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Abstract— Different models can be used for nonlinear dy-
namic systems identification and the Gaussian process model
is a relatively new option with several interesting features:
model predictions contain the measure of confidence, the model
has a small number of training parameters and facilitated
structure determination, and different possibilities of including
prior knowledge exist. In this paper the framework for the
identification of a dynamic system model based on the Gaussian
processes is presented and a short survey with a comprehensive
bibliography of published works on application of Gaussian
processes for modelling of dynamic systems is given.

I. INTRODUCTION
While there are numerous methods for the identification

of linear dynamic systems from measured data, the non-
linear systems identification requires more sophisticated ap-
proaches. The most common choices include artificial neural
networks, fuzzy models and others. Gaussian process (GP)
models present a new, emerging, complementary method for
nonlinear system identification.

The GP model is a probabilistic, non-parametric black-
box model. It differs from most of the other black-box
identification approaches as it does not try to approximate
the modelled system by fitting the parameters of the selected
basis functions but rather searches for the relationship among
measured data. Gaussian process models are closely related
to approaches such as Support Vector Machines and specially
Relevance Vector Machines [3].

The output of the Gaussian process model is a normal
distribution, expressed in terms of mean and variance. The
mean value represents the most likely output and the vari-
ance can be interpreted as the measure of its confidence.
The obtained variance, which depends on the amount and
quality of available identification data, is important infor-
mation distinguishing the GP models from other methods.
The GP model structure determination is facilitated as only
the covariance function and the regressors of the model
need to be selected. Another potentially useful attribute of
the GP model is the possibility to include various kinds
of prior knowledge into the model, see e.g. [46] for the
incorporation of local models and the static characteristic.
Also the number of model parameters, which need to be
optimised is smaller than in other black-box identification
approaches. The disadvantage of the method is the potential
computational burden for optimization that increases with
amount of data and number of regressors.

The GP model was first used for solving a regression
problem in the late seventies, but it gained popularity within
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the machine learning community in the late nineties of the
twentieth century. Results of a possible implementation of
the GP model for the identification of dynamic systems were
presented only recently, e.g. [11], [54]. The investigation of
the model with uncertain inputs, which enables the propaga-
tion of uncertainty through the model, is given in [20], [33],
[39] and illustrated in [27], [47] and many others.

The purpose of this paper is twofold. First, to present the
procedure of dynamic system identification using the model
based on Gaussian processes taken from [83]. Second, a
comprehensive bibliography of published works on Gaussian
processes application for modelling of dynamic systems with
a short survey is given.

Many of dynamic systems are often considered as com-
plex, however simplified input/output behaviour representa-
tions are sufficient for certain purposes, e.g. feedback control
design, prediction models for supervisory control, etc. In the
paper it is explained how the advantages of Gaussian process
models can be used in identification and validation of such
models.

The paper is organised as follows. In Section 2 basic
principles of the GP model and its use in dynamic system
identification are described. The methodology of the identi-
fication with a GP model is given in Section 3. Section 4
contains a short survey of comprehensive bibliography on
GP modelling of dynamic systems. In the last section the
discussion and main conclusions are gathered.

II. MODELLING OF DYNAMIC SYSTEMS WITH GAUSSIAN
PROCESSES

A. Modelling with the GP model

Here, modelling with the GP model is presented only in
brief, for a more detailed explanation see e.g. [79].

A Gaussian process is a Gaussian random function, fully
described by its mean and variance. Gaussian processes can
be viewed as a collection of random variables f(xi) with
joint multivariate Gaussian distribution: f(x1), . . . , f(xn) ∼
N (0,K). Elements Kij of the covariance matrix K are
covariances between values of the function f(xi) and f(xj)
and are functions of corresponding arguments xi and xj :
Kij = C(xi,xj). Any function C(xi,xj) can be a covari-
ance function, providing it generates a nonnegative definitive
covariance matrix K.

