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Abstract

The Gaussian process model is an example of a flexible, probabilistic, nonparametric model
with uncertainty predictions. It can be used for the modelling of complex nonlinear systems and
recently it has also been used for a dynamic systems identification. Gaussian process models
have become an emerging, complementary method for a nonlinear system identification. The
output of the GP model is a normal distribution, expressed in terms of mean and variance.
The mean value represents the most likely output and the variance can be interpreted as the
measure of its confidence. The modelling case study of gas-liquid separator is presented in the
paper. The emphasis of the paper is on the comparison of three methods for dynamic model
simulation based on Gaussian processes in the phase of model validation. All three presented
methods are approximations. The ‘naive’ simulation is feeding back only the mean values of
model predicted values. The Taylor approximation approach and ‘exact’ approach approximate
the model predicted distribution with Gaussian distribution, but in different ways. The level of
computational burden associated with each approach rises with the complexity of computation
necessary for approximation of uncertainty propagation. Therefore a trade off between the level
of uncertainty propagation approximation and computational burden is present.

Keywords: Dynamic system models, System identification, Gaussian process models, sim-
ulation.
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1 Introduction

While there are numerous methods for the identifica-
tion of linear dynamic systems from measured data, the
nonlinear systems identification requires more sophisti-
cated approaches. The most common choices include
artificial neural networks, fuzzy models etc. Gaus-
sian process (GP) models present an emerging, comple-
mentary method for a nonlinear system identification.
The GP model is a probabilistic, non-parametric black-
box model. It differs from most of the other black-
box identification approaches as it does not try to ap-
proximate the modelled system by fitting the parame-
ters of the selected basis functions but rather searches
for the relationship among measured data. GP models
are closely related to approaches such as Support Vec-
tor Machines and specially Relevance Vector Machines
[7]. The output of the GP model is a normal distri-
bution, expressed in terms of mean and variance. The
mean value represents the most likely output and the
variance can be interpreted as the measure of its con-
fidence. The obtained variance, which depends on the
amount and quality of the available identification data,
is important information, distinguishing the GP model
from other methods. The GP model structure determi-
nation is facilitated as only the covariance function and
the regressors of the model need to be selected. Also
the number of model parameters, which need to be op-
timised is smaller than in other black-box identification
approaches. The disadvantage of the method is the po-
tential computational burden for optimization, which
increases with the amount of data and the number of
regressors. The GP model was first used for solving a
regression problem in the late seventies, but it gained
popularity within the machine learning community in
the late nineties of the twentieth century. Results of a
possible implementation of the GP model for the iden-
tification of dynamic systems were presented only re-
cently. The investigation of the model with uncertain
inputs, which enables the propagation of uncertainty
through the model, is given in [2] and illustrated in [5].

The paper is composed as follows. The next section will
briefly describe the modelling of dynamic systems with
Gaussian process models. The description of dynamic
systems simulation will follow in the third section. The
case study is described next. Conclusions are given at
the end of paper.

2 Modelling of Dynamic Systems with
Gaussian Processes

A Gaussian process is an example of the use of a flex-
ible, probabilistic, non-parametric model with uncer-
tainty predictions. Its use and properties for modelling
are reviewed in [7].

A Gaussian process is a collection of random variables
which have a joint multivariate Gaussian distribution.
Assuming a relationship of the formy = f(x) be-
tween an inputx and outputy, we havey1, . . . , yn ∼
N (0, Σ), whereΣpq = Cov(yp, yq) = C(xp,xq) gives
the covariance between output points corresponding to

input pointsxp and xq. Thus, the meanµ(x) (usu-
ally assumed to be zero) and the covariance function
C(xp,xq) fully specify the Gaussian process. Note that
the covariance functionC(., .) can be any function hav-
ing the property of generating a positive definite covari-
ance matrix.

A common choice is

C(xp,xq) = v1 exp

[
−1

2

D∑

d=1

wd(xd
p − xd

q)
2

]
+δpqv0,

(1)
whereΘΘΘ = [w1 . . . wD v0 v1]T are the ‘hyperparame-
ters’ of the covariance functions,v0 is estimated noise
variance,v1 is the estimate of the vertical scale of
variation, D is the input dimension andδpq = 1 if
p = q and 0 otherwise. Other forms of covariance
functions suitable for different applications can be
found in [7]. For a given problem, the parameters are
learned (identified) using the data at hand. After the
learning, one can use thew parameters as indicators of
‘how important’ the corresponding input components
(dimensions) are: ifwd is zero or near zero it means
that the inputs in dimensiond contain little information
and could possibly be removed.

