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Abstract

It is important to be able to predict high concentrations of tropospheric ozone
and to inform the population about any violations of air-quality standards,
as defined by international regulations. Although first-principle models that
cover large geographical regions and different atmospheric layers are improv-
ing constantly, they typically still only cover geographical regions with a
relatively low resolution. Such model predictions can be problematic for the
micro-locations of a complex terrain, i.e., a terrain with a large geographi-
cal diversity or urban terrain. For such micro-locations, statistical models
can be utilised. This paper presents a modelling and prediction algorithm
that can be used in, or in accordance with, a mobile air-quality measure-
ment station. Such a mobile station would enable the set-up of a statistical
model and a relatively rapid access to the model’s predictions for a specific
geographical micro-location without a large quantity of historical of measure-
ments. Uncertainty information about the model’s predictions is also usually
required. In addition, such a model can adapt to long-term changes, such
as climate changes. In the paper we propose Gaussian-process models for
the described modelling and prediction. In particular, we selected evolving
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Gaussian-process models that update on-line with the incoming measure-
ment data. The proposed algorithm for the mobile air-quality measurement
and the forecasting station is evaluated on measurements from five locations
in Slovenia with different topographical and geographical properties. The
obtained evaluation results confirm the feasibility of the concept.

Keywords: Air pollution, Ozone, Prediction of ozone concentration, Mobile
air-quality measurement station, Statistical modelling, Gaussian-process
model, Evolving model

1. Introduction

An increased ground-level ozone concentration poses a risk to public
health, vegetation and materials in a variety of ways. Environmental agen-
cies are interested in providing both the public and experts with air-quality
information that can be used for alarm systems as well as to increase public
awareness about air quality. The need to analyse and forecast the air quality
in Europe has become an obligation under the EU framework Directive on
air quality (EU-Commission, 2008). Therefore, predicting the ozone concen-
tration and informing the population when the air-quality standards are not
being met are important tasks. The ozone concentration can be predicted
with a variety of models (Im et al., 2015), taking into account the topograph-
ical and the climatological conditions. However, the forecasting resolution
of these models is usually not high enough to account for a complex terrain,
e.g., valleys, mountains and the micro-locations of an urban environment.
Models obtained directly from measurement data, the so-called statistical or
also black-box models, are a viable alternative for insufficiently covered lo-
calities. The implementation of a prediction model in a mobile measurement
station would enable the setting-up of a statistical model at a specific geo-
graphical micro-location and prompt access to the model’s predictions after
the station’s positioning.

Various studies have demonstrated the added value of statistical mod-
elling for the forecasting of regional air quality. In these studies, statistical
models for ozone prediction — obtained with a range of linear and nonlinear
regression methods from Principal Component Regression to Takagi-Sugeno
fuzzy models — are used for different geographical regions and for different
objectives of the ozone prediction. It is possible to find models developed
with various methods for the prediction of hourly ozone values, e.g., neu-



ral network and principal component regression models in (Al-Alawi et al.,
2008), linear regression ARIMA models in (Duenas et al., 2005), neural net-
work and support vector-machine models in (Feng et al., 2011), fuzzy and
nonlinear regression models in (Lin and Cobourn, 2007), Gaussian-process
models in (Petelin et al., 2013), neural network models in (Solaiman et al.,
2008), for the prediction of daily maximum ozone values, e.g., neural network
models in (Baawain and Al-Serihi, 2014), support vector machine models in
(Chelani, 2010), fuzzy models in (Cheng et al., 2011), neural network mod-
els in (Fontes et al., 2014), neural network and Gaussian-process models in
(Grasic et al., 2006), linear regression and neural network models in (Mous-
tris et al., 2012), fuzzy models in (Nebot et al., 2008), classification and
regression trees in (Sundaramoorthi, 2014), or for the prediction of different
average ozone values, e.g., neural network models in (Fontes et al., 2014), en-
sembles of regression trees in (Garner and Thompson, 2013), hidden Markov
models and generalised linear models in (Sun et al., 2013), classification and
regression trees in (Sundaramoorthi, 2014), to list only a selection of recent
publications. These models use various pollutants and various meteorologi-
cal variables, together with their lagged values, as the regressors. All these
models are developed off-line, i.e., before the prediction takes place, and are
not changing with the new data on-line.