Certain assumptions about the process are made implicitly
with the covariance function selection. The stationarity of the
process results in the value of covariance function C(xi,xj)
between inputs xi and xj depending only on their distance
and being invariant to their translation in the input space,
see e.g. [79]. Smoothness of the output reflects in outputs



f(xi) and f(xj) having higher covariance when inputs xi

and xj are closer together. The common choice [79] for the
covariance function, representing these assumptions, is the
Gaussian covariance function:

C(xi,xj) = cov[f(xi), f(xj)]

= v exp
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where D is the length of vector x and ΘΘΘ =
[w1, . . . , wD, v, v0]T is a vector of parameters called hyper-
parameters.1 The first term in (1) corresponds to functional
dependance under presumed stationarity, while the second
term corresponds to noise. Hyperparameter v controls the
magnitude of the covariance and hyperparameters wi repre-
sent the relative importance of each component xd of vector
x. The part δijv0 represents the covariance between outputs
due to white noise, where δij is the Kronecker operator and
v0 is the white noise variance. When assuming different
kinds of noise the covariance function should be changed
appropriately, e.g. [8]. With the use of covariance function (1)
the total number of the GP model parameters is D+2 for the
size D input, where for example the number of comparable
artificial neural networks parameters would be considerably
larger.

The GP model fits nicely into the Bayesian modelling
framework. The idea behind GP modelling is to place the
prior directly over the space of functions instead of parame-
terizing the unknown function f(x) [79]. The simplest type
of such a prior is Gaussian. Consider the system

y(k) = f(x(k)) + ε(k) (2)

with white Gaussian noise ε(k) ∼ N (0, v0) with variance
v0 and the vector of regressors x(k) from operating space
RD. We put the GP prior with covariance function (1) with
unknown hyperparameters on the space of functions f(.).

Within this framework we have y1, . . . , yN ∼ N (0,K)
with K = ΣΣΣ+v0I, where I is N ×N identity matrix. Based
on a set of N training data pairs {xi, yi}N

i=1 we wish to find
the predictive distribution of yN+1 corresponding to a new
given input xN+1. For the collection of random variables
(y1, . . . , yN , yN+1) we can write:

(
y

yN+1

)
∼ N (0,KN+1) (3)

with covariance matrix
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where y = [y1, . . . , yN ]T is an N × 1 vector of training
targets, k(xN+1) = [C(x1,xN+1), . . . , C(xN ,xN+1)]T is

1The parameters of a Gaussian process are called hyperparameters due
to their close relationship to the hyperparameters of a neural network [79].

the N × 1 vector of covariances between training inputs
and the test input and k(xN+1) = C(xN+1,xN+1) is the
autocovariance of the test input. We can divide this joint
probability into a marginal and a conditional part. The
marginal term gives us the likelihood of the training data:
y|X ∼ N (0,K), where X is the N ×D matrix of training
inputs.

We need to estimate the unknown hyperparameters ΘΘΘ =
[w1, . . . , wD, v, v0]T of the covariance function (1). This is
usually done via maximization of the log-likelihood

L(ΘΘΘ) = log(p(y|X)) =

= −1
2

log(| K |)− 1
2
yT K−1y − N

2
log(2π)(5)

with the vector of hyperparameters ΘΘΘ and N × N training
covariance matrix K. The optimization requires the com-
putation of the derivative of L with respect to each of the
parameters:

∂L(ΘΘΘ)
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= −1
2
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Here, it involves the computation of the inverse of the
N × N covariance matrix K at every iteration, which can
be computationally demanding for large N . The reader is
referred to e.g. [79] for alternative methods of parameter
optimisation.

Given that the hyperparameters are known, we can obtain
a prediction of the GP model at the input xN+1. The
conditional part of (3) provides the predictive distribution
of yN+1:

p(yN+1|y,X,xN+1) =
p(y, yN+1)

p(y|X)
(7)

It can be shown [79] that this distribution is Gaussian with
mean and variance:

µ(xN+1) = k(xN+1)T K−1y (8)
σ2(xN+1) = k(xN+1)− k(xN+1)T K−1k(xN+1) + v0.(9)

Vector k(xN+1)T K−1 in (8) can be interpreted as a
vector of smoothing terms which weights training outputs
y to make a prediction at the test point xN+1. If the
new input is far away from the data points, the term
k(xN+1)T K−1 k(xN+1) in (9) will be small, so that the
predicted variance σ2(xN+1) will be large. Regions of the
input space, where there are few data or are corrupted with
noise, are in this way indicated through higher variance.