Consider a set ofN D-dimensional input vectorsX =
[x1,x2, . . . ,xN ] and a vector of output datay =
[y1, y2, . . . , yN ]T . Based on the data(X,y), and given
a new input vectorx∗, we wish to find the predictive
distribution of the corresponding outputy∗. Unlike
other models, there is no model parameter determina-
tion as such, within a fixed model structure. With this
model, most of the effort consists intuning the param-
eters of the covariance function. This is done by max-
imizing the log-likelihood of the parameters, which is
computationally relatively demanding since the inverse
of the data covariance matrix (N ×N ) has to be calcu-
lated at every iteration. Nevertheless, the number of pa-
rameters to be optimized is small (D + 2, see Eq. (1)),
which means that optimization convergence might be
faster and that the ‘curse of dimensionality’ so common
to black-box identification methods is circumvented or
at least decreased.

The described approach can be easily utilized for re-
gression calculation. Based on training setX a covari-
ance matrixK of sizeN × N is determined. As al-
ready mentioned, the aim is to find the distribution of
the corresponding outputy∗ at some new input vector
x∗ = [x1(N + 1), x2(N + 1), . . . , xD(N + 1)]T .

For a new test inputx∗, the predictive distribution of the
corresponding output isy∗|(X,y),x∗ and is Gaussian,
with mean and variance

µ(x∗) = k(x∗)T K−1 y, (2)

σ2(x∗) = κ(x∗) − k(x∗)T K−1 k(x∗),
(3)

wherek(x∗) = [C(x1,x∗), . . . , C(xN ,x∗)]T is the
N × 1 vector of covariances between the test and train-
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ing cases, andκ(x∗) = C(x∗,x∗) is the covariance
between the test input and itself.

Gaussian processes can, like neural networks, be used
to model static nonlinearities and can therefore be used
for modelling of dynamic systems [1, 2, 3, 5] if delayed
input and output signals are fed back and used as regres-
sors. In such cases an autoregressive model is consid-
ered, such that the current output depends on previous
outputs, as well as on previous control inputs.

x(k) = [y(k − 1), y(k − 2), . . . , y(k − L),

u(k − 1), u(k − 2), . . . , u(k − L)]T ,

ŷ(k) = f(x(k)) + ε, (4)

wherek denotes the consecutive number of data sam-
ple. Letx denote the state vector composed of the pre-
vious outputsy and inputsu up to a given lagL, andε
is white noise.

As can be seen from the presented relations, the ob-
tained model not only describes the dynamic character-
istics of nonlinear system, but also provides informa-
tion about the confidence in these predictions by means
of prediction variance. The Gaussian process can high-
light areas of the input space where prediction quality
is poor, due to the lack of data, by indicating the higher
variance around the predicted mean.

3 Dynamic model simulation
When only the mean values of model predicted values
are feed back the simulation was named ‘naive’. How-
ever, to get more realistic picture of the dynamic model
multi-step ahead prediction we have to take account of
the uncertainty of future predictions which provide the
‘inputs’ for estimating further means and uncertainties.
The partial overview of results given in [2] is given as
follows.

In the case of multi-step ahead prediction we wish to
make a prediction atx∗, where input vectorx∗ contains
also uncertain inputs fed back from outputs. Within a
Gaussian approximation, input values can be described
by normal distributionN (µµµx∗ ,ΣΣΣx∗), whereµµµx∗ and
ΣΣΣx∗ are the vector and the matrix of input mean val-
ues and variances respectively. To obtain a predic-
tion we need to integrate the predictive distribution
p(y∗|(X,y),x∗) over the input distribution, that is

p(y∗|(X,y),µµµx∗ ,ΣΣΣx∗)

=
∫ +∞

−∞
p(y∗|(X,y),µµµx∗)p(x∗|µµµx∗ ,ΣΣΣx∗)dx∗,

(5)

where

p(y∗|(X,y),x∗)

=
1√

2πσ2(x∗)
exp

[
− (y∗ − µ(x∗))2

σ2(x∗)

]
.

(6)

Sincep(y∗|(X,y),x∗) is a nonlinear function ofx∗,
the new predictive distributionp(y∗|(X,y),µµµx∗ ,ΣΣΣx∗)

is not Gaussian and this integral cannot be solved with-
out using approximation.