Statistical modelling methods can be divided, in general, into parametric
methods, where the modelled system is approximated by fitting the parame-
ters of the selected basis functions (Boznar et al., 1993; Mlakar and BoZnar,
2011), and into non-parametric models, where the relationships among the
measured data are searched directly from the data, e.g., kernel methods.
There is considerably less effort necessary for the selection of model’s struc-
ture for non-parametric models and, in general, you have to optimise only
a low number of parameters, if any at all, when modelling non-parametric
models. Lu and Wang (2014) make a comparison between a Multilayer-
Perceptron Neural Network, as a representative of parametric methods, and
Support Vector Machines, as a representative of non-parametric methods
proposed for environmental modelers. The drawbacks of both approaches to
modelling the ozone concentration are exposed in (Lu and Wang, 2014).
These drawbacks are optimisation problems with the local minima, and
model overfitting, which can be reduced with a Bayesian approach. On the
other hand, non-parametric methods overcome both mentioned optimisation
problems, but are computationally intensive in the case of large datasets.

In this paper we propose a modelling and prediction algorithm that can



be used in, or in accordance with, a mobile air-quality measurement sta-
tion and that overcomes the described problems of statistical methods. A
non-parametric Gaussian-process (GP) model is used that circumvents the
optimisation problems with local minima and overfitting. In particular, its
on-line version is used to avoid the problems associated with large datasets.
The GP model has been known for a long time in the field of geostatistics,
where the method was named ‘kriging’ by Krige (1951). A regression problem
was first solved with GPs in the late 1970s by O’Hagan (1978). It has become
popular within the machine-learning community initially due to the research
of Neal (1996), who showed the relationship between GP and neural network
models. It continued with the research of Rasmussen (1996), who placed
GP modelling within the Bayesian probability framework. The research of
many others followed. GP models can be used for modelling of various kinds
of models and applied in various domains like (Kocijan, 2016): chemical
engineering, biomedical engineering, biological systems, power systems and
engineering, etc. Numerous papers, most of which have been published since
2000, describe the use of GP models for modelling of dynamic systems. These
publications have explored the use of GP models for various applications like
dynamic systems modelling from measurements, e.g., (Kocijan et al., 2005;
Shi et al., 2005; Gregor¢i¢c and Lightbody, 2007, 2008, 2009) and dynamic
systems control, e.g., (Gregorci¢ and Lightbody, 2012; Kocijan, 2016). The
idea of using such models for the prediction of ozone has been initiated in
(Petelin et al., 2013), with the comparative evaluation of the models obtained
with different statistical methods on data from a single geographical location
in (Petelin et al., 2015).

The paper is structured as follows. The problem is described in the next
section. The proposed modelling method is introduced in Section 3. Section 4
deals with experiments to show the feasibility of the proposed algorithm, with
the results presented in Section 5. The conclusions are drawn at the end of
the paper.

2. Problem description

The problem considered in this paper is to find and evaluate a possi-
ble algorithm for statistical modelling with an ability to learn on-line from
incoming or streaming data measurements. The obtained model should be
able to learn from scratch or with a small set of initial data so that it can
be used in the context of a mobile air-quality measurement station relatively



quickly after it is deployed in the field. The ability to learn on-line makes
such a model also able to cover for seasonal meteorological and climatological
changes, as well as changes in geographical position.

The model is aimed at predictions of the daily maximum ozone concentra-
tions one-day ahead and predictions of the maximum 8-hour-averaged ozone
concentrations one-day ahead. The daily maximum value is, in our case,
defined as the maximum value of the hourly average ozone concentrations
obtained between 1 and 24 hours on a particular day. An 8-hour-averaged
value at the moment of consideration is, in our case, the moving average
of eight, equally-weighted, consequent, hourly average ozone concentrations,
including the most recent one. The 8-hour-averaged values from which the
maximum for a particular day is determined are presented as moving aver-
ages, calculated between 1 and 24 hours on the particular day.

The obtained predictions should contain information about their uncer-
tainty. Also, the predictions of both models for the next day are to be made
at 24.00 hour, but this can be arbitrarily modified.

3. Methods

3.1. Gaussian Process Models

GP models are probabilistic, non-parametric models based on the princi-
ples of Bayesian probability. GPs actually provide a Bayesian interpretation
to the kernel methods (Rasmussen and Williams, 2006). This means that
with a GP model we do not try to approximate the modelled system by fit-
ting the parameters of the selected basis functions, but rather we search for
the relationship among the measured data. The modelling properties of GP
models are reviewed in (Rasmussen and Williams, 2006; Kocijan, 2016; Shi
and Choi, 2011; Seeger, 2004; MacKay, 1998).