B. Dynamic system identification

The presented GP model was originally used for modelling
static nonlinearities, but it can be extended to model dynamic
systems as well [39], [54], [3]. Our task is to model the
dynamic system (2), where

x = [y(k− 1), . . . , y(k−L), u(k− 1), . . . , u(k−L)] (10)

is the vector of regressors that determines nonlinear ARX
model structure and be able to make multi-step ahead model
prediction.



One way to do multi-step ahead prediction is to make
iterative one-step ahead predictions up to desired step whilst
feeding back the predicted output. Two general approaches
to iterated one-step ahead prediction are possible using the
GP model. In the first only the mean values of the predicted
output are fed back to the input. In this, so called “naive”
approach, the input vector x into the GP model at time step
k is:

x = [ŷ(k− 1), . . . , ŷ(k−L), u(k− 1), . . . , u(k−L)] (11)

Although this approach is approximate, as the variance of the
lagged output estimates on the right-hand side of Equation
(11) is neglected, it has been used when modelling dynamic
systems with neural networks or fuzzy models. This way
of generating multiple-step-ahead predictions is commonly
referred to as ’output error’ in the identification literature.
However, it has been shown to lead to unrealistically small
variances for the multiple-step-ahead predictions when mod-
elling with GP models and with the predictive distribution
calculated with Equations (8) and (9) [10].

In [10], [20], [33], [39], [54] the iterative, multiple-step-
ahead prediction is done by feeding back the mean of the
predictive distribution as well as the variance of the predic-
tive distribution at each time-step, thus taking the uncertainty
attached to each intermediate prediction into account. In this
way, each input for which we wish to predict becomes a
normally distributed random variable. However, this is still
an approximation, as is explained in more detail in [39]. The
illustration of such a dynamical model simulation is given in
Figure 1.
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Fig. 1. Illustration of simulation principle for a Gaussian process model
of dynamic system [53]

A demonstration of a Gaussian process model response is
given in Figure 2.

III. GAUSSIAN PROCESS MODEL IDENTIFICATION
METHODOLOGY

In this section the framework for dynamic system iden-
tification with GP models taken from [83] is given. The
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Fig. 2. Simulated response of a dynamic system modelled by Gaussian
process model

identification framework consists of roughly six stages:
• defining the purpose of the model,
• model selection,
• design of the experiment,
• realisation of the experiment and data processing,
• training of the model and
• model validation.

The model identification is an iterative process. Returning to
some previous procedure step is possible at any step in the
identification process and is usually necessary.

A. The model purpose and model selection

The decision for the use of a specific model derives
from the model purpose and from the limitations met at
the identification process. In this paper selection of the
GP model is presumed. This approach can be beneficial
when the information about the system exists in the form
of input/output data, when data are corrupted, e.g. by noise
and measurement errors, when a measure of confidence in
model prediction is required and when there is a relatively
small amount of data in respect to the selected number of
regressors.

After the model is selected, its structure must be de-
termined next. In the case of the GP model this means
selecting the covariance function and the model regressors.
The choice of the covariance function reflects the relationship
between data and is based on prior knowledge of the process.
The standard choice for smooth and stationary processes
is function (1). Prior knowledge about other attributes, e.g.
periodicity, non-stationarity, can be expressed through a
different choice of the covariance function [79].

The second part of structure determination is the choice
of proper regressors. In the case of a dynamic system model
this also means selecting the model order, which is the
area of intensive research, as it is common to all nonlinear
identification methods.

The most frequent approach for regressor selection is the
so called validation based regressor selection, where the



search for the optimal vector of regressors is initiated from
some basic set of regressors. After the model optimisation
and cross-validation, the regressors are added to or taken
from the model. Prospering models according to selected
performance are kept while dissatisfying models are rejected.
In the case of normalised inputs the influence of each
regressor can be observed through the value of the associated
hyperparameter. If the associated regressor is not relevant
enough it can be removed from the perspective model.

B. Obtaining data – design of the experiment, experiment
and data processing

Data describing the unknown system is very important in
any black-box identification. For a good description of the
process the influential variables and proper sample time must
be chosen.

