding a
suboptimal solution of the resulting Quadratic Programming (QP) problem by using distributed
iterations of the dual accelerated gradient method. The main advantages of the distributed approach
are that it allows the computation of the suboptimal control inputs to be done autonomously by the
subsystems without the need for centralized optimization and it has a simple software implementation.
The proposed method is illustrated with simulations on the simplified model of a sewer system.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Nonlinear Model Predictive Control (NMPC) has become the
ccepted methodology to solve complex control problems related
o process industries (Grüne & Pannek, 2011; Magni et al., 2009;
ayne et al., 2000; Rawlings et al., 2017). It involves the solu-

ion at each sampling instant of a finite horizon optimal control
roblem subject to nonlinear system dynamics and state and
nput constraints. Stochastic MPC problems are formulated in the
pplications where the system to be controlled is described by
stochastic model. Thus, the approaches in van Hessem et al.

2001) and Yan and Bitmead (2005) are based on linear state
pace models with stochastic parameters and/or additive noise.
n Kouvaritakis et al. (2010), an approach to stochastic MPC
or linear systems is proposed that explicitly uses probabilistic
distributions to guarantee recursive feasibility and stability of the
closed-loop system. In Farina et al. (2015), a method to output-
feedback MPC of stochastic linear systems affected by a possibly
nbounded additive noise is suggested. In Lorenzen et al. (2017),
sampling-based stochastic MPC algorithm is proposed.
Further, several approaches to stochastic nonlinear MPC have

een developed. Thus, in Bradford and Imsland (2019), a shrink-
ng horizon NMPC algorithm has been proposed accounting for

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Marcello
Farina under the direction of Editor Ian R. Petersen.
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the stochastic uncertainties to optimize a probabilistic objective
subject to chance constraints. The stochastic NMPC approach
in Sehr and Bitmead (2017) uses the particle filter equations
to estimate the required statistics. In Schlüter and Allgöwer
(2020), an NMPC strategy for stochastic systems with state- and
input-dependent, finite-support disturbances subject to individ-
ual chance constraints has been suggested. Very useful reviews
on stochastic MPC approaches can be found in Mesbah (2016) and
Heirung et al. (2018). It should be noted that the stochastic MPC
approaches mentioned so far are based on parametric probabilis-
tic models. Alternatively, the stochastic systems can be modelled
with nonparametric models which can offer a significant advan-
tage compared to the parametric models, which is related to their
ability to provide information about prediction uncertainties.
The Gaussian process model is an example of a nonparametric
probabilistic black-box model and up to now it has been applied
to model mainly static nonlinearities. The underlying approaches
to the modelling of dynamic systems by using Gaussian processes
(GP) can be found in Kocijan et al. (2005) and Solak et al. (2003).
Several methods for stochastic NMPC based on GP model have
been proposed (e.g. Bradford et al., 2020; Grancharova et al.,
2008; Hewing et al., 2019; Likar & Kocijan, 2007; Murray-Smith
et al., 2003). An overview of using GP in the modelling and control
of dynamic systems is provided in Kocijan (2016).

The papers above consider centralized stochastic MPC. How-
ever, the centralized solution of MPC problems for large-scale
systems may be impractical due to the topology of the plant and
data communication, and the large number of decision variables.
Several methods for distributed/decentralized MPC for determin-
istic linear/nonlinear systems have been developed (e.g. Alessio
et al., 2011; Christofides et al., 2013; Giselsson et al., 2013;
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rancharova & Johansen, 2014; Grancharova et al., 2016; Maestre
Negenborn, 2014). In Grancharova and Johansen (2014), an

pproach to distributed NMPC of deterministic nonlinear systems
ith separable coupled dynamics has been suggested, which is
ased on distributed on-line optimization. Another more general
ethod for distributed deterministic NMPC has been developed in
rancharova et al. (2016), which does not assume separability
f the couplings between the subsystems and finds distribut-
dly a suboptimal solution of the resulting optimization problem.
n Dai et al. (2018), a cooperative distributed stochastic MPC
pproach is proposed for multiple dynamically decoupled lin-
ar subsystems with both parameter uncertainty and stochastic
isturbances and coupled probabilistic constraints. So far, no
pproach to distributed NMPC of dynamically coupled nonlinear

systems described by Gaussian processes has been proposed.
The contribution of this paper is a suboptimal approach to dis-

tributed NMPC based on Gaussian process (GP) models of the in-
teracting systems dynamics (referred to as distributed GP-NMPC
approach). In difference to the methods in Grancharova and Jo-
hansen (2014), Grancharova et al. (2016), where the subsystems
are described by deterministic state–space models, here stochas-
tic interacting subsystems are considered whose dynamics are
modelled with nonparametric (GP) models. A GP-NMPC prob-
lem for the overall system is formulated, which is first locally
approximated by a linear centralized GP-MPC and then solved dis-
tributedly by applying an extension of the method in Grancharova
et al. (2016).