GP models can be used for regression, where the task is to infer a map-
ping from a set of N D-dimensional regression vectors represented by the
regression matrix X = [x1,Xa, ... ,XN]T to a vector of output data y =
[Y1,Y2, ..., yn]. The outputs are usually assumed to be noisy realisations of
the underlying function f(x;). A GP model assumes that the output is a
realisation of a GP with a joint probability density function:

p(y) = N(m, K), (1)



with the mean m and covariance K being functions of the inputs x . Usually,
the mean function is defined as 0, while the covariance function or kernel

Ki; = C(xi, %) (2)

defines the characteristics of the process to be modelled, i.e., the stationar-
ity, smoothness, etc. The value of the covariance function C'(x;,X;) expresses
the correlation between the individual outputs f(x;) and f(x;) with respect
to the inputs x; and x;. The covariance function can be any function that
generates a positive, semi-definite covariance matrix. Assuming the station-
ary data is contaminated with white noise, the most commonly used covari-
ance function is the composition of the square exponential (SE) covariance
function with ‘automatic relevance determination’ (ARD) hyperparameters
(MacKay, 1998) and a constant covariance function assuming white noise:

1
C(Xi,Xj) = O'; exXp —§(X¢ — Xj)TA_l(Xi — Xj) + (5@'0'721, (3)

where A7 is a diagonal matrix A™' = diag([l;?,...,15?]) of the ARD hy-
perparameters, o2 and ai are hyperparameters of the covariance function,
and 0;; = 1 if ¢ = j and 0 otherwise. The hyperparameters can be writ-
ten as a vector @ = [I;?,...,1;% 0%,02]". The ARD property means that
%4 = 1,...,D indicates the importance of individual inputs. If I;? is
zero or near zero, it means that the inputs in dimension 7 contain only little
information and could possibly be discarded. Further covariance functions
suitable for various applications can be found in, e.g., (Kocijan, 2016).

The common aim of regression is to predict the output * in an unobserved
test location x* given the training data, a known mean function and a known
covariance function C'. The posterior predictive distribution can be obtained
by constructing the joint posterior distribution using the Bayes’ rule. Then,
the posterior predictive distribution is obtained by marginalising over the
function f. Assuming GP prior with zero mean function leads to a Gaussian
predictive distribution (Rasmussen and Williams, 2006). In order to perform
a full Bayesian inference, the effect of unknown hyperparameters @ has to be
taken into account. The posterior predictive distribution is described with
the following equation

p(y]X) = / / p (y]£. X, 8) p (£0) p (6) dEd6. (4)
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The computation of such integrals can be difficult due to the intractable na-
ture of the non-linear functions. In the case of GP inference a frequently
used approximate solution to the problem of intractable integrals is to es-
timate the hyperparameters with the maximising of the marginal likelihood
from Bayes’ rule. This is carried out by minimising the following negative
log-likelihood function:

1 1 _ N
(0) = 5 loa(| K |) — 5y K 'y — - log(2n), (5)
where K is a covariance matrix with elements described using equation (2).
Once the hyperparameter values are obtained, the predictive normal dis-
tribution of the output for a new test input can be calculated using:

ply") = k(=)' Ky, (6)
o*(y") = r(x") — k(x") K k(x"), (7)
where k(x*) = [C(x1,x*),...,C(xy,x*)]T is the N x 1 vector of covariances

between the test and the training cases, and x(z*) = C(x*,x*) is the covari-
ance between the test input itself.

A prediction of the GP model, in addition to the mean value (6), also pro-
vides information about the confidence of the prediction using the prediction
variance (7). Usually, the confidence in the prediction is interpreted with a
20 interval, which corresponds to about 95% of the confidence interval. The
confidence interval highlights the areas of the input space where the predic-
tion quality is poor, due to the lack of data or noisy data, by indicating a
wider confidence interval around the predicted mean.

A known drawback of GP modelling with a large training dataset is the
computational load that increases with the third power of the amount of
input data due to the calculation of the inverse of the covariance matrix. To
overcome the computational-limitation issues and consequently to make the
method viable for large-scale dataset applications, various sparse-approxima-
tion methods have been suggested. A common property of all these sparse-
approximation methods is that they try to retain the bulk of the information
contained in the full training dataset, but reduce the size of the covariance
matrix so as to facilitate a less computationally demanding implementation
of the GP model. Usually, this subset of the training data is called the active
set. For more details see (Quinonero-Candela et al., 2007). The majority of
the methods for the active set selection are off-line methods, which means
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they need all the training data available at once. There are a few on-line
sparse methods for GP modelling, which adapts the active set sequentially,
e.g. (Csaté and Opper, 2002; Seeger et al., 2003; Ranganathan et al., 2011).
However, they do not adjust the hyperparameter values in the on-line mode
or have some other limitations, e.g., they have possible computational issues,
etc. The subsequently described method overcomes these limitations.

