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Abstract: Recently, an approximate approach to explicit stochastic Nonlinear Model Predictive Control (NMPC) based on a Gaussian 
process model was proposed. A significant advantage of the Gaussian process models is that they provide information about prediction 
uncertainties. On the other hand, an explicit solution to the stochastic NMPC problem would allow efficient on-line computations as 
well as verifiability of the implementation. In this paper, an explicit stochastic NMPC controller for a pilot gas-liquid separation plant is 
designed, based on a Gaussian process dynamic model. 
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INTRODUCTION  
 
Nonlinear Model Predictive Control (NMPC) involves the so-
lution at each sampling instant of a finite horizon optimal con-
trol problem subject to nonlinear system dynamics and state 
and input constraints [1]. Several approaches to explicit solu-
tion of NMPC problems have been suggested in the literature 
[2], [3], [4], [5]. The benefits of an explicit solution, in addi-
tion to the efficient on-line computations, include also verifi-
ability of the implementation. In [2], [3], [4], approaches for 
off-line computation of explicit sub-optimal piecewise linear 
(PWL) predictive controllers for general nonlinear systems 
with state and input constraints have been developed, based on 
the multi-parametric Nonlinear Programming (mp-NLP) ideas 
[6]. In [7], a parallel computing algorithm for design of ex-
plicit NMPC controllers has been proposed, which is a parallel 
implementation of the approximate mp-NLP approach in [4]. 
It exploits the multi-core computer architectures available 
nowadays and leads to a significant decrease of the off-line 
computational efforts associated to the design of explicit MPC 
controllers. 

Mathematical models of engineering systems usually con-
tain some amount of uncertainty (typically unknown additive 
disturbances and/or uncertain model parameters). In the robust 
MPC problem formulation, the model uncertainty is taken into 
account. In some applications, the system to be controlled is 
described by a stochastic model where the probabilistic distri-
bution of the uncertainty is assumed to be known. Several ap-
proaches to on-line constrained NMPC based on stochastic 
models have been proposed in [8], [9], [10]. In [11], an ap-
proximate mp-NLP approach to explicit solution of feedback 
stochastic NMPC problems has been developed. 

The stochastic NMPC approaches [8]–[11] are based on pa-
rametric probabilistic models. Alternatively, the stochastic 

systems can be modeled with non-parametric models, which 
can offer a significant advantage compared to the parametric 
models. This is related to the fact that the non-parametric 
probabilistic models provide information about prediction un-
certainties which are difficult to evaluate appropriately with 
the parametric models. The Gaussian process model is an ex-
ample of a non-parametric probabilistic black-box model. Its 
use and properties for modelling are reviewed in [12]. The use 
of Gaussian processes in the modelling of dynamic systems is 
a relatively recent development e.g. [13]. An on-line optimi-
zation approach and an explicit approximate approach to sto-
chastic NMPC based on Gaussian process models have been 
proposed in [14], [15] and in [16], respectively.  

In this paper, an explicit stochastic NMPC controller for a 
pilot gas-liquid separation plant is designed, based on a Gaus-
sian process dynamic model. For this purpose, a parallel im-
plementation of the approach in [16] is applied, which uses the 
parallel mp-NLP algorithm in [7]. 
 

FORMULATION OF STOCHASTIC NMPC PROBLEM 
 
Consider a stochastic system described by an uncertain 
nonlinear discrete-time model: 

( 1) ( ( ), ( )) ( )x t f x t u t t      (1) 

where ( ) nx t   and ( ) mu t   are the state and input vari-

ables, ( ) nt   are Gaussian disturbances, and 

: n m nf     is a nonlinear continuous function. The 

uncertainty consists in that the analytical expression of 
( , )f x u  is not known and neither are the mean values and the 

covariances of the disturbances ( )t . With Gaussian process 
modelling, the relationship (1) is represented in the form: 
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( ) ( ( )) ( )Gy t f z t t      (2) 

where ( ) ( 1) ny t x t    is the model output and 

( ) [ ( ), ( )] n mz t x t u t    is the model input. Suppose that we 

have an output data set [ (0), (1),..., ( 1)]i i i iY y y y M  , 

1,2,...,i n  corresponding to an input data set 

[ (0), (1),..., ( 1)]z z z M Z . Assume that the relationship (2) 

is approximated with Gaussian processes with distributions: 

1 1~ (0, )Y ΣN , 2 2~ (0, )Y ΣN , … , ~ (0, )n nY ΣN   (3) 

where the covariance functions 

1, 1 1 1 1Cov ( ( ), ( )) ( ( ), ( ))rq y r y q C z r z q   , … , 

, Cov ( ( ), ( )) ( ( ), ( ))n rq n n n ny r y q C z r z q    with 

0,1,..., 1r M  , 0,1,..., 1q M  , depend on the given input 

and output data sets. Having obtained the Gaussian process 
model (3), the probability distribution of the output ( )y M  

corresponding to a new input ( )z M  can be determined as: 
2( )| ( ),( )~ ( ( ), ( ))y yy M z M , M M Z Y N   (4) 