The paper is structured as follows. In Section 2, the modelling
of interconnected stochastic dynamic systems with Gaussian pro-
cesses is described and a centralized GP-NMPC problem is for-
mulated. In Section 3, an approach to distributed GP-NMPC is
proposed. The developed approach is illustrated with simulations
on a stochastic system representing simplified model of a sewer
system in Section 4. The conclusions are gathered in Section 5.

2. Model predictive control problem for stochastic intercon-
nected systems

2.1. Preliminaries on modelling with Gaussian processes

A Gaussian process is an example of the use of a flexible, prob-
abilistic, nonparametric model which directly provides us with
uncertainty predictions. Its use and properties for modelling are
reviewed in Rasmussen and Williams (2006). A Gaussian process
is a collection of random variables which have a joint multivariate
Gaussian distribution. Assuming a relationship of the form y =

f (z)+ξ (with ξ being a stochastic noise) between an input z ∈ RD

and output y ∈ R, we have y(1), y(2), . . . , y(L) ∼ N (0,Σ),
where Σpq = Cov(y(p), y(q)) = C(z(p), z(q)) gives the covariance
between the output points y(p) and y(q) corresponding to the in-
put points z(p) and z(q). Thus, the mean µ(z) (usually assumed to
be zero) and the covariance function C(z(p), z(q)) fully specify the
Gaussian process. Note that the covariance function C(z(p), z(q))
can be any function with the property that it generates a pos-
itive definite covariance matrix. Forms of covariance functions
suitable for different applications can be found in Rasmussen and
Williams (2006). For a given problem, the hyperparameters of the
covariance function are identified using the data at hand.

Consider a set of L D-dimensional input vectors Z = [z(1),
z(2), . . . , z(L)]T and a vector of output data Y = [y(1), y(2),
. . . , y(L)]T. Based on the data (Z, Y ), and given a new input
vector z∗, we wish to estimate the probability distribution of the
corresponding output y∗. Unlike other models, there is no model
parameter determination as such, within a fixed model structure.
With this model, most of the effort consists in tuning the hyper-
parameters of the covariance function. One of the approaches is
2

by maximizing the log-likelihood of the parameters, i.e. optimally
determine them from the evidence (or marginal distribution) of
the GP posterior. This is called the empirical Bayes or Type II max-
imum likelihood optimization. The maximum a posteriori (MAP)
estimate of the hyperparameters equals the maximum marginal
likelihood estimate of the evidence (not parameters) of the GP
posterior (for more details refer to Rasmussen & Williams, 2006
and Kocijan, 2016). Based on a training set Z, a covariance matrix
K of size L×L is determined. As already mentioned before, the aim
is to estimate the probability distribution of the corresponding
output y∗ at some new input vector z∗. For a new test input z∗, the
posterior distribution of the corresponding output is y∗

|z∗, (Z, Y )
and is Gaussian, with mean and variance (Rasmussen & Williams,
2006):

E{y∗
} = µ(z∗) = c(z∗)TK−1Y

var{y∗
} = σ 2(z∗) = c0(z∗) − c(z∗)TK−1c(z∗) + v0 (1)

where c(z∗) = [C(z(1), z∗), . . . , C(z(L), z∗)]T is the vector of co-
variances between the test and training cases, c0(z∗) = C(z∗, z∗)
is the covariance between the test input and itself.

Gaussian processes can model static nonlinearities and can
therefore be used for modelling of dynamic systems if delayed
input and output signals are used as regressors (Kocijan, 2016). In
such cases an autoregressive (NARX) model is considered, where
the current predicted output depends on previous estimated out-
puts and previous inputs:

z(t) = [ŷ(t − 1), . . . , ŷ(t − l), u(t − 1), . . . , u(t − l)]T

ˆ(t) = f̃ (z(t)) + η(t) (2)

where t denotes consecutive number of data sample, l is a given
lag, and η(t) is the prediction error.

2.2. Gaussian processes based model of interconnected dynamic sys-
tems

Consider a stochastic system composed by the interconnection
of M stochastic subsystems with overall state and overall control
input:

x(t) = [x1(t), x2(t), . . . , xM (t)] ∈ Rn , n =

M∑
i=1

ni (3)

u(t) = [u1(t), u2(t), . . . , uM (t)] ∈ Rm , m =

M∑
i=1

mi (4)

where xi(t) ∈ Rni and ui(t) ∈ Rmi are the state and the control
input, related to the ith subsystem. It is assumed that the topology
of the overall system is known, i.e. it is known which subsystems
interact with each other through their inputs, states or both.
Let the dynamics of the subsystems be described by uncertain
nonlinear discrete-time models:

xi(t + 1) = hi(x(t), u(t)) + ξi(t) , i = 1, 2, . . . , M (5)

where hi : Rn
× Rm

→ Rni is a nonlinear continuous function
and ξi(t) ∈ Rni are Gaussian disturbances. From (5) it can be
seen that the state evolution of each subsystem depends on
the overall state and the overall input, i.e. the subsystems have
coupled dynamics both through their states and inputs. With
known topology of interactions, the uncertainty consists in that
the analytical expressions of hi(x, u) are not known and neither
are the mean values and the covariances of the disturbances ξi(t),
i = 1, 2, . . . , M . The relationships (5) are represented in the
form:

y (t) = h (z(t)) + ξ (t) , i = 1, 2, . . . , M (6)
i i i
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here yi(t) = xi(t + 1) ∈ Rni , i = 1, 2, . . . , M and z(t) =

x(t), u(t)] ∈ Rn+m. Suppose that we have an output data
et Yi,j = [yi,j(0), yi,j(1), . . . , yi,j(L − 1)], i = 1, 2, . . . , M ,

