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Abstract. The paper presents a case study on adaptive nonlinear model 

predictive control (MPC) based on a Gaussian process (GP) model. MPC 

requires a model of the controlled system. We identify a NARX GP model 

using only 15 measurements of inputs and outputs. The model prediction itself 

is a normally distributed random variable. The information from a normally 

distributed prediction is used for implementation of probabilistic model 

predictive control. Our goal is to illustrate the effects on the controlled system 

performance. By examining the empirical results under the speciÞed 

requirements, we can infer that the control performance is acceptable. 

 

Keywords: Adaptive model predictive control, Gaussian process model. 

 

 

1 Introduction 

Control systems are most often based on the principle of feedback, whereby the 

signal to be controlled is compared to a desired reference signal and the discrepancy 

used to compute corrective control action. The term named  closed-loop control comes 

from the information path in the system: process inputs have an effect on the 

process outputs, which is measured with sensors and processed by the controller to 

form a control signal. This signal is “fed back” as input to the process, closing the 

loop. Methods such model predictive control (MPC) were developed to make control of 

nonlinear systems to perform as close as possible to optimality. The idea of MPC is 

that a control performance test is measured on a model by finding the optimal input 

signal. The control performance relies on a criterion to be minimized which is called 

✶✺✶



a cost function. When finding an optimal control performance according to the cost 

function, a part of this input signal is applied to the real process. We will focus 

specially on the variance obtained from the probabilistic model and we will use this 

information inside a cost function. 

 

2 Model predictive control 

Model predictive control (MPC) is an intuitive and advanced approach for the 

control of dynamical systems. It requires a model of the controlled process and this 

model can be as simple as a step response in time-domain or a first-principle one, 

described with partial differential equations. The model is used by an optimization 

algorithm which simulates the process output to find a suitable control input which 

is then partially applied to the process. The devotion to output response optimality is 

expressed in terms of cost function minimization under some feasibility constraints 

but it always depends on the model accuracy. A cost function takes three arguments 

in general: the reference point where the process is wanted to be driven, the 

simulated output from the model and input to the model. 

 

The usual way of computer-aided control design restricts the process output 

sampling and input control action to be taken at discrete-time intervals1. In a similar 

way we are dealing with the discrete model. We can present the values of a simulated 

output signal for a given input as discrete-time values for a finite number of discrete-

time steps as shown in Figure 1.  is called the predictive horizon and is the number 

of total time steps we take into account for predicting the future signals. MPC 

control is called also receding horizon control because the optimal control input is 

recalculated by each new discrete-time instant. Another point of MPC is how an 

input signal is chosen. A possible simple design is to set a parameter for each step till 

the end of control horizon  is reached and the sequent input signal is set to a 

constant value till the end of prediction horizon. 

 

 

 

                                                           
1 We omit the discretization problem of continuous systems 
 

✶✺✷



 

 

 

From a practical point of view, the concept of receding horizon uses the predictive 

horizon as a moving frame inside which a sequence of future  discrete input 

values is chosen to optimize the simulated (model) response with same initial state as 

the current state of the controlled process. By matching the current state of process 

with the model, we apply a feedback from the process state to the model and form a  

closed-loop control. The closed-loop concept occurs because using the state of process 

is a persistent observation of the system output and this information is fed back to 

the regulator part. 

 

Adaptive controller is the controller that continuously adapts to some changing 

process. These are meant for the control of time-varying nonlinear systems or for 

time-invariant nonlinear systems that are modeled as parameter-varying simplified 

nonlinear models. The designed scheme used for adaptive MPC is shown in Figure 

3. The optimizer uses a model to simulate, searching the desired response  by 

finding a suitable input which will be then partially applied to the plant. 

Furthermore, the control algorithm is altered to an adaptive one which repeatedly 

updates the model online. This structure is shown as model identification block. The 

data for identification is made by taking the process input  and output . A 

problem occurs when such control system starts without any identification data to 

build a model. We override this by giving an initial model. 

 

 

 

Figure 1 : Illustrative example of input optimization
within the receding horizon context 
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3 Model identification 

The MPC control algorithm requires a model of the controlled system. We consider 

a black-box dynamic model in the NARX representation [1-2], where the output at 

time step  depends on the delayed outputs  and the exogenous control inputs : 

 

 

 

where  denotes a function,  is white noise and the output  depends on the 

state vector  [1]. 

Assuming the signal is known up to , we wish to predict the output of the system  

steps ahead, i.e., we need to find the predictive distribution of  

corresponding to , if a probabilistic model is taken into account. Multi-

step-ahead predictions of a system modelled by  can be achieved by iteratively 

making repeated one-step-ahead predictions, up to the desired horizon [1]. One of 

possible implementations of a NARX model is the Gaussian process model which 

will be presented in subsection 3.1. 

 

3.1 GP model 

GP model is a probabilistic, non-parametric model based on the principles of 

Bayesian probability [3]. It is probabilistic because its prediction is normally 

distributed and it is non-parametric because it has no structural evidence of a 

modeled system. This kind of modeling is classified as supervised learning and 

during the building phase it depends on a learning set. In our case, the learning set 

can be percieved as the model itself. The learning set  of our model is composed 

from delayed input and output signal measurements of the process. This kind of 

   Figure 2 : Scheme of adaptive MPC algorithm
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data is followed from the NARX model form. Each element is split 

into an input vector  and its predictive target  for  where  is the 

size of learning set . The output values are assumed to be noisy measurements 

of an underlying function  with conditional probability distribution 

. Let  and , then the learning 

set  is used to form a joined Gaussian distribution of function values  [4]. This is 

a Gaussian process and it is defined as a collection of random variables with joined 

Gaussian distribution  where  is a (semi-positive definite) 

covariance matrix which inherits the input part of the learning set by mapping its 

paired inputs  with a covariance function . Intuitively, the covariance 

function  returns a scalar value, representing how two inputs from are related to 

each other. For now, we keep in mind just what covariance function does, but not 

how it is made. A common aim in regression is to predict the output  from a new 

input  given the learning set  and a known covariance function  It can 

be shown that the single posterior distribution  can be analytically 

solved [4], hence we get the form of GP model prediction: 

 

 

 

where  is the vector of covariance function values 

between the inputs  and the prediction input . 