Here, 1( ) [ ( ( )),..., ( ( ))]y nM y M y M    and 

2 2 2
1( ) [ ( ( )),..., ( ( ))]y nM y M y M    (with ( ( ))iy M  and 

2( ( ))iy M  denoting the mean and the variance of the output 

variable ( )iy M , 1,2,...,i n ), and 1 2[ , ,..., ]nY Y YY . For a 

multi-step ahead prediction, the following applies: 
2( )| ( ),( )~ ( ( ), ( ))

1

y yy M k z M k , M k M k

k

    



Z Y N
   (5) 

Now, suppose the initial state |( ) t tx t x  and the control inputs 

( ) , 0,1, ... , 1t ku t k u k N     are given. Then, by taking 

into account that ( ) ( 1)y t x t   and ( ) [ ( ), ( )]z t x t u t , from 

(5) we obtain the probability distribution of  the predicted 
states 1| , 0,1, ... , 1t k tx k N     which correspond to the 

given initial state |t tx  and control inputs 

, 0,1, ... , 1t ku k N   : 

2
1| | 1| 1|| , ~ ( ( ), ( ))

0,1, ... , 1

t k t t k t t k t k t t k tx x u x x

k N

        

 

N
  (6) 

The 95% confidence interval of the random variable 1|t k tx    

is 1| 1| 1| 1|[ ( ) 2 ( ); ( ) 2 ( )]t k t t k t t k t t k tx x x x            , where 

1|( )t k tx    is the standard deviation. 

Here, we consider a regulation problem where the goal is to 
steer the state vector ( )x t  to the origin. Suppose that a full 

measurement of the state ( )x t  is available at the current time 

t. For the current ( )x t , the regulation stochastic NMPC solves 
the following optimization problem: 

Problem P1: 
*( ( )) min ( , ( ))

U
V x t J U x t        (7) 

subject to | ( )t tx x t  and: 

| | min( ) 2 ( ) , 1, ... ,t k t t k tx x x k N          (8) 

| | max( ) 2 ( ) , 1, ... ,t k t t k tx x x k N          (9) 

min max , 0,1, ... , 1t ku u u k N        (10) 

| |

| |

max{ ( ) 2 ( ) ,

( ) 2 ( ) }

t N t t N t

t N t t N t

x x

x x

 

  

 

 



 
    (11) 

2
1| | 1| 1|| , ~ ( ( ), ( ))

0,1, ... , 1

t k t t k t t k t k t t k tx x u x x

k N

        

 

N
  (12) 

with 1 1[ , ,..., ]t t t NU u u u    and the cost function given by: 

1
2 22

| |

0

( , ( )) ( ) ( )
N

t k t t k t N tRQ P
k

J U x t x u x 


  


         (13) 

Here, N is a finite horizon and , , 0P Q R   are weighting ma-

trices. It is assumed that min max0x x   and 

maxmin 0 uu  . From a stability point of view it is desirable 

to choose   in (11) as small as possible [17]. However, due to 
the uncertainty of the |t N tx   prediction, characterized by the 

variance 2
|( )t N tx  , the feasibility of problem P1 will rely on 

  being sufficiently large. A part of the NMPC design will be 
to address this tradeoff. 

The optimization problem P1 can be formulated in a com-
pact form as follows: 

Problem P2: 
*( ) min ( , ) subject to ( , ) 0

U
V x J U x G U x    (14) 

The problem P2 defines an mp-NLP, since it is NLP in U  pa-
rameterized by x . An optimal solution to this problem is de-

noted * * * *
1 1[ , ,..., ]t t t NU u u u    and the control input is chosen 

according to the receding horizon policy *( ) tu t u . Define the 

set of N-step feasible initial states as follows: 

{ | ( , ) 0 for some }n Nm
fX x G U x U      (15) 

In parametric programming problems one seeks the solution 
*( )U x  as an explicit function of the parameters x  in some set 

n
fX X   [6]. 

 
DESIGN OF EXPLICIT STOCHASTIC NMPC OF GAS-

LIQUID SEPARATOR 
 
Gaussian process model of the gas-liquid separator 
The gas-liquid separation unit (Fig. 1) is a semi-industrial 
process plant that forms part of a larger pilot plant. The role of 
the separation unit is to capture flue gasses under low pressure 
from effluent channels by means of water flow, to cool them 
down and then supply them under high-enough pressure to 
other parts of the pilot plant.  

 
Fig. 1. Process scheme of the separation unit. 

 
The flue gasses coming from the effluent channels are 
“pooled” by the water flow into the water circulation pipe 
through the injector I1. The water flow is generated by the 
pump P1 (water ring). The speed of the pump is kept constant. 
The pump feeds the mixture of water and gas into the separa-
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tor R1 where gas is separated from water. Hence, the accumu-
lated gas in R1 forms a sort of “gas cushion” with increased in-
ternal pressure. Owing to this pressure, the flue gas is blown 
out from R1 into the next unit of the pilot plant. On the other 
side the “cushion” forces water to circulate back to the reser-
voir R2. The quantity of water in the circuit is constant. If for 
some reason additional water is needed, the water supply path 
through the valve V5 is utilized. More details of the plant can 
be found in [18]. 