The design of the experiment and the experiment itself are,
as is always the case in systems modelling, very important
parts of the identification procedure. The quality of the
model depends on the system information contained in the
measurement data, regardless of the identification method.
Nevertheless, the design of the experiment is not the focus
of this paper.

As already mentioned the Gaussian process modelling
approach relies on the relation among input/output data and
not on approximation with basis functions. Consequently,
this means that the distribution of identification data within
the process operating region is crucial for the quality of
the model. Model predictions can be informative only if the
inputs to the model lie in the regions, where training data is
available. The GP model is good for interpolation, but not
for extrapolation, which is indicated by large variances of
model predictions.

Consequently, the data for model training should be cho-
sen reasonably, which can be obstructed by the nature of
the process (e.g. limitations in the experiment design in
industrial processes, physical limitations of the system). The
preprocessing of measured data, such as normalisation to
cancel the influence of different measuring scales, can be
pursued.

C. Model training

In the GP model approach training means optimization
of hyperparameters ΘΘΘ from (1). Each hyperparameter wd

expresses the relative importance of the associated regressor,
similar to the automatic relevant detection (ARD) method
[79], where a higher value of wd expresses higher importance
of the regressor. Hyperparameter v expresses the overall
scale of correlations and hyperparamter v0 accounts for the
influence of noise. Several possibilities of hyperparameter
determination exist. A very rare possibility is that hyperpa-
rameters are known in advance as prior knowledge. Almost
always, however, they must be determined from the training
data, where different approaches are possible, e.g. [39].
Mostly the likelihood maximization (ML) approach is used
as it gives good results despite its simplification, where any
optimization method could be used to achieve ML [39].

D. Model validation

Validation concerns the level of agreement between the
mathematical model and the system under investigation [2]
and it is many times underemphasised despite its importance.
Several features can represent the quality of the model. Their
overview can be found e.g. in [2], [1]. The most important are
model plausibility, model falseness and model purposiveness,
explained as follows.

Model plausibility expresses the model’s conformity with
the prior process knowledge by answering two questions:
whether the model “looks logical” and whether the model
“behaves logical”. The first question addresses the model
structure, which in the case of GP models means mainly
the plausibility of the hyperparameters. The second one is
concerned with the responses of the model output to typical
events on the input, which can be validated with visual
inspection of the responses as is the case with other black-
box models.

Model falseness reflects the agreement between the pro-
cess and the model output or the process input and the
output of the inverse model. The comparison can be done
in two ways, both applicable to GP models: qualitatively,
i.e. by visual inspection of differences in responses between
the model and the process, or quantitatively, i.e. through
evaluation of performance measures. Beside commonly used
performance measures such as e.g. mean squared error MSE
and mean relative square error (MRSE, which compares only
the mean prediction of the model to the output of the process:

MSE =
1
N

N∑

i=1

e2
i (12)

MRSE =
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i
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where yi and ei = ŷi − yi are the system’s output and
prediction error in i-th step of simulation, the performance
measures such as log predictive density error (LD, [39], [54])
can be used for evaluating GP models, taking into account
not only mean prediction but the entire predicted distribution:

LD =
1
2

log(2π) +
1

2N
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i
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where σ2
i is the prediction variance in i-th step of simulation.

Performance measure LD weights the prediction error ei

more heavily when it is accompanied with smaller predicted
variance σ2

i , thus penalising overconfident predictions more
than acknowledged bad predictions, indicated by higher
variance. Another possible performance measure, applicable
in the training procedure, is the negative log-likelihood of
the training data (LL, [39]):

LL =
1
2

log | K | +1
2
yT K−1y +

N

2
log(2π), (15)

where K is the covariance matrix, y is the vector of targets
and N is the number of training points. LL is the measure



inherent to the hyperparameter optimisation process, see (5),
and gives the likelihood that the training data is generated by
given, i.e. trained, model. The smaller the MRSE, LD and
LL are, the better the model is.

Variance of the model predictions on a validation signal
can be a validation measure itself, as it indicates whether the
model operates in the region, where identification data were
available. Nevertheless, it should be used carefully and in
combinations with other validation tools, as predictions with
small variance are not necessary good.

