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Abstract

Gaussian process models provide a probabilistic non-parametric modelling approach

for black-box identification of nonlinear dynamic systems. The Gaussian processes can

highlight areas of the input space where prediction quality is poor, due to the lack of

data or to its complexity, by indicating the higher variance around the predicted mean.

Gaussian process models contain noticeably less coefficients to be optimised. This paper

demonstrates feasibility of application and realisation of a control algorithm based on a

Gaussian process model. The extra information provided by the Gaussian process model
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is used in predictive control, where optimisation of the control signal takes the variance

information into account. The feasibility of Gaussian process model usage for predictive

control in industrial practice is demonstrated via the control of a gas-liquid separation

plant.

1 Introduction

The popularity of MPC can be attributed largely to the ability of MPC algorithms to deal

with constraints that are frequently met in control practice and are often not well addressed

by other approaches. MPC algorithms can handle hard state and rate constraints on inputs

and states that are usually, but not always, incorporated in the algorithms via an optimisation

method. Linear model predictive control approaches [Maciejowski, 2002] started appearing in

the early eighties and are well-established in control practice (e.g. [Qin and Badgwell, 1997] for

an overview). Nonlinear model predictive control (NMPC) approaches [Allgöwer et al., 1999]

started to appear about ten years later and have also found their way into control practice (e.g.

[Qin and Badgwell, 2000],[Young et al., 2001]) though their popularity can not be compared to

linear model predictive control. This is due to the difficulties associated with nonlinear model

construction and with the lack of the necessary confidence in the model. There have been

a number of contributions in the field of nonlinear model predictive control dealing with is-

sues such as stability, efficient computation, optimisation, constraints and others. Some recent

work in this field can be found in [Allgöwer and Zheng, 2000], [Kouvaritakis and Cannon, 2001].

NMPC algorithms are based on various nonlinear models. Often these models are developed

as first principles models, but other approaches - like black-box identification approaches -
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are also popular. Various predictive control algorithms are based on neural networks models

e.g. [Nørgaard et al., 2000], fuzzy models e.g. [Kavšek-Biasizzo et al., 1997] or local model

networks e.g. [Johansen et al., 1995]. Nonlinear model-based predictive control, as the name

implies, critically depends on the nonlinear plant model. The better the model, the better

the control. This is where Gaussian process models can offer significant advantages. Gaussian

process models provide a measure of confidence, which would be of help in NMPC design as

noted in [Tsai et al., 2002], where a different approach to the same problem was described. The

Gaussian process model is an example of a probabilistic non-parametric black-box model that

also provides information about prediction uncertainties which are difficult to evaluate appro-

priately in nonlinear parametric models. The majority of work on Gaussian processes presented

up to now considers the modelling of static nonlinearities. The use of Gaussian processes in

modelling dynamic systems is a recent development e.g. [Murray-Smith and Girard, 2001],

[Girard et al., 2003], [Kocijan et al., 2003a], [Kocijan et al., 2003b],

[Girard and Murray-Smith, 2005] and some control algorithms based on such an approach are

described in [Murray-Smith and Sbarbaro, 2002],

[Gregorčič and Lightbody, 2003]. This approach to modelling is not considered as a replace-

ment of any existing method, but rather as a complementary approach to modelling. The

drawback of Gaussian process models is the considerable computational burden. This burden

may be perceived as an obstacle for Gaussian process model usage in industrial control applica-

tions. The purpose of this paper is to demonstrate the feasibility of application and realisation

of a control algorithm based on a Gaussian process model on a process plant and to highlight

some of the potentials. More about the benefits of dynamic systems modelling with Gaussian

processes can be found in e.g. [Kocijan et al., 2003a], [Girard and Murray-Smith, 2005].
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The paper is organized as follows. Dynamic Gaussian process models are briefly introduced

in the following section. The control algorithm principle is described in Section 3. The example

in Section 4 illustrates the operation of NMPC on a gas-liquid separator plant. Conclusions

are stated at the end of the paper.

2 Modelling of Dynamic Systems with Gaussian Pro-

cesses

A Gaussian process is an example of the use of a flexible, probabilistic, non-parametric model

with uncertainty predictions. Its use and properties for modelling are reviewed in [Williams, 1998].

A Gaussian process is a collection of random variables which have a joint multivariate

Gaussian distribution. Assuming a relationship of the form y = f(x) between an input x

and output y, we have y1, . . . , yn ∼ N (0, Σ), where Σpq = Cov(yp, yq) = C(xp,xq) determines

the covariance between output points corresponding to input points xp and xq. Thus, the

mean µ(x) (usually assumed to be zero) and the covariance function C(xp,xq) fully specify the

Gaussian process. Note that the covariance function C(., .) can be any function having the

property of generating a positive definite covariance matrix.