= 1, 2, . . . , ni corresponding to an input data set Z =

z(0), z(1), . . . , z(L − 1)]. Assume that the relationship (6) is
pproximated with Gaussian processes with distributions:

i,1 ∼ N (0,Σi,1) , Yi,2 ∼ N (0,Σi,2) , . . . ,

i,ni ∼ N (0,Σi,ni ) , i = 1, 2, . . . , M (7)

here the covariance functions Σi,1,pq = Covi,1(yi,1(p), yi,1(q)) =

i,1(z(p), z(q)), . . . , Σi,ni,pq = Covi,ni (yi,ni (p), yi,ni (q)) = Ci,ni (z(p),
(q)) with p = 0, 1, . . . , L − 1, q = 0, 1, . . . , L − 1 depend
n the given input and output data sets. Having obtained the
aussian process model (7), the probability distribution of the
utput yi(L) = [yi,1(L), . . . , yi,ni (L)] corresponding to a new
nput z(L) can be determined as described in the previous section:

i,1(L)|z(L), (Z, Yi,1) ∼ N (µ(yi,1(L)), σ 2(yi,1(L)))

(8)

i,ni (L)|z(L), (Z, Yi,ni ) ∼ N (µ(yi,ni (L)), σ
2(yi,ni (L)))

= 1, 2, . . . , M

n (8), µ(yi,j(L)) and σ 2(yi,j(L)) denote respectively the mean and
he variance of the output variable yi,j(L), i = 1, 2, . . . , M , j =

, 2, . . . , ni. We introduce the vectors µyi (L) = [µ(yi,1(L)), . . . ,
(yi,ni (L))], σ 2

yi (L) = [σ 2(yi,1(L)), . . . , σ 2(yi,ni (L))] and the matrix
i = [Yi,1, Yi,2, . . . , Yi,ni ]. Then, the relation (6) is represented:

i(L)|z(L), (Z, Yi) ∼ N (µyi (L), σ
2
yi (L))

= 1, 2, . . . , M (9)

ased on (9), a multi-step ahead prediction can be obtained:

i(L + k)|z(L + k), (Z, Yi) ∼ N (µyi (L + k), σ 2
yi (L + k))

= 1, 2, . . . , M , k = 0, 1, . . . , N − 1 (10)

here N is a prediction horizon. Suppose the initial overall
tate x(t) = xt|t and control inputs u(t + k) = ut+k , k =

, 1, . . . , N − 1 are given. Then, by taking into account that
i(t) = xi(t + 1) and z(t) = [x(t), u(t)], from (10) we obtain
he probability distribution of the predicted states xi,t+k+1|t , i =

, 2, . . . , M , k = 0, 1, . . . , N − 1 which correspond to the
iven initial state xt|t and control inputs ut+k , k = 0, 1, . . . , N−

:

i,t+k+1|t |xt+k|t , ut+k ∼ N (µ(xi,t+k+1|t ), σ 2(xi,t+k+1|t ))

= 1, 2, . . . , M , k = 0, 1, . . . , N − 1 (11)

he 95% confidence interval of the random variable xi,t+k+1|t is
µ(xi,t+k+1|t ) − 2σ (xi,t+k+1|t ); µ(xi,t+k+1|t ) + 2σ (xi,t+k+1|t )], where
(xi,t+k+1|t ) is the standard deviation. Concerning the predictions
ith the GP model (11) the following should be mentioned.
imulation of NARX models is obtained iteratively where the
rediction from the previous step is used in the inputs for the
ext step considered continuing indefinitely or until the end of
he horizon of interest. This makes the inputs uncertain and
e, therefore, have to result to approximations (Kocijan, 2016).
urrently the simulation procedures in GP modelling practice are
oughly divided to: (1) naive simulation, (2) approximation of
tatistical moments, (3) numerical approximation. Naive simu-
ation underestimates the uncertainty, since only the mean is
ropagated to future steps. Since naive simulation is computa-
ionally least demanding, it is used for the proof of concept that is
resented in this paper. The size of uncertainty, even though not
quivalent to other approximation, still indicates the potential

rust in model predictions.

3

For convenience, the predictions of the mean values of xi,t+k+1|t
are represented as:

µ(xi,t+k+1|t ) = E{fGP, i(xt+k|t , ut+k)}

i = 1, 2, . . . , M , k = 0, 1, . . . , N − 1 (12)

where the function fGP, i(xt+k|t , ut+k) is defined by the Gaussian
process (GP) model (1) and E{·} denotes mathematical expecta-
tion. The representation (12) is used further in Section 3.