Approximations can be roughly divided into numerical,
for example Monte-Carlo numerical methods, and ana-
lytical approximations.

3.1 Analytical approximation with Taylor expan-
sion

In order to achieve computational simplicity the analyt-
ical approximation which consists of computing only
the first two moments, namely the mean and variance
of p(f(x∗)|(X,y),x∗) can be used.

To distinguish betweenµ(x∗) and σ2(x∗), the mean
and variance of the Gaussian predictive distribution in
the case when there are no uncertain inputs, we de-
note by m(µµµx∗ ,ΣΣΣx∗) the mean and byv(µµµx∗ ,ΣΣΣx∗)
the variance of the non-Gaussian predictive distribu-
tion p(y∗)|(X,y),µµµx∗ ,ΣΣΣx∗), corresponding tox∗ ∼
N (µµµx∗ ,ΣΣΣx∗). This can be interpreted as a Gaussian
approximation, such that

p(y∗|(X,y),µµµx∗ ,ΣΣΣx∗) ≈ N (m, v). (7)

The predictive mean and variance of the output corre-
sponding to a noisy inputx∗ are obtained by solving
[2]

m = Ex∗ [µ(x∗)], (8)

v = Ex∗ [σ2(x∗)] + varx∗ [µ(x∗)]
= Ex[σ2(x)] + Ex[µ(x)2]− (Ex[µ(x)])2,

(9)

whereEx∗ [·] denotes the expectation for expression in
brackets at the noisy inputx∗.

Instead of working with the expressions ofµ(x∗) and
σ2(x∗), equations (8) and (9) are solved by approximat-
ing directlyµ(x∗) andσ2(x∗) by their first and second
order Taylor expansions respectively aroundµµµx∗ . The
second order expansion is required in order to get a cor-
rection term for the new variance. This is a relatively
rough approximation.

Consequently, within a Gaussian approxima-
tion and a Taylor expansionµ(x∗) and σ2(x∗)
around x∗ = µµµx∗ , the predictive distribu-
tion is again Gaussian with mean and variance
[2]

m(µµµx∗ ,ΣΣΣx∗) = Ex∗ [µ(x∗)]

≈ k(µ(x∗)T K−1y, (10)

v(µµµx∗ ,ΣΣΣx∗) = Ex∗ [σ2(x∗)] + varx∗(µ(x∗))

≈ σ2(µ(x∗)) +
1
2

Tr

{
∂2σ2(x∗)
∂x∗∂x∗T

∣∣∣∣
x∗=µµµx∗

ΣΣΣx∗

}

+
∂µ(x∗)

∂x∗

∣∣∣∣
T

x∗=µµµx∗
ΣΣΣx∗

∂µ(x∗)
∂x∗

∣∣∣∣∣
x∗=µµµx∗

.

(11)
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For a more detailed derivation see [2]. Eqs. (10) and
(11) can be applied to calculation of multi-step ahead
prediction with propagation of uncertainty.

3.2 Alternative analytical approximation

The alternative approach to approximation is that in-
stead of approximation of entire mean and variance
only the integral of (5) is approximated. The simula-
tion with this kind of approximation is named ‘exact’.
The expressions for mean and variance are expressions
(8) and (9). We consider the Gaussian covariance func-
tion given by (1). Since what we get at the nonlinear
system output as a response to noisy input with Gaus-
sian distribution is not really a Gaussian distribution, it
is denoted byN for notational convenience (not byN
as Gaussian distributions), because it just denotes some
function of the same parametric form. We write it as we
would a Gaussian distribution forxi, centered onxj :

C(xi,xj) = τNxi(xj ,W) (12)

with
τ = (2π)D/2|W|1/2v1 (13)

whereW = diag[w1, . . . , wD].

We have seen that in order to predict at a noisy in-
put, we needed to integrate the predictive distribution
over the input distribution (Eq. (5)). Then, a Gaus-
sian analytical approximation of this integral reduced
the problem to computing the mean and variance of
p(f(x)|D,µµµx∗ ,ΣΣΣx∗).

The exact derivations can be found in [4]. Here we are
presenting just the final results.