A common choice is

C(xp,xq) = v1 exp

[
−1

2

D∑

d=1

wd(x
d
p − xd

q)
2

]
+ v0δpq, (1)

where ΘΘΘ = [w1 . . . wD v0 v1]
T are the ‘hyperparameters’ of the covariance functions, δpq is the

Kronecker operator, and D is the input dimension. Other forms of covariance functions suitable
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for different applications can be found in [Rasmussen, 1996]. For a given problem, the parame-

ters are learned (identified) using the data at hand. After the learning the w parameters can be

used as indicators of ‘how important’ the corresponding input components (dimensions) are: if

wd is zero or near zero it means that the inputs in dimension d contain little information and

could possibly be removed.

Consider a set of N D-dimensional input vectors X = [x1,x2, . . . ,xN ] and a vector of output

data y = [y1, y2, . . . , yN ]T . Based on the data (X,y), and given a new input vector x∗, we wish

to find the predictive distribution of the corresponding output y∗. Unlike other models, there

is no model parameter determination as such, within a fixed model structure. With this model,

most of the effort consists of tuning the parameters of the covariance function. This is done by

maximizing the log-likelihood of the parameters, which is computationally relatively demanding

since the inverse of the data covariance matrix (N ×N) has to be calculated at every iteration.

Nevertheless, the number of parameters to be optimised is small (D+2, see equation (1)), which

means that optimisation convergence might be faster and that the ‘curse of dimensionality’ so

common to black-box identification methods is circumvented or at least decreased.

The described approach can be easily utilized for regression calculation. Based on a training

set X a covariance matrix K of size N × N is determined. As already mentioned, the aim

is to find the distribution of the corresponding output y∗ at some new input vector x∗ =

[x1(N + 1), x2(N + 1), . . . , xD(N + 1)]T .

For a new test input x∗, the predictive distribution of the corresponding output is y∗|(X,y),x∗
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and is Gaussian, with mean and variance

µ(x∗) = k(x∗)T K−1 y, (2)

σ2(x∗) = k(x∗) − k(x∗)T K−1 k(x∗), (3)

where k(x∗) = [C(x1,x∗), . . . , C(xN ,x∗)]T is the N × 1 vector of covariances between the test

and training cases, and k(x∗) = C(x∗,x∗) is the covariance between the test input and itself.

Gaussian processes can, like neural networks, be used to model static nonlinearities and can

therefore be used for modelling dynamic systems [Girard et al., 2003], [Kocijan et al., 2003a],

[Kocijan et al., 2003b], [Girard and Murray-Smith, 2005] if delayed input and output signals

are fed back and used as regressors. In such cases an autoregressive model is considered, such

that the current output depends on previous outputs, as well as on previous control inputs.

x(k) = [ŷ(k − 1), ŷ(k − 2), . . . , ŷ(k − L), u(k − 1),

u(k − 2), . . . , u(k − L)]T ,

ŷ(k) = f(x(k)) + ε, (4)

where k denotes the consecutive number of the data sample. Let x denote the state vector

composed of the previous outputs y and inputs u up to a given lag L, and ε is white noise.

For multi-step ahead prediction the uncertainty of future predictions which provides the

‘inputs’ for estimating further means and uncertainties must be taken into account. The partial

overview of results expounded in [Girard et al., 2003] is presented as follows.

In the case of multi-step ahead prediction a prediction at x∗ is sought, where input vector x∗

contains also uncertain inputs fed back from outputs. Within a Gaussian approximation, input

values can be described by normal distribution N (µµµx∗ ,ΣΣΣx∗), where µµµx∗ and ΣΣΣx∗ are the vector
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and the matrix of the input mean values and variances respectively. To obtain a prediction the

predictive distribution p(y∗|(X,y),x∗) needs to be integrated over the input distribution, that

is

p(y∗|(X,y),µµµx∗ ,ΣΣΣx∗) =

∫ +∞

−∞
p(y∗|(X,y),µµµx∗)p(x∗|µµµx∗ ,ΣΣΣx∗)dx

∗, (5)

where p(y∗|(X,y),x∗) = 1√
2πσ2(x∗)

exp
[
− (y∗)−µ(x∗))2

σ2(x∗)

]
. Since p(y∗|(X,y),x∗) is a nonlinear

function of x∗, the new predictive distribution p(y∗|(X,y),µµµx∗ ,ΣΣΣx∗) is not Gaussian and this

integral cannot be solved without using approximations.