The constraints imposed on the subsystems are:

xi(t) ∈ Xi , ui(t) ∈ Ui , i = 1, 2, . . . , M (13)

where Xi and Ui are the admissible sets, and the following as-
sumption is made:

A1. The admissible sets Xi and Ui are bounded polyhedral sets,
i.e. they are defined by:

Xi = {xi ∈ Rni | Cx
i xi ≤ dxi }

Ui = {ui ∈ Rmi | Cu
i ui ≤ dui } (14)

where Cx
i ∈ Rnc,xi×ni , Cu

i ∈ Rnc,ui×mi , dxi ∈ Rnc,xi , dui ∈ Rnc,ui and
nc,xi and nc,ui are the number of constraints imposed on xi and ui,
respectively.

It can be seen from (14) that the constraints imposed on
the subsystems are not coupled. In order to consider coupled
constraints, the approach described in the next section should be
slightly modified.

2.3. Formulation of centralized GP-NMPC problem

It is supposed that a full measurement x̄ = [x̄1, x̄2, . . . ,
x̄M ] of the overall state is available at the current time t . The
optimal regulation problem is considered where the goal is to
steer the overall state of the system (5) to the set-point xsp =

[x1,sp, x2,sp, . . . , xM,sp]. For the current overall state x̄, the reg-
ulation GP-NMPC solves the optimization problem:

Problem P1 (Centralized GP-NMPC):

V opt(x̄) = min
U

J(U, x̄) (15)

subject to xt|t = x̄ and:
µ(xi,t+k|t ) − 2σ (xi,t+k|t ) ∈ Xi

i = 1, . . . , M , k = 1, . . . , N (16)
µ(xi,t+k|t ) + 2σ (xi,t+k|t ) ∈ Xi

i = 1, . . . , M , k = 1, . . . , N (17)
ui,t+k ∈ Ui , i = 1, . . . , M , k = 0, 1, . . . , N − 1 (18)
xi,t+k+1|t |xt+k|t , ut+k ∼ N (µ(xi,t+k+1|t ), σ 2(xi,t+k+1|t ))

i = 1, . . . , M, k = 0, 1, . . . , N − 1 (19)
xt+k|t = [x1,t+k|t , . . . , xM,t+k|t ] , k = 0, 1, . . . ,N (20)

ut+k = [u1,t+k, . . . , uM,t+k] , k = 0, 1, . . . , N − 1 (21)

with U = [ut , ut+1, . . . , ut+N−1] and the global cost function:

J(U, x̄) =

M∑
i=1

Ji(U, x̄)

=

M∑
i=1

N∑
k=0

li(µ(xi,t+k|t ), ui,t+k) (22)

Here, Ji(U, x̄) is the local cost function for the ith subsystem with
the stage cost defined by:

li(µ(xi,t+k|t ), ui,t+k) = ∥µ(xi,t+k|t ) − xi,sp∥2
Qi

+ ∥ui,t+k − ui,sp∥
2
Ri (23)

where Qi, Ri ≻ 0 are symmetric weighting matrices, ui,sp is
the steady state value of the control input of the subsystem

corresponding to xi,sp, and N is a finite horizon.
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. Distributed GP-NMPC by sequential linearization

.1. Approximation of the GP-NMPC problem by linear MPC problem

Most often, the covariance function in the stochastic model (1)
s chosen to be the Gaussian function. Therefore, the Gaussian
rocesses (GP) based prediction models (12) of the subsystems
re nonlinear in xt+k|t and ut+k. Here, these models are locally

approximated by linear models. First, consider the deviations
of the state and the control input vectors from their set-point
values:

x̃i,t+k = xi,t+k − xi,sp , ũi,t+k = ui,t+k − ui,sp

k = 0, 1, . . . , N − 1 , i = 1, . . . , M (24)

he models (12) are represented as:

(x̃i,t+k+1|t ) = −xi,sp
+E{fGP, i(x̃t+k|t + xsp, ũt+k + usp)} (25)

= 0, 1, . . . , N − 1 , i = 1, . . . , M

here ũt+k = [ũ1,t+k, . . . , ũM,t+k], x̃t+k = [x̃1,t+k, . . . , x̃M,t+k],
usp = [u1,sp, . . . , uM,sp] and xsp = [x1,sp, . . . , xM,sp]. Let at time
t , Ũ0

i = [ũ0
i,t , ũ

0
i,t+1, . . . , ũ0

i,t+N−1] and X̃0
i = [x̃0i,t|t , x̃0i,t+1|t , . . . ,

x̃0i,t+N−1|t ] be given trajectories of the deviated control input and
the mean of deviated state of the ith subsystem for the prediction
horizon N . Taylor series expansion of the right-hand side of the
model (25) about the point (Ũ0

i , X̃0
i ) leads to the locally linear

model:

µ(x̃i,t+k+1) =

E{

M∑
j=1

(Aij,t+kx̃j,t+k + Bij,t+kũj,t+k) + gi,t+k} (26)

k = 0, 1, . . . , N − 1 , i = 1, . . . , M

where the matrices Aij,t+k, Bij,t+k and the vector gi,t+k are com-
puted as:

Aij,t+k = ∇x̃j fGP, i(x̃
0
t+k|t + xsp, ũ0

t+k + usp)

Bij,t+k = ∇ũj fGP, i(x̃
0
t+k|t + xsp, ũ0

t+k + usp)

gi,t+k = −xi,sp −

M∑
j=1

(Aij,t+kx̃0j,t+k + Bij,t+kũ0
j,t+k)

+fGP, i(x̃0t+k + xsp, ũ0
t+k + usp) (27)

k = 0, 1, . . . , N − 1 , i, j = 1, . . . , M

In (27), ũ0
t+k = [ũ0

1,t+k, . . . , ũ0
M,t+k] and x̃0t+k|t = [x̃01,t+k|t , . . .,

x̃0M,t+k|t ]. It can be observed that (26)–(27) is a linear time-varying
approximation of the model (25).

The following assumption is made:
A2. The standard deviations σ (xi,t+k+1|t ) predicted with the GP

model (11) satisfy:

σ (xi,t+k+1|t ) ≤ σmax,i

i = 1, . . . , M , k = 0, . . . , N − 1 (28)

where σmax,i , i = 1, . . . , M are known.
It should be noted that σmax,i , i = 1, . . . , M is a control-

design parameter provided by a control-system designer based
on simulations with the GP models obtained on the entire range
of data used for the model identification. It can be interpreted as
the upper bound (hard constraint) on admissible trust in model
predictions.

The following tightened constraint sets are introduced:

(1 − δ)X = {x ∈ Rni | Cxx ≤ (1 − δ)dx} (29)
i i i i i s

4

(1 − δ)Ui = {ui ∈ Rmi | Cu
i ui ≤ (1 − δ)dui } (30)

where δ ∈ (0, 1) is the amount of relative constraint tighten-
ing. The reason for the tightening is related to the fact that a
suboptimal solution of the GP-NMPC problem will be found (see
Section 3.3) and it should be ensured that it will keep the original
constraints. Then, the tightened constraint sets of the state and
the control input deviations from their set-point values are:

X̃i = {x̃i ∈ Rni | Cx
i x̃i ≤ (1 − δ)dxi − Cx

i xi,sp} (31)

Ũi = {ũi ∈ Rmi | Cu
i ũi ≤ (1 − δ)dui − Cu

i ui,sp} (32)

For the locally linear dynamics (26)–(27) with initial state x̃0 =

[x̃01,t|t , . . . , x̃0M,t|t ], the linear MPC problem is formulated:
Problem P2 (Centralized linear MPC):

V ∗(x̃0) = min
Ũ

J(Ũ, x̃0) (33)

subject to x̃t|t = x̃0 and:
µ(x̃i,t+k|t ) − 2σmax,i ∈ X̃i

i = 1, . . . , M , k = 1, . . . , N (34)
µ(x̃i,t+k|t ) + 2σmax,i ∈ X̃i

i = 1, . . . , M , k = 1, . . . , N (35)
ũi,t+k ∈ Ũi , i = 1, . . . , M , k = 0, 1, . . . , N − 1 (36)

µ(x̃i,t+k+1) = E{

M∑
j=1

(Aij,t+kx̃j,t+k + Bij,t+kũj,t+k)

+gi,t+k} , k = 0, 1, . . . , N − 1 , i = 1, . . . , M (37)

with Ũ = [ũt , ũt+1, . . . , ũt+N−1] and the cost function given by:

J(Ũ, x̃0) =

M∑
i=1

N∑
k=0

[∥µ(x̃i,t+k|t )∥2
Qi

+ ∥ũi,t+k∥
2
Ri ] (38)

It should be noted that the state constraints (34)–(35) are ex-
pectation constraints, since they are imposed on the predicted
mean of the state variables. Constraining the control operation
to the region of 95% uncertainty using design parameter σmax,i is
based on two ideas: 1) we do not want the controller to go out
of the region where the model is not good enough, 2) we have
a model good enough within acceptable σmax,i set by the control
designer. Good enough is qualitative judgement of the designer,
based on quantitative measures of the model quality. Therefore,
the control design is conditioned on the process’s model quality.
When solving problem P2, the constraints (28) are taken into
account as in Kocijan (2016).

3.2. Representation and solution of the linear MPC problem as a
distributed quadratic programming problem

Similar to Grancharova et al. (2016), by stacking all decision
variables (the control input trajectory and the state trajectory
along the horizon) into one vector S ∈ RnS with dimension
nS =

∑M
i=1 N(ni + mi):

S = [µ(x̃1,t+1|t ), ũ1,t , . . . , µ(x̃1,t+N|t ), ũ1,t+N−1,

... (39)
µ(x̃M,t+1|t ), ũM,t , . . . , µ(x̃M,t+N|t ), ũM,t+N−1]

the optimization problem P2 can be written as a QP problem:
Problem P3 (QP problem):

V ∗(x̃0) = min
S

1
2
STH̄S (40)

ubject to:
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¯S = B̄x̃0 − Ḡ (41)
C̄S ≤ d̄ (42)

ere, H̄ , Ā, B̄, Ḡ, C̄ , and d̄ are matrices/vectors with appropriate
dimensions, which are easily obtained from the matrices/vectors
involved in the formulation of problem P2.