The new predictive mean is equivalent to that obtained
for a noise-free test input, except that the covariance
between the noisy input and the noise-free training in-
put is computed using amodifiedcovariance function
which accounts for the uncertainty on the test input. We
can write

m(µµµx∗ ,ΣΣΣx∗) =
N∑

i=1

βiCmod1(µµµx∗ ,xi) (14)

where

Cmod1(µµµx∗ ,xi) = v1|I + W−1ΣΣΣx∗ |−1/2

exp
[
−1

2
(µµµx∗ − xi)T (W + ΣΣΣx∗)−1(µµµx∗ − xi)

]

(15)

I is D × D identity matrix andβi is i-th element of
vectorβββ = K−1y.

That is to say, the correlation length is ‘lengthened’ to
account for the uncertainty on the new input and the
vertical amplitude of variation (formally controlled by
v1) is accordingly diminished.

The new predictive variance can also be written using

modified covariance functions

v(µµµx∗ ,ΣΣΣx∗) = v1

+
N∑

i,j=1

(βiβj −K−1
ij )Cmod2(xi,xj)Cmod3

−m2(µµµx∗ ,ΣΣΣx∗) (16)

where Cmod2(xi,xj) = τNxi(xj , 2W) and

Cmod3(µµµx∗ ,xb) = τNµµµx∗

(
xi+xj

2 , W
2 + ΣΣΣx∗

)
.

4 Modelling case study

4.1 Gas-liquid separation plant

The semi-industrial process plant used for the case
study in the paper is the unit for separating the gas from
liquid that forms part of a larger pilot plant. The scheme
of plant is given in Fig. 1.
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F l u e  g a s

W a t e r

I 1

Fig. 1 The scheme of gas-liquid separation plant

The role of the separation unit is to capture flue gases
under low pressure from the effluent channels by means
of water flow, to cool them down and then supply them
under high-enough pressure to other parts of the pilot
plant.

The flue gases coming from the effluent channels are
absorbed by the water flow into the water circulation
pipe through injector.

The water flow is generated by the water ring pump.
The speed of the pump is kept constant. The pump
feeds the mixture of water and gas into the tank, where
gas is separated from water. Hence the accumulated gas
in tank forms a sort of ‘gas cushion’ with increased in-
ternal pressure. Owing to this pressure, the flue gas is
blown out from tank into the neutralization unit. On the
other side, the ‘cushion’ forces water to circulate back
to the reservoir. The quantity of water in the circuit is
constant.
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In order to understand the basic relations among vari-
ables and to illustrate the nonlinearity of the process a
mathematical model is introduced. The gas-liquid sep-
aration pressure sub-system of interest can be described
by a set of two equations.

dp1

dt
=

1
S1(hT1 − h1)

(p0(α0 + α1p1 + α2p
2
1

− k1R
u1−1
1

√
p1) + (p0 + p1)(Φw

− k2R
u2−1
2

√
p1 + kw(h1 − hT2))),

dh1

dt
=

1
S1

(Φw − k2R
u2−1
2

√
p1 + kw(h1 − hT2)),

(17)

whereui is the command signal of valve Vi, i = 1, 2,
hi is the level in tank Ti, i = 1, 2, p1 is the relative
air pressure in tank T1,Si is the section area of tank
Ti, p0 is atmospheric pressure,hTi is height of tank Ti,
i = 1, 2, Ri is the ratio of flows at maximum and mini-
mum aperture of valve Vi, i = 1, 2, ki is the flow coef-
ficient of valve Vi, i = 1, 2, Φw is the known constant
water flow through pump P1i = 1, 2, αi; i = 1, 2, 3 are
constant parameters.

From the model presented, it can be seen that the non-
linear process is of a multivariable nature (two inputs
and two outputs with dynamic interactions between the
channels). In our case a level feedback control was im-
plemented. Consequently the dynamic system could
be approached as a single-input single-output dynamic
system with the command signal of valve V1 as the in-
put and the pressure in tank T1 as the output. As can be
seen from Eqs. (17) pressure is nonlinearly related to
level and input flow which results in different dynamic
behaviour depending on the operating region.

The real-time experiments were pursued in the en-
vironment schematically shown in Fig. 2. User-

Fig. 2 Experimental set-up for data acquisition and con-
trol algorithm testing

friendly experimentation with the process plant is en-

abled through interface with the Matlab/Simulink envi-
ronment [6]. This interface enables PLC access with
the Matlab/Simulink using DDE protocol via Serial
Communication Link RS232 or TCP/IPv4 over Ether-
net IEEE802.3. Control algorithms for experimentation
can be prepared in Matlab code or as Simulink blocks
and extended with functions/blocks, which access PLC.
In our case all schemes for data acquisition were put to-
gether as Simulink blocks.