Approximations can be roughly divided into numerical, for example Monte-Carlo numerical

methods, and analytical approximations. In order to achieve computational simplicity the

analytical approximation was used, which consists of computing only the first two moments,

namely the mean and variance of p(f(x∗)|(X,y),x∗).

To distinguish between µ(x∗) and σ2(x∗), the mean and variance of the Gaussian predictive

distribution in the case when there are no uncertain inputs, m(µµµx∗ ,ΣΣΣx∗) denotes the mean

and v(µµµx∗ ,ΣΣΣx) the variance of the non-Gaussian predictive distribution p(y∗)|(X,y),µµµx∗ ,ΣΣΣx∗),

corresponding to x∗ ∼ N (µµµx∗ ,ΣΣΣx∗). This can be interpreted as a Gaussian approximation, such

that

p(y∗|(X,y),µµµx∗ ,ΣΣΣx∗) ≈ N (m(µµµx∗ ,ΣΣΣx∗), v(µµµx∗ ,ΣΣΣx∗)). (6)

The predictive mean and variance of the output corresponding to a noisy input x∗ are

obtained by solving [Girard et al., 2003]

m(µµµx∗ ,ΣΣΣx∗) = Ex∗ [µ(x∗)], (7)

v(µµµx∗ ,ΣΣΣx∗) = Ex∗ [σ
2(x∗)] + varx∗ [µ(x∗)]. (8)
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Instead of working with the expressions of µ(x∗) and σ2(x∗), equations (7) and (8) are

solved by approximating directly µ(x∗) and σ2(x∗) by their first and second order Taylor ex-

pansions respectively around µµµx∗ . The second order expansion is required in order to obtain a

correction term for the new variance. This is a relatively rough approximation. Other Gaussian

approximations can be found in [Girard et al., 2003] and [Girard and Murray-Smith, 2005].

The first order Taylor expansion of µ(x∗) around x∗ = µµµx∗ gives

µ(x∗) = µ(µµµx∗) + (x∗ − µµµx∗)
Tµµµ′(µµµx∗) + O(||x∗ − µµµx∗||2), (9)

where µµµ′(µµµx∗) = ∂µ(x∗)
∂x∗

∣∣∣
x∗=µµµx∗

and O(·) are Taylor expansion higher order terms.

It follows that

Ex∗ [µ(x∗)] ' µ(x∗) (10)

and furthermore

varx∗ [µ(x∗)] ' µµµ′(µµµx∗)
TΣΣΣx∗µµµ

′(µµµx∗) = Tr[µµµ′(µµµx∗)µµµ
′(µµµx∗)

TΣΣΣx∗ ]. (11)

For the computation of the new variance, σ2(x∗) was approximated by its second order

Taylor expansion around µµµx∗ :

σ2(x∗) = σ2(µµµx∗)+(x∗−µµµx∗)
Tσσσ2′(µµµx∗)+

1

2
(x∗−µµµx∗)

Tσσσ2′′(µµµx∗)(x
∗−µµµx∗)+O(||x∗−µµµx∗||3), (12)

where σσσ2′(µµµx∗) = ∂σ2(x∗)
∂x∗

∣∣∣
x∗=µµµx∗

and σσσ2′′(µµµx∗) = ∂2σ2(x∗)
∂x∗∂x∗T

∣∣∣
x∗=µµµx∗

, leading to

Ex∗ [σ
2(x∗)] ' σ2(µµµx∗) +

1

2
Tr[σσσ2′′(µµµx∗)ΣΣΣx∗ ] (13)

The final expression for variance is obtained by replacing (11) and (13) in (8).
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Consequently, within a Gaussian approximation and a Taylor expansion of µ(x∗) and σ2(x∗)

around x∗ = µµµx∗ , the predictive distribution is again Gaussian with the following mean and vari-

ance

[Girard et al., 2003]

m(µµµx∗ ,ΣΣΣx∗) = Ex∗ [µ(x∗)]

≈ k(µ(x∗)TK−1y, (14)

v(µµµx∗ ,ΣΣΣx∗) = Ex∗ [σ
2(x∗)] + varx∗(µ(x∗))

≈ σ2(µ(x∗)) +
1

2
Tr

{
∂2σ2(x∗)
∂x∗∂x∗T

∣∣∣∣
x∗=µµµx∗

ΣΣΣx∗

}

+
∂µ(x∗)

∂x∗

∣∣∣∣
T

x∗=µµµx∗
ΣΣΣx∗

∂µ(x∗)
∂x∗

∣∣∣∣∣
x∗=µµµx∗

.