The covariance function design was omitted but it is essentially the main part of GP 

model structure along the learning set . Inference in GP firstly involves finding the 

form of covariance function  to provide a Bayesian interpretation of kernel 

methods 2[3]. Its value expresses the correlation between the individual outputs  and 

 with respect to inputs  and [3]. Usually, the covariance function is used along 

with some parameters, i.e.  hyperparameters. The use hyperparameters can highlight or 

neglect the regressors from an input vector . Assuming stationary data is 

contaminated with white noise, most commonly used covariance function is a 

composition of the square exponential (SE) covariance function with “automatic 

                                                           
2 The theory of kernel methods will not be discussed here. For more information, 
some surveys into kernel methods are provided [4-6]. 
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relevance determination” [7] (ARD) hyperparameters and an additional term  for 

the white noise assumption [3]: 

 

where  are the automatic relevance determination hyperparameters,  and are 

hyperparameters of the covariance function,  is the input dimension, and  

if  and  otherwise. The method of setting hyperparameters 

will not be discussed here, but can be further provided in [3-4][7]. 

 

3.2 Evolving GP model 

This subsection is summarized from [3]. The Evolving GP model (EGP) is inspired 

by Evolving systems [8], which are self-developing systems, adapting on-line both, 

structure and parameter values of the model from incoming data [8]. We use the 

term Evolving GP models in sense of sequential adapting of both, the “structure” of 

GP model and hyperparameter values. This enables fast and efficient GP model 

adaptation to the time-varying system. In comparison with the learning set  of a 

GP model, the learning set of an EGP model  is said to be an active set with the 

property that only a subset   of entire learning dataset   is used for 

modeling with EGP. 

Similarly as in [9] we decided to use fixed squared exponential (SE) covariance 

function with ARD (3) because its functionality is able to find influential regressors. 

With the optimization of the hyperparameter values, uninfluential regressors have 

consequently smaller influence to the result. Therefore, all available regressors can be 

used and consequently, only the active set  and hyperparameter values  are to be 

adapted sequentially. In general the proposed method consists of three main steps to 

adapt the GP model sequentially: Update of active learning set, hyperparameter 

optimization, covariance matrix inverse calculation. 

 

In our specific case we have an EGP of NARX form whose incoming data consists 

from an input vector  of delayed inputs and outputs and its target value  of the 

current output. For every new incoming data, the novelty of the data according to 

the current GP model is verified. This is simply done by predicting the output mean 

value  of the incoming input vector  and comparing to the measured value 
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. If the condition  is true for a pre-set threshold , the 

element  is added to the active set . A method for excluding elements 

must be used if the active learning set has to be limited to a maximum size. This 

methodology will not be discussed here but more information about excluding 

elements from an active set is available from [3,9-10]. 

4 Case study 

4.1 Bioreactor 

The adaptive MPC-GP method will be examined with a simplified model of 

bioreactor [12]. It is an open-loop stable, nonlinear and second order system, 

desribed with difference equations: 

 

 

 

where  is system input, limited to ,  and  are system states, and the 

output  is contaminated with a normally distributed noise  with 

. 

 

4.2 Control design 

The cost function: 

 

is used to find the optimal control input . 

Because we need an initial GP model to perform effectively a simple proportional 

(P) regulator was used to train a GP model in closed-loop in the first  

time steps. At  the adaptive MPC-EGP regulator was activated and replaced 

the proportional one. The error threshold for EGP model update is set to 

 and we restricted the EGP active learning set  to a maximum of 15 

learning points. 
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Just a representative segment of the closed-loop performance is shown in Figure 3  

for prediction horizon , control horizon  and cost function 

parameter . 

 

 

 

 

 

 

5 Conclusion 

Our goal was to illustrate the controlled system performance using an EGP model 

with a limited learning set to 15 data inputs. The results from Figure 3: Closed-loop 

control of bioreactor. The upper window contains a reference signal (blue), process 

output (red) and one-step prediction mean with double std. deviation (black with 

gray gap). The lower window is control input. show that the performance is 

acceptable. Using a larger prediction horizon is unnecessary for this specific case. 

One should note that we implemented an adaptive control algorithm which adapts 

the GP model on-line and its prediction could predict a much smaller uncertainty 

compared to an offline GP model. 

 

 

Figure 3: Closed-loop control of bioreactor. The upper window
contains a reference signal (blue), process output (red) and one-step
prediction mean with double std. deviation (black with gray gap). The
lower window is control input. 
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For wider interest 

Bioreactor processes are the core manufacturing process in the biotech industry. 

Delays and process upsets can result in the loss of money in revenue through lost 

product and downtime. Because the bioreactor is such a critical component, keeping 

it running is essential to the profitability of a biotech operation. For the efficient 

operation high-quality control is necessary. Processes demonstrating highly nonlinear 

behaviour such bioreactors can be operated in regimes closer to the process 

optimum, where simple controllers may fail. Unfortunately, the precise and 

appropriate model for MPC requires significant time and effort to construct and the 

proposed adaptive MPC using a probabilistic black-box model might be an efficient 

solution. 
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