The linear MPC problem P2 can be solved distributedly by
applying the dual accelerated gradient algorithm in Giselsson
et al. (2013). The distribution is enabled by solving the dual
problem to problem P3, which is created by introducing dual
variables λ ∈ RnĀ for the equality constraints (41) and dual
variables η ∈ RnC̄ for the inequality constraints (42). It is shown
in Giselsson et al. (2013) that the dual problem is:

max
λ, η≥0

D(x̃0, λ, η) (43)

where D(x̃0, λ, η) is the dual cost function:

D(x̃0, λ, η) = −
1
2
(ĀTλ + C̄Tη)TH̄−1(ĀTλ + C̄Tη)

−λT(B̄x̃0 − Ḡ) − ηTd̄ (44)

In order to perform distributedly the iterations of the dual gra-
dient method, the vector Si ∈ RnSi (nSi = N(ni + mi)) of decision
variables, associated to the ith subsystem, is introduced:

Si = [µ(x̃i,t+1|t ), ũi,t , . . . , µ(x̃i,t+N|t ), ũi,t+N−1] (45)

Let λi and ηi be the dual variables for the equality and the in-
equality constraints, related to the ith subsystem. The distributed
iterations of the dual gradient method are:

Sri = −H̄−1
i (

M∑
j=1

ĀiT
j λr

j + C̄T
i η

r
i ) (46)

S̄ri = Sri +
r − 1
r + 2

(Sri − Sr−1
i ) (47)

λr+1
i = λr

i +
r − 1
r + 2

(λr
i − λr−1

i )

+
1
L
(ĀiS̄r − (B̄ix̃0i − Ḡi)) (48)

r+1
i = max (0, ηr

i +
r − 1
r + 2

(ηr
i − ηr−1

i )

+
1
L
(C̄iS̄ri − d̄i)) (49)

= 1, 2, . . . , M

here H̄i, Āi, B̄i, Ḡi, C̄i, Āi
j and d̄i are related to the ith subsystem

nd represent submatrices/subvectors of H̄ , Ā, B̄, Ḡ, C̄ , d̄ in prob-
em P3, r is the iteration number and L = ∥[ĀT, C̄T

]
TH̄−1

[ĀT, C̄T
]∥

is the Lipschitz constant to the gradient of the dual function (44).

3.3. Algorithm for distributed GP-NMPC by sequential linearization
and distributed quadratic programming

Here, an algorithm for distributed GP-NMPC is suggested which
is based on achieving Nash equilibrium between the intercon-
nected subsystems. It represents a modification of the distributed
deterministic NMPC algorithm in Grancharova et al. (2016) and
includes two loops. In the outer loop, the GP models (12) of the
stochastic nonlinear subsystems are locally approximated with
linear models (26)–(27) about the current guess for the control
input trajectory and the corresponding trajectory of state mean.
Then, in the inner loop, a suboptimal solution to the resulting
QP problem P3 is found by applying the distributed iterations
(46)–(49) of the dual accelerated gradient method. The iterations
continue until the overall system reaches Nash equilibrium.
5

Before describing the algorithm, the following notation is
introduced. Let U(t) = [ut , ut+1, . . . , ut+N−1] be the current
update of the control input trajectory. Denote with µ(X(t)) =

[µ(xt+1|t ), µ(xt+2|t ), . . . , µ(xt+N|t )] the corresponding state
mean trajectory of the overall system where the constituent
µ(xi,t+1|t ), . . . , µ(xi,t+N|t ), i = 1, . . . , M are predicted with the
GP model (12) for initial state xt|t = x̄ = [x̄1, . . . , x̄M ].

Then, the current update S(t) of the decision variables can
be easily constructed according to (24) and (39). Respectively,
if updates Sr are obtained by performing the iterations (46)–
(49), the corresponding update U r of the control input trajectory
can be extracted from it. Assume that a tolerance ε > 0 of
achieving Nash equilibrium between the subsystems is specified,
i.e. the iterations in the outer loop will terminate if the following
condition is satisfied:

|Ji(U2, x̄) − Ji(U1, x̄)| ≤ ε , ∀i = 1, . . . , M (50)

ere, U1, U2 and Ji(U1, x̄), Ji(U2, x̄), i = 1, . . . , M are the control
nput trajectories and the local cost function values for the sub-
ystems obtained in two sequential iterations in the outer loop of
he algorithm.

Suppose that the design parameters, which are the tolerance
, the number R of iterations (46)–(49) and the relative constraint
ightening δ are specified. Then, the algorithm in Table 1 is used.