(15)

For a more detailed derivation see [Girard et al., 2003], where also the comparison of the

approximations, here mentioned but not used, is presented. Equations (14) and (15) can be

applied to the calculation of multi-step ahead prediction with propagation of uncertainty.

As can be seen from the presented relations, the obtained model not only describes the

dynamic characteristics of the nonlinear system, but also provides information about the confi-

dence in these predictions by means of prediction variance. The Gaussian process can highlight

areas of the input space where prediction quality is poor, due to lack of data, by indicating

higher variance around the predicted mean.
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3 Model Predictive Control

It is not the purpose of this section to explain the fundamentals of model predictive con-

trol, which can be found in literature (e.g. [Maciejowski, 2002], [Allgöwer and Zheng, 2000],

[Kouvaritakis and Cannon, 2001]), but rather to highlight some issues of MPC, which are re-

lated to the case when the Gaussian process model is used.

3.1 Some general issues

Model Predictive Control (MPC) is a common name for computer control algorithms that use

an explicit process model to predict the future plant response. According to this prediction

within the selected period, also known as the prediction horizon, the MPC algorithm optimises

the manipulated variable to obtain an optimal future plant response. The input of chosen

length, also known as the control horizon, is sent into the plant and then the entire sequence

is repeated again in the next time period. The most common practice is to only send the

first sample of the optimised input to the plant. MPC is one of the rare advanced control

principles that has found its place in industrial practice, especially in process control. This

is most likely due to its intuitive principle and attractive properties which enable control of

complex, nonlinear, dead-time, non-minimum phase and constraint systems. The disadvantages

of MPC are the need for a good process model and often the computational burden, which is

an obstacle when faster systems are controlled.

Nonlinear MPC contains a nonlinear process model, in our case, a Gaussian process model.

The ability of Gaussian process models to provide information about confidence in the model
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is the major reason for their use in MPC.

The availability of prediction confidence information presents a possibility to constrain the

action of the closed-loop system within the trusted region of the model. This is not a concept

from literature, but it is not unfamiliar in control engineering practice where safety of operations

is of crucial importance. The ’soft’ constraints on the confidence region is, on the other hand,

a well known concept. It can be found under the name ’cautious’ control (e.g. [Apley, 2004],

[Murray-Smith and Sbarbaro, 2002]) and it means that the cost function contains a confidence

region dependant weight or penalty that forces the closed-loop system to avoid the not trusted

region. The ’hard’ constraints that are proposed for increased safety do not just penalise the

action, but do not allow any action outside of the region of model validity.

Determination of the control signal involves optimisation of the chosen cost function. When

the process model is a nonlinear one, the optimisation problem is in general non-convex. Con-

vergence of optimisation is not assured in the case of time and computationally demanding

iterative algorithms. The cost function minimum might even be nondeterminate in particular

cases of certain cost functions when constraints are included into the optimisation.

The optimisation problem is a serious one and there are many approaches suggested in lit-

erature to cope with it. These suggest how to reduce the computational burden and transform

the optimisation into a convex problem, but in general their applicability is limited to paramet-

ric models, while the Gaussian process model is a probabilistic nonparametric model. Using

Gaussian processes for the process model means computationally increasing the burden, and

therefore it is important to pay attention to this issue. One way to cope with the dimensions

of the computation problem is to use so called ‘soft’ constraints instead of ‘hard’ ones and
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convert the constrained optimisation problem to an unconstrained one. How soft constraints

can be used in connection with Gaussian process based model predictive control is described

in [Kocijan and Murray-Smith, 2004].

The alternative solution is to keep the algorithm and cost function as simple as possible. This

is the reason why the Predictive Function Control algorithm has been selected to demonstrate

predictive control based on the Gaussian process model.

3.2 Predictive Functional Control

Predictive Functional Control [Richalet, 1993] is a predictive control algorithm which, due to

its simplicity and effectiveness, has found its way into numerous industrial applications. The

method has many versions, depending on the process model used, or structure of the control

signal, etc. Common to all versions is that the prediction horizon is minimised to a very small

number of points. Often this is just one point, which is called a coincidence point.

Another common point is the structuring of the control signal, a simple form of which is a

constant signal in the entire control horizon.

In the case of a single coincidence point the cost function is

min
U(k)

[r(k + P )− ŷ(k + P )]2, (16)

where U(k) = [u(k) . . . u(k + P )] is the input signal and P is the coincidence point.