Model purposiveness or usefulness tells whether or not
the model satisfies its purpose, which means the model is
validated when the problem that motivated the modelling
exercise can be solved using the obtained model. Here, again,
the prediction variance can be used, e.g. when the prediction
confidence is too low, the model can be labelled as not
purposive.

IV. SURVEY OF PUBLICATIONS ON GAUSSIAN PROCESS
MODELS OF DYNAMIC SYSTEMS

The GP model was first used for solving a regression
problem in the late 1970s, but it only gained popularity
within the machine-learning community in the late 1990s.
Furthermore, the results of a possible implementation of the
GP model for the identification of dynamic systems were
presented as recent as the last decade.

After what can be described as initial publications in year
1999 [4], year 2000 [5], [6] and year 2001 [7], [8], numbers
of publications start to grow. Numerus publications on con-
ferences and as internal, but publicly available publications
occurred in years 2002 [9]-[19], 2003 [20]-[37] and 2004
[38]-[45]. After the first journal publication in year 2003
[24], publications in years 2005 [46]-[68], 2006 [69]-[81] and
2007 [82]-[97] contain more versatile publications including
journal papers, book chapters and books mentioning use of
GP models for the modelling of dynamic systems. In spite
of efforts to be very thorough it is possible that the list of
publications until year 2007 is not complete, but it certainly
represents the majority of publications on Gaussian process
models of dynamic systems.

These publications have explored use of Gaussian process
models for various applications:
• dynamic systems modelling, e.g., [10],[11],[27],[65]
• time-series prediction, e.g., [7],[73],
• dynamic systems control, e.g., [12],[13],[18],[55],
• fault detection, e.g., [74],
• smoothing, e.g., [82],
• etc.
The utility to provide the information about the model

prediction confidence made Gaussian process models at-
tractive for modelling case studies in various domains like:
chemical engineering [91] and process control [93], biomed-
ical engineering [84], biological systems [83], environmental
systems [73], power systems [43] and engineering [60],
motion recognition [65], etc., to list just a few. It is worth
noticing that the utility of Gaussian process modelling could

be interesting also for use in other domains and applications
therein.

V. CONCLUSIONS

In this paper it is explained how the Gaussian process
model is used for dynamic systems identification with em-
phasis on some of its properties: model predictions contain-
ing the measure of confidence, low number of parameters
and facilitated structure determination.

The prediction variance is one of the main differences
between the GP model and other black box models. It can
be effectively used in the usefulness validation, where the
lack of confidence in the model prediction can serve as the
grounds to reject the model as not useful. The prediction
variance can also be used in falseness validation, whether via
specific performance measures such as log-predictive density
error, or through observation of confidence limits around the
predicted output. Despite its usefulness in model validation,
it should be accompanied with standard validation tools, as
the small variance does not necessarily mean that the model
is of good quality.

In the validation based regressor selection procedure the
log-predictive density error and the log-likelihood of the
training data can be useful in selecting model regressors.
In the case of normalised inputs, the model hyperparameters
indicate the influence of corresponding regressors and can
be used as a tool for removal of non-influental regressors at
the regressor selection stage of the model selection.

Small amounts of data relative to the number of selected
regressors, data corrupted with noise and measurement errors
and the need for the measure of model prediction confidence
could be the reasons to select identification with the GP
model. If there is not enough data or it is heavily corrupted
with noise, even the GP model cannot perform well, but in
that case the inadequacy of the model and the identification
data is indicated through higher variance of the predictions.

The short survey and bibliography on Gaussian process
models for dynamic systems shows that the interest in
this modelling approach and its applications is growing.
Published results have shown the GP model’s potential for
the identification of nonlinear dynamic systems and where
the advantages of the GP model could be effectively used,
e.g., for control design, diagnostic system design etc.
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konference ERK, Volume A, Pages 253-256, Portorož, 2005. (in
Slovene).

[49] K. Ažman and J. Kocijan. Comprising prior knowledge in dynamic
Gaussian process models. In Proceedings of the International Confer-
ence on Computer Systems and Technologies - CompSysTech, Pages
IIIB.2-1 – IIIB.2-6, Varna, 2005.
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