March 29, 2017
On Wednesday, March 29, 2017, our Department member Prof. Dr.Juš Kocijan is presenting at Jožef Stefan Institute Lecture Hall a lecture entitled Probabilistic kernel method for system identification.
From the content:
The Gaussian-process model is an example of a probabilistic, kernel-regression model that can be used for the identification of nonlinear dynamic systems. It possesses several interesting features like model predictions contain the measure of confidence; the model has a small number of optimisation parameters and different possibilities of including prior knowledge. The Gaussian-process approach to modelling alleviates any model bias by not focusing on a single dynamics model, but by using a probabilistic dynamics model, a distribution over all plausible dynamics models that could have generated the observed experience. The framework for the identification of dynamic systems with Gaussian- process models will be presented and illustrated with a case study.
Video lecture: http://videolectures.net/kolokviji_kocijan_jedrna_metoda/
Home |
News |
Contact |
Language |
Login
Introduction |
People |
R&D topics |
Projects |
Education |
Publications |
Applications |
Partners |
Career
Copyright © 2007-2024 IJS All rights reserved.