The reasons why closed-loop control with use of such a simple cost function with only one

coincidence point and no penalty on control action is often satisfactory, are [Maciejowski, 2002]:
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• the required performance is largely determined by the reference trajectory and there is no

need for further tuning of the cost function weights to obtain the required performance,

• the polynomial structure of the future control signal (in our case constant) results in

relatively few degrees of freedom being available to the optimiser, which usually results

in relatively smooth input trajectories.

Only one sample of the future control signal is applied and then the entire control signal

optimisation procedure is repeated in accordance with the receding horizon strategy.

4 Example

4.1 Gas-liquid separation plant

The semi-industrial process plant used for the case study in the paper is a unit for separating

gas from liquid that forms part of a larger pilot plant.

The role of the separation unit is to capture flue gases under low pressure from the effluent

channels by means of water flow, to cool them down and then supply them under high-enough

pressure to other parts of the pilot plant. It was designed for flue gases containing CO2 that

are produced from natural gas combustion, but in our case regular air was used. The separa-

tion unit is 2.25 m high and has 0.312 m2 cross-section area on inside. It normally operates

with gas pressure between about 0.2 bar, depending on the amount of water inflow and max-

imally 1 bar and liquid height of maximum 1.9 m. More details of the plant can be found in

[Vrančić et al., 1995].
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The flow-sheet of the separator is shown in figure 1. The flue gases coming from the effluent

channels are absorbed by the water flow into the water circulation pipe through injector I4.1.

h 1

p 1

Figure 1: The flow-sheet of the gas-liquid separator

The water flow is generated by the pump P4101 (water ring). The speed of the pump is

kept constant. The pump feeds the mixture of water and gas into the tank R4.1, where gas is

separated from water. Hence the accumulated gas in R4.1 forms a sort of ‘gas cushion’ with

increased internal pressure. Owing to this pressure, the flue gas is blown out from tank R4.1

into the neutralisation unit. On the other side, the ‘cushion’ forces water to circulate back to

the reservoir R4.2. The quantity of water in the circuit is constant.

Both the gas pressure and the water level in the separator have to be controlled in order

to maintain security and keep the process within an adequate working range. This might be

difficult in the case when the model is uncertain and might result in potential safety risk. Two

controllers are needed for this control. The first controls pressure in the unit by manipulat-

ing valve V4101. The second controller keeps the liquid level around its reference value by
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manipulating valve V4102.

In order to understand the basic relations among variables and to illustrate the nonlinearity

of the process a mathematical model is introduced (the derivation of the mathematical model

can be found in [Vrančić et al., 1995]). The gas-liquid separation pressure sub-system of interest

can be described with a set of two equations.

dp1

dt
=

1

S1(hT1 − h1)
(p0(α0 + α1p1 + α2p

2
1 − k1R

u1−1
1

√
p1)

+ (p0 + p1)(Φw − k2R
u2−1
2

√
p1 + kw(h1 − hT2))),

dh1

dt
=

1

S1

(Φw − k2R
u2−1
2

√
p1 + kw(h1 − hT2)), (17)

where ui is the command signal of valve V410i, i=1,2, hi is the level in tank R4.i, i=1,2, p1

is the relative air pressure in tank R4.1, Si is the section area of tank R4.i, p0 is the atmospheric

pressure, hTi is the height of tank R4.i, i=1,2, (2.25 m and 2 m respectively), Ri is the open-close

flow ratio of valve V410i, i=1,2, (46 and 75.66 respectively), ki is the flow coefficient of valve

V410i, i=1,2, (75.1 l/(s·bar1/2) and 0.742 l/(s·bar1/2) respectively), Φw is the known constant

water flow through pump P4101 i = 1, 2, (0.1644 l/s), αi; i = 1, 2, 3, are constant parameters

(5.1475, 3.5634 and -5.0316 respectively).

From the model presented, it can be seen that the nonlinear process is of a multivariable

nature (two inputs and two outputs with dynamic interactions between the channels). This

problem can be overcome by separating closed-loop control bandwidths. The level control

speed is much slower than the pressure control speed. Consequently the pressure control can

be approached as a single-input single-output control problem, with the focus on solving the

nonlinear control problem. As can be seen from Eqs. (17) pressure is nonlinearly related to

level and input flow which results in different dynamic behaviour depending on the operating
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region.

The model is presented exclusively to explain the basic dynamic characteristics of the plant.

All following experiments were conducted on the actual plant.

The main control objective was to achieve uniform closed-loop performance for pressure

control in the entire liquid level operating region. This means that the pressure dynamic re-

sponse should be approximately equal, regardless of the liquid level. How this control objective

was fulfilled with a technique different from the one proposed in this paper can be found in

[Kocijan et al., 2002].