In [19], a Gaussian process model of the separator’s dy-
namics has been obtained based on measurement data for the 
input and the output signals, sampled with sampling time of 20 
[s]. The model is composed of two parts: one is the sub-model 
that predicts the pressure p : 

1 1( 1) ( ( ), ( ), ( ))p t f p t u t h t     (16) 

and the other is the sub-model that predicts the liquid level h : 

2 2( 1) ( ( ), ( ), ( ))h t f h t u t p t     (17) 

Here,  1u  and 2u  are control inputs, which represent the 

openness of valves V1 and V2, respectively. The obtained 
Gaussian process sub-models have a squared exponential 
(Gaussian) covariance function: 

2
1 0

1

1
( ( ), ( )) exp ( ( ) ( )) , 1,2

2

D
j j j j jj j j

rqi i i
i

C z r z q v w z r z q v j


 
     

  
 (18) 

where 1j   is associated to model (16), 2j   corresponds to 

model (17), 3D   is the number of input signals in both mod-
els, r  and q  are discrete time instances, and rq  is the 

Kronecker operator. Thus, the model (16) has covariance 

function 1 1 1( ( ), ( ))C z r z q  (where 1
1[ , , ]z p u h ) with the follow-

ing parameters: 
1 1 1 1 1 -5
1 2 3 0 1[ , , , , ] [1.71, 0.10, 1.68, 8.26 10 , 0.27]w w w v v      (19) 

and the model (17) has covariance function 2 2 2( ( ), ( ))C z r z q  

(where 2
2[ , , ]z h u p ) with the following parameters: 

2 2 2 2 2 -4
1 2 3 0 1[ , , , , ] [4.81, 97.19, 848.51, 2.55 10 , 7.28]w w w v v   (20) 

 
Design and performance of explicit stochastic NMPC 
Based on the Gaussian process model (16)-(17), an explicit 
stochastic NMPC controller for the gas-liquid separation plant 
is designed. For this purpose, a parallel implementation of the 
approach in [16] is applied, which uses the parallel mp-NLP 
algorithm in [7]. The following constraints are imposed on the 
control inputs: 

1 20 ( ) 1, 0 ( ) 1u t u t        (21) 

The set point values for the pressure and the liquid level are: 
* *0.5 [bar], 1.4 [m]p h     (22) 

The model steady state values of the two control inputs corre-
sponding to these set point values are: 

* *
1 20.47, 0.848u u     (23) 

The NMPC problem formulation has a slightly different form 
than the one described in the previous section. Thus, the aim is 
to minimize the cost function: 

1 2 2* *
|

0

2*
|

( , ( )) ( )

( )

N

t k t t k
Q R

k

t N t
P

J U x t x x u u

x x







 




 
    

 

 


 (24) 

with [ , ]x p h , * * *[ , ]x p h , 1 2[ , ]u u u , * * *
1 2[ , ]u u u , 

subject to the inputs constraints (21) and the Gaussian process 
model (16)-(17). The horizon is 5N   and the weighting ma-
trices are diag{1, 200}Q P  , diag{0.5, 0.5}R  . 

In [3], a condition on the tolerance of the cost function ap-

proximation error has been derived such that the asymptotic 
stability of the nonlinear system in closed-loop with the ap-
proximate explicit NMPC is guaranteed. According to this 
condition, the tolerance is chosen to be dependent on the state, 
which would lead to a state space partition with less complex-
ity in comparison to that corresponding to an uniform toler-
ance. Here, a similar approach is applied and the tolerance is 

chosen to be 
0

*
0( ) max( , min ( ))a r

x X
X V x  


 , where 

0.005a   and 0.1r   are the absolute and the relative tol-

erances. Here, 0X X , where [0, 1] [0.4, 1.8]X    is the 

state space to be partitioned. The state space partition of the 
explicit stochastic NMPC controller is shown in Fig. 2. The 
partition has 487 regions and 13 levels of search. Totally, 21 
arithmetic operations are needed in real-time to compute the 
control input (13 comparisons, 4 multiplications, and 4 addi-
tions). 
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Fig. 2. State space partition of the explicit approximate sto-
chastic NMPC controller and the approximate (solid curve) 

and the exact (dotted curve) state trajectories. 
 
In Fig. 3, the suboptimal control functions, associated with the 
explicit approximate stochastic NMPC controller, are shown. 
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Fig. 3. The suboptimal control functions. 

The performance of the closed-loop system was simulated for 

initial state (0) [0.3 0.8]Tx  . The response is depicted in the 

state space (Fig. 2), as well as trajectories in time (Fig. 4 and 
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Fig. 5). 
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Fig. 4. The control inputs (the openness of valves V1 and V2). 
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Fig. 5. The pressure 1x  and the liquid level 2x . 
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