4.2 Process identification

Since the process to be identified is characterised as pre-
dominantly the first order system, a model of the form
(18) is identified

p1(k + 1) = f(p1(k), u1(k), h1(k)), (18)

which means that pressurep1(k), valve signalu1(k)
and liquid levelh1(k) are selected for regressors. Pres-
surep1(k) is fed back as distribution, and the predicted
mean and variance are calculated in three different ways
as described in the previous section. Attempts have
been made to identify the system with a higher order
model, but the results were not better.

Based on the response and iterative cut-and-try proce-
dure, a sampling time of 15 seconds is selected. Iden-
tification data consists of pseudo random changes of
valve signalu1 in regions with different liquid levelh1,
so that as wide a region as possible was encompassed
in 967 samples for each signal.

Obtained hyperparameters of the first order Gaussian
process were:

ΘΘΘ = [w1, w2, w3, v0, v1]
= [20.2759, 78.0774, 0.1517, 2.9145 · 10−5,

0.1162], (19)

where hyperparmeterw1 corresponds to pressure signal
p1, w2 corresponds to valve signalu1, w3 corresponds
to level signalh1, v0 is estimated noise variance, andv1

is the estimate of the vertical scale of variation.

The validation signals that are given in Fig. 3 are differ-
ent from the identification signals, though of the same
kind. Response of the model to validation signal and
comparison with process response are given in Figs. 4,
5 and 6.

It is difficult to notice differences among responses and
especially confidence bounds that correspond to stan-
dard deviation multiplied by 2 in Figs. 4, 5 and 6. Con-
fidence bounds comparison is more pronounced in the
graph of standard deviation changes, which is given in
Fig. 7. The standard deviation in the case of ‘exact’
simulation is larger, though standard deviations of other
two approaches also indicate regions where identifica-
tion data was sparse.

Fitting of the response for validation signal is evaluated
with the following measures:
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Fig. 3 Validation signal and response
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Fig. 4 Simulation results for ‘naive’ simulation
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Fig. 5 Simulation results for simulation with Taylor ap-
proximation
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Fig. 6 Simulation results for ‘exact’ simulation
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• average squared test error

ASE =
1
N

N∑

i=1

(ŷi − yi)2, (20)

• log density error

LD =
1

2N

N∑

i=1(
log(2π) + log(σ2

i ) +
(ŷi − yi)2

σ2
i

)

(21)

The evaluation results are given in Tab. 1. The results

Tab. 1 Fitting of the response for validations signal

ASE LD
‘naive’ simulation 3.2744·10−4 365.78

Taylor approximation 3.2744·10−4 149.07
‘exact’ simulation 3.2753·10−4 -1.37

for ‘exact’ simulation show low value of both measures.
The relatively low value of average squared test error in
comparison with the relatively high value of log den-
sity error for ‘naive’ simulation and simulation with
Taylor approximation of uncertainty propagation shows
that while the model mean values follow the process
response well, the variance may not be large enough.
Nevertheless, the standard deviation still clearly indi-
cates the regions where identification data is sparse, as
can be seen from Fig. 7, which is good enough for cer-
tain purposes, for example control design. The calcula-
tion times for ‘naive’ simulation can be a magnitude of
order lower than in the ‘exact’ simulation depending on
the system order.

5 Conclusions

The modelling case study of gas-liquid separator was
presented in the paper. The emphasis of the paper
was on the comparison of three methods for dynamic
model simulation based on Gaussian processes. All
three methods are approximations. The ‘naive’ simu-
lation is feeding back only the mean values of model
predicted values. The Taylor approximation approach
and ‘exact’ approach approximate the model predicted
distribution with Gaussian distribution, but in different
ways.

The level of computational burden rises with the com-
plexity of computation. Different approaches give dif-
ferent confidence bounds, but it is an important ques-
tion whether the increased precision is worth increased
computational complexity. The purpose of developed
model is the main issue that helps answering this ques-
tion. If the absolute value of variance is an issue in
the developed model than computational cost is accept-
able. In the case that only the indication of confidence
in the model prediction is required than ‘naive’ simula-
tion will suffice.
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