The rationale for the selected case study is as follows.

• The used plant contains features of industrial processes so control implementation and

commissioning would be a good test for other real-life applications.

• The dynamics of the plant appear relatively simple, but not all features of the semi-

industrial plant can be seen from the presented first-principle model. However, it is

known that MPC algorithms can deal with complex dynamics regardless of the model

used under the condition that the model describes the process well and reliably enough,

which is the property of GP models. The stress in our example is on demonstrating

the feasibility of implementation in real-time regardless of issues such as computational

burden.

• The modelling approach may show its advantages on processes where first-principle mod-

elling is more difficult (e.g. biological and medical systems), but it is not the main purpose

of this paper to demonstrate benefits of modelling approach. Instead, the emphasis is on
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the application and implementation of a Gaussian process model, which, we believe can

be beneficial in process control and elsewhere.

• It can be argued that the plant can be modelled and controlled in other ways, but the

choice to make the feasibility study on a familiar process was made purposefully so that

experience from other applied and differently obtained control algorithms could be utilized

and comparisons could be made.

4.2 Process identification

Since the process to be identified is characterised by equation (17) as the first order system, a

model of the form (18) was identified

p1(k + 1) = f(p1(k), u1(k), h1(k)), (18)

consequently pressure p1(k), valve signal u1(k) and liquid level h1(k) were selected for regressors.

Signals u1(k) and h1(k) were measured on-line and are deterministic. Pressure p1(k) was fed

back as distribution, and the predicted mean and variance were calculated by Taylor expansion

as described in the previous section. Attempts have been made to identify the system with a

higher order model, but the results were not improved upon.

Based on the response and iterative cut-and-try procedure, a sampling time of 15 seconds

was selected. Identification data consisted of pseudo random changes of valve signal u1 in

regions with different liquid level h1, so that as wide a region as possible was encompassed in

967 samples for each signal.
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Obtained hyperparameters of the first order Gaussian process were:

ΘΘΘ = [w1, w2, w3, v0, v1]

= [20.2759, 78.0774, 0.1517, 2.9145 · 10−5, 0.1162], (19)

where hyperparmeter w1 corresponds to the pressure signal p1, w2 corresponds to the valve

signal u1, w3 corresponds to the level signal h1, v0 is the estimated noise variance, and v1 is the

estimate of the vertical scale of variation.

The validation signals that are shown in figure 2 are different from the identification signals,

though of the same kind. The response of the model to a validation signal as predicted mean

value and two standard deviations or 95% confidence band and comparison with the process

response are shown in figure 3. Two standard deviations or 95% confidence band are selected

because this is a frequent Gaussian prediction representation, but any other value (e.g. three

standard deviations or 99% confidence band) could be selected.

Fitting of the response for validation signal:

-average squared test error

SE =
1

N

N∑
i=1

(ŷi − yi)
2 = 3.2744 · 10−4, (20)

-log density error

LD =
1

2N

N∑
i=1

(
log(2π) + log(σ2

i ) +
(ŷi − yi)

2

σ2
i

)
= 149.07. (21)

where yi, ei = ŷi−yi and σ2
i are the system’s output, prediction error and prediction variance in

i-th sample and N is the number of training points. The graph of standard deviation changes

is shown in figure 4.
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Figure 2: Model input validation signals
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Figure 3: Response of the Gaussian process model to the excitation signal used for validation
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Figure 4: Standard deviation of the GP model

The relatively low value of the average squared test error in comparison with the relatively

high value of the log density error shows that while the model mean values follow the process

response well, the variance may not be large enough. Nevertheless, the standard deviation still

clearly indicates the regions where identification data are sparse, as can be seen from figure 4,

which is good enough for control purposes.

4.3 Control design and assessment

A moving-horizon minimization problem of the special form [Maciejowski, 2002]

min
U(k)

[r(k + P )− ŷ(k + P )]2, (22)

subject to:

var ŷ(k + P ) ≤ varmax, (23)
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is used in our case, where U(k) = [u(k) . . . u(k + P )] is the input signal, P is the coincidence

point (the point where a match between output and reference value is expected) and inequality

(23) represents an arbitrarily selected constraint on output variance varmax. It is possible to

add hard constraints on other variables, but in our case they were not taken into account. The

process model is a Gaussian process.