In general, it would be necessary to perform an offline study
f the performance of the algorithm with different values of the
arameters ε, R and δ in order to ensure that the computed
uboptimal NMPC in closed-loop with the stochastic system (5)
escribed by the GP model (12) will lead to feasibility, stability
nd desired performance.

. Example

.1. System description

Sewer networks are distributed systems that consist of pipes,
ewer stretches (in-line storage), retention reservoirs (off-line
torage) with overflow capabilities, and nodes for merging of
lows from different catchments. Combined sewer networks col-
ect domestic and industrial sewage as well as rainwater drainage.
uring rainfall, they may be overloaded, therefore, real-time con-
rol over the distribution of collected water in the sewer network
s required (Marinaki & Papageorgiou, 2005). Optimal operation
mplies that at rain events, the whole retention capacity of all
eservoirs in the sewer is used before overflows of polluted water
r surface flooding take place somewhere in the network. On the
ther hand, during dry weather conditions, the sewer storage ca-
acities can be used for the smoothing of peak discharges towards
he wastewater treatment plant. To address the distributed sys-
em control problem, a simple yet realistic model was designed
ased on a simplified routing of model flows through a series of
eservoirs (Schütze & Beck, 2002). In our case, the model with two
nteracting tanks was used (Fig. 1) to consider also the backwater
ffects that appear in the pipe when the amount of water in the
ystem is too high to process downstream.
The mathematical description of the two-tank set-up in Fig. 1

s the following. We presume nonlinear valve characteristic:

1
dh1

dτ
= −k1

√
h1(τ ) − h2(τ ) + φ1(τ ) (51)

2
dh2

dτ
= k1

√
h1(τ ) − h2(τ ) − φ2(τ ) (52)

ere, τ is the continuous time, h1 and h2 are the heights of liquid
n the tanks, S1 and S2 are the cross sectional areas of the tanks,

and φ are the volumetric flows, and k is valve characteristic
1 2 1
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h

k

Table 1
Algorithm for distributed GP-NMPC.
1. Given ε, R and δ. Let t = 0, U(t) = [usp, usp, . . . , usp].
2. Let the state at time t be x̄ = [x̄1, . . . , x̄M ].
3. Compute the state mean trajectory µ(X(t)) corresponding to initial state x̄ and control input trajectory U(t) by using the GP model (12) and

the associated local cost function values Jnew, i := Ji(U, x̄) , i = 1, . . . , M in (22). Form the vector S(t) of decision variables.
4. Do
5. Jold, i := Jnew, i , i = 1, . . . , M
6. Obtain a linearized model (26)–(27) of the model (12) around the trajectories (U(t), µ(X(t))).
7. For r = 0, 1, . . . , R do
8. If r = 0 then
9. Initialize iterations (46)–(49) with S−1

= S(t), λ0
= λ−1

= 0, η0
= η−1

= 0.
10. else
11. Let Sr−1

:= Sr , λr−1
:= λr , λr

:= λr+1 , ηr−1
:= ηr , ηr

:= ηr+1 .
12. end
13. Run (46)–(49) distributedly by communicating Sri and λr

i , i = 1, . . . , M between interconnected subsystems and obtain
Sr , λr+1 , ηr+1 for the overall system. Extract U r from Sr .

14. end
15. Let U(t) = UR .
16. Compute the state mean trajectory µ(X(t)) corresponding to initial state x̄ and control input trajectory U(t) by using the GP model

(12) and the associated local cost function values Jnew, i := Ji(U, x̄) , i = 1, . . . , M in (22). Form the vector S(t) of decision variables.
17. while Nash equilibrium is reached (|Jnew, i − Jold, i| < ε , ∀i = 1, . . . , M)
18. Apply to the overall system the input u(t) = [I 0 . . . 0]U(t).
19. Let t = t + 1 and go to step 2.
e
d
a
1

Θ

Θ

O
a
d
s

σ

Fig. 1. The concept of interacting reservoirs for simplified modelling of relatively
flat sewers where backwater phenomena may occur.

that relates to valve opening. The model (51)–(52) is discretized
by applying the Euler method with sampling time Ts:

1(t + 1) = h1(t) − (Ts/S1)k1
√
h1(t) − h2(t)

+ (Ts/S1)φ1(t) (53)
h2(t + 1) = h2(t) + (Ts/S2)k1

√
h1(t) − h2(t)

− (Ts/S2)φ2(t) (54)

where t is the discrete time. For simulation purpose, the following
parameter values are used: Ts = 1 min, S1 = 2.3130 m2,
S2 = 2.1048 m2. For the simplified sewer system, φ2(t) and
1(t) are the control inputs, h1(t) and h2(t) are the states, and

(Ts/S1)φ1(t) is considered as a stochastic disturbance. The overall
system consists of two interacting subsystems described by:

x1(t + 1) = x1(t) − 0.4323u1(t)
√
x1(t) − x2(t) + v(t) (55)

x2(t + 1) = x2(t) + 0.4751u1(t)
√
x1(t) − x2(t)

− 0.4751u2(t) (56)