As already mentioned, the predictive control algorithm uses the information about model

prediction variances. The variances are the sum of variances that correspond to information

about regions where there are varying degrees of confidence in the model accuracy, depending

upon the local density of available identification data and of output response variances. When

variances increase too much, a possible design option is that the response can be optimised with

constrained control. The expected consequence is that the control algorithm does not allow any

excursion in the region where the accuracy of the model is below the prescribed value. This is

a possible way to guarantee safe operation based on known accuracy of the model.

The optimisation algorithm, which is constrained nonlinear programming, is solved at each

sample time over a prediction horizon of length P , for a series of moves which is equal to the

control horizon. The optimisation problem is solved with the Matlab Optimization Toolbox

routine for constrained nonlinear minimisation. All these modifications, with the purpose of

making the predictive algorithm as simple as possible, do not change the generality of the

solution, but they do affect the numerical solution itself.

The reference trajectory, which defines the trajectory along which the plant should return to

the setpoint trajectory, is very important in defining the closed-loop behaviour of the controlled

plant [Maciejowski, 2002]. Often - and so it is in our case - the reference trajectory approaches
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the setpoint exponentially from the current output value, with the time constant (Tref ) of the

exponential defining the speed of response. If the current error is

ε(k) = w(k)− y(k), (24)

where w(k) is the setpoint trajectory and y(k) is the current output. The reference trajectory

is chosen such that the error i steps later, if the output followed it exactly, would be

ε(k + i) = e
−iTs
Tref ε(k), (25)

where Ts is the sampling interval. The reference trajectory is defined to be

r(k + i|k) = s(k + i)− ε(k + i) = w(k + i)− e
−iTs
Tref ε(k), (26)

In our case the coincidence point was chosen to be 8 samples and the control horizon was

one sample. The value of the coincidence point is determined iteratively as a compromise

between closed-loop performance and real-time computation feasibility. This control algorithm

is used for experimental assessment of the Gaussian process model based predictive control on

a gas-liquid separation plant.

The real-time experiments were pursued in the environment schematically shown in Fig. 5.

This environment encompasses supervisory control on two levels: upper level with Fac-

tory Link SCADA system, and lower procedural and basic control levels implemented in two

PLCs. This is one of the possible configurations of control, which can be found in industry.

User-friendly experimentation with the process plant is enabled through the interface with the

Matlab/Simulink environment, which was implemented on a PC computer (PII 400 MHz, 128

Mb RAM). This interface enables PLC access with Matlab/Simulink using DDE protocol via

Serial Communication Link RS232 or TCP/IPv4 over Ethernet IEEE802.3. Control algorithms
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Figure 5: Experimental set-up for data acquisition and control algorithm testing

for experimentation can be prepared in Matlab code or as Simulink blocks and extended with

functions/blocks, which access the PLC. This interface also enables user-friendly data acquisi-

tion for Matlab users. In our case all schemes for data acquisition as well as for control were

composed as Simulink blocks.

Three experiments are presented. The first is tracking control for a square wave setpoint

pressure signal with the level changing in the entire operating region. Nevertheless, the system

operates within the region where the model is giving a good description of system dynamics,

because this is the region where the model was identified. The time constant of the reference

trajectory is Tref = 150s. The closed-loop response is given in figure 6. The changing level and

manipulative signal are shown together with the model prediction variance in figure 7.

The closed-loop performances with linear PID and gain-scheduling controller for the same

process in similar operation are described in [Kocijan et al., 2002] and could be used for com-
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Figure 6: Closed-loop pressure response at changing liquid level
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It can be seen from figure 6 that closed-loop performance is uniform regardless of level

changes, and the predicted standard deviation from the model is consequently low and difficult

to distinguish from the response in figure 6. It appears as if the hard constraint on variance

(varmax = 0.01) is not coming into effect at all. However, the situation is such that if the hard

constraint is not taken into account, the optimisation algorithm gets stuck in a local minimum

at a distance from the global one and finds the input signal which drives the closed-loop system

in the region where the model is very uncertain and plant operation becomes hazardous. The

hard constraint on variance is actually used as an instrument to keep the closed-loop system

within the operating region close to the global minimum. The global minimum or at least a

minimum very close to the global one is then achieved by optimisation.

The further two experiments are conducted on the very edge of the region where the model

was identified. This is the region where the model accuracy rapidly decreases. Both experiments

are pursued at constant low liquid level, and pressure setpoint changing stepwise from values

where the model is accurate toward the values where the model is not accurate any more. The

time constant of the reference trajectory is Tref = 400s.