Here, v is Gaussian disturbance, defined by v = N (0, 0.022).
The two subsystems are coupled through their states and the
control input u1. The control goal is to adjust u1 and u2 so that the
desired level of sewage in both tanks is maintained with minimal
deviation from the set-point despite of input flow variations. Each
of subsystems has been modelled as a GP model. In both cases
the following model parameters squared-exponential covariance
function is used:

C(z(tp), z(tq)) = v1 exp

[
−

1
2

D∑
wi(zi(tp) − zi(tq))2

]
(57)
i=1

6

where z(tp) and z(tq) are the input vectors to the GP model taken
at the discrete times tp and tq. For subsystem (55), the input
vector is z(tp) = [x1(tp), x2(tp), u1(tp)], while for subsystem (56)
we have z(tp) = [x1(tp), x2(tp), u1(tp), u2(tp)]. Inputs for mod-
ls’ identification are generated as random values with uniform
istribution for all regressors. The estimated hyperparameters Θ1

nd Θ2 of the GP models of subsystems (55) and (56) based on
000 training samples are:
1

= [w1
1, w1

2, w1
3, v1

1]

= [0.4275, 0.1989, 0.0005, 1.0167]
2

= [w2
1, w2

2, w2
3, w2

4, v2
1] (58)

= [6.7230, 6.8256, 0.0008, 0.0046, 0.1707]

ther parameters used for GP models are zero mean function
nd the exact inference method with Gaussian likelihood. The
esign parameters from Assumption A2 associated to the two
ubsystems are:

max,1 = 0.025 , σmax,2 = 0.009 (59)

and they are never violated with the suggested approach.
The set-point values of x1, x2 and the corresponding steady-

state values of u1, u2 (obtained by optimization of the system
behaviour for decaying disturbances) are:

x1,sp = 1.5 m , x2,sp = 1.2 m

u1,sp = 0.15 m2√m/min , u2,sp = 0.05 m3/min (60)

The constraints imposed on the system (55)–(56) are:

0.1 ≤ u1(t) ≤ 0.2 m2√m/min (61)
0 ≤ u2(t) ≤ 0.1 m3/min (62)
x1(t) ≤ 1.8 m (63)

4.2. Simulation results

The prediction horizon in the centralized GP-NMPC problem
is N = 5 and the weighting matrices in the local cost functions
in (22) are Q1 = Q2 = 10, R1 = R2 = 0.1. The performance of
the distributed GP-NMPC in closed-loop with the system (55)–
(56) is studied for the case of a persistent stochastic disturbance
v (related to the input flow φ1). This pattern represents the
usual time-variable release of domestic and industrial sewage
to the sewer. The described algorithm is used to generate the
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1
a
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Fig. 2. The persistent stochastic disturbance v.

Fig. 3. Trajectories of the control inputs u1 and u2 .

wo control inputs for initial states of the subsystems x1(0) =

.73 m, x2(0) = 1.6 m. The trajectories of the control inputs
nd the states obtained for the disturbance (shown in Fig. 2)
re depicted in Fig. 3 and Fig. 4. The trajectories obtained with
7

Fig. 4. Trajectories of the state variables x1 and x2 .

the distributed GP-NMPC approach are compared to those corre-
sponding to the centralized approach, which solves problem P1
at each time instant. The values of the design parameters in the
algorithm are δ = 0.2, ε = 0.03 and R = 70. It can be seen that
the distributed GP-NMPC approach leads to feasible trajectories
and the level of suboptimality is acceptable in sense that the sub-
optimality of the approach does not lead to a significant increase
in the accumulated cost function value. In Fig. 4, the interval
defined by ±2σmax,1 around the state x1 of the system (55)–(56)
in response to the distributed GP-NMPC is also depicted. It can
be seen that this interval approaches the upper bound on x1, but
it does not violate it. The computational cost per sampling time
of the distributed and the centralized approaches is compared
and the results are presented in Table 2. The computations are
performed on a 3.10 GHz AMD Ryzen 3 1200 quad-core pro-
cessor. The distributed GP-NMPC has orders of magnitude less
computational costs in comparison to the centralized approach.
It also allows the computation of the suboptimal control inputs
to be done autonomously by the subsystems without the need for
centralized optimization and it has a simple software implemen-
tation. As a limitation, one may consider the necessity to perform
an offline study of the performance of the proposed algorithm
with different values of the design parameters in order to ensure
closed-loop stability and desired performance.
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Table 2
Comparison of GP-NMPC approaches.
Method Average CPU time, s Maximal CPU time, s

Distributed NMPC 0.10 0.34
Centralized NMPC 11.54 55.94

5. Conclusions

A suboptimal approach to distributed GP-NMPC is proposed
ased on Gaussian process models of the interconnected systems
ynamics. It has a reduced complexity of the on-line computa-
ions and its simple software implementation makes it attractive
or the implementation as embedded control. The simulations on
he model of a sewer system demonstrate that the distributed
P-NMPC approach leads to feasible trajectories and the level
f suboptimality is acceptable. Its applications to more complex
ystems and its further development are envisioned in the future.
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