In the second experiment, again the constraint of varmax = 0.01 is imposed on the control

variable optimisation algorithm. The value of the constraint is high enough to ensure that the

predicted model variance does not reach that limit value, but, on the other hand, is tight enough

to prevent the optimisation algorithm from getting stuck in a local minimum at a distance from

the global one, and keeps the closed-loop system within safe operation, as was the case in the

previous experiment. The closed-loop response is shown in figure 8. The level and manipulative

signal are shown together with the model prediction variance in figure 9.
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Figure 8: Closed-loop pressure response on the border of the operating region
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Figure 9: Liquid level, variance of GP model and manipulative variable on the border of the

operating region
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It can be seen from figures 8 and 9 that the standard deviation and variance of model

prediction are increasing rapidly when the Gaussian process model leaves the region where

the density of identification data decreased. The mismatch between the model and the real

process becomes so large that firstly the performance, determined by the reference trajectory, is

deteriorated (between 5500 and 8000 seconds) and further in the operation a large steady-state

error occurs (beyond 8000 seconds). The latter means that the control algorithm not only

does not fulfill its purpose anymore but the uncontrollable plant operation might not be within

safety parameters. The value of steady-state error in the region of mismatch between the model

and process differs depending on the values of process and model input variables and can be

obtained only by experiment on the plant itself.

In the third experiment the constraint of varmax = 0.00012 is imposed to the control variable

optimisation algorithm. This constraint value allows the algorithm to operate only in the

region where the process model is good enough to guarantee performance of model predictive

control with specified accuracy. The closed-loop response is shown in figure 10. The level and

manipulative signal are shown together with the model prediction variance in figure 11.

The value of varmax is very important in the performance of the controller. The selection

of varmax depends on the compromise that the designer is ready to make between performance

and dimensions of the operation region and is constrained with available model, safety and

stability of the closed-loop system. As constraints on variance are tightened, performance more

closely matches the specified one, and more contracted is the region of operation. However, it

is important to stress that it is the model that defines the region of operation. varmax only

relaxes the borders of the region.
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Figure 10: Closed-loop pressure response on the border of the operating region with variance

constraint at 0.00012
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Figure 11: Liquid level, variance of GP model and manipulative variable on the border of the

operating region with variance constraint at 0.00012
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It can be seen from figures 10 and 11 that standard deviation and variance of model predic-

tion are again increasing when the Gaussian process model leaves the region where the density

of identification data decreased. In this region the constraint comes into effect and the closed-

loop system response now avoids the region with large variance, at the cost of not tracking the

setpoint and therefore an increase of steady-state error. However, the safety of operations is

assured since the plant operates only within the known region.

Thus the goal, to design and implement a control algorithm which will guarantee operation

only in the region of guaranteed performance, is fulfilled.

5 Conclusions

The application of Gaussian process model based predictive control is presented in the paper.

In addition to other advantages, such as simple model structure and reduced sensitivity to the

choice of model structure, Gaussian process models provide a measure of confidence in the form

of prediction variance for the identified process model, and this measure is attractive for control

design. Incorporation of confidence in the control algorithm enables design of control which

avoids regions where the density of identification data is not large enough to provide a model of

the required accuracy. This is a way to ensure desired closed-loop performance and circumvent

some stability or robustness issues.

The Gaussian process model is a probabilistic non-parametric model. Consequently, model

based predictive control is one of the suitable algorithms that can be used with such a type of

process model. The drawback of Gaussian process dynamic systems models is the computational
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burden necessary for the model simulation. In our case, a model containing about one thousand

points has been identified. This means that calculation of the inverse covariance matrix is a

relatively time consuming operation.

The main conclusion is that real-time model predictive control with such a model is demon-

strated as viable on a process plant, regardless of the sizable model. It has to be noted that

the choice of predictive algorithm and uncertainty propagation was made as simple as possible

so that the approach would be applicable. The simplified implementation within used hard-

ware (subsection 4.3) enabled that all computations necessary for closed-loop control, including

Gaussian process model prediction, uncertainty propagation and constraint optimisation, were

performed just within the limits of sampling time. Nevertheless, this fact does not reduce the

general applicability of the Gaussian process model for predictive control.

The application demonstrates that using Gaussian process models offers an attractive pos-

sibility for control design. The controller has a higher level of robustness due to information

contained in the model and provides a certain level of operation safety.

Activities are proceeding in the direction of reducing the computational burden and making

the approach attractive also for the control of processes with faster dynamics.
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matical modelling of a semi-industrial liquid-gas separator for the purpose of fault diag-

nosis. Technical Report DP-7260, Institut Jozef Stefan, Ljubljana, Slovenia.

http://www-e2.ijs.si/Damir.Vrancic/Files/dp7260.pdf

34