3.2. Fvolving Gaussian process modelling

The Evolving GP (EGP) model is inspired by Evolving Systems (An-
gelov et al., 2010), which are self-developing systems, adapting on-line both
the structure and parameter values of the model from incoming data. The
term Evolving GP models is used in the sense of the sequential adapting of
elements of the GP model, including the hyperparameter values.

The EGP processes every new piece of data sequentially and adapts all
the influential parts of the GP model in an on-line fashion. This enables
the fast and efficient adaptation of the GP model to changes. The EGP
concept was proposed in (Petelin and Kocijan, 2011) and further developed
in (Petelin et al., 2013). This concept considers the adaptation of four main
elements of the GP model: the active set, the hyperparameter values, the
covariance function and the regressors. To simplify the concept we decided,
like with (Petelin et al., 2013), to use the fixed covariance function SE with
ARD as we assume the smoothness and stationarity of the system. The ARD
functionality is able to find influential regressors. With the optimization of
the hyperparameter values, the uninfluential regressors have a smaller weight
and, as a consequence, have a smaller influence on the result. Therefore, all
the available regressors can be used and, consequently, only the active set
and the hyperparameter values are adapted sequentially.

The proposed method consists of roughly three main steps to adapt the
GP model sequentially. In the first step the new data is processed in the
sense of including the incoming data in the active set X'. In the following
step the hyperparameter values 0 are optimized, while in the last step the
covariance matrix K and its inversion K~! are updated in accordance with
the changes from the first two steps.

Processing incoming data. For every new piece of incoming data, first the
novelty of the data is verified by predicting the output based on the incoming
data and scoring the novelty based on the prediction’s mean and variance. If



either of these two values is above the pre-set thresholds, the incoming data
is included in the active set.

If the inclusion of the incoming data causes the exceeding of the the pre-
set maximum size of the active set, the least informative data is excluded.
The least informative data is scored according to the Euclid distance between
the regression vectors, extended with the corresponding model prediction,
combined with the exponential forgetting factor. The Euclid distance among
the data is calculated and the datapoint with the smallest distance is elimi-
nated. Thus, the most diverse, i.e., the most informative, data is preserved.
The exponential forgetting factor is implemented as the multiplier of the
distance-based score.

Optimising hyperparameter values. After updating the active set, the hyper-
parameter values should be re-optimised as described beforehand by minimis-
ing the negative log-likelihood function (5). The optimisation in each EGP
processing step has a limited number of iterations. To avoid the situation
when the optimisation becomes stuck in a local optimum, it is begun with the
random hyperparameter values and the best set of hyperparameter values is
selected. These steps are repeated until the EGP processing is completed.

Updating covariance matriz. At the end, the inverse of the covariance matrix
is updated according to the new active set X and the new hyperparameter
values 0. It is updated twice in two steps. In the first step the low rank
updates for the Cholesky decomposition (Seeger, 2008) are used as only one
rank of the covariance matrix is changed when calculating the marginal like-
lihood for each subset of the active set. These updates cannot be used in
the second step as the whole covariance matrix is changed in the case of new
hyperparameter values, so the inverse of the covariance matrix is updated
again.
The algorithm is given in Figure 1 (Petelin and Kocijan, 2014).

4. Experiments

The algorithm for a mobile station will be tuned in such a way that the
mobile station can be placed in different locations in Slovenia, which is very
diverse in terms of geography and climate. It is expected that the algorithm
would behave comparably well in different environments. Consequently, it
was tested at five selected locations with the different properties shown in
Figure 2. Nova Gorica has a Mediterranean climate with a strong influence
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procedure EGP
global: X, K, Q

Q<+ K!
repeat
x*, y* < GETINCOMINGDATA
XT, KT, QT + ADD(x*, y*)
if LENGTH(X ™) > mazy then
Scores < CALCULATESCORES(XH KT, Q™)
X, K, Q < REMOVEWORST(Scores)
end if
0. K, Q < OpTiIMIZEHYPERPARAMETERS(6, K, Q)
until incoming data available
end procedure

Figure 1: Pseudo code of the EGP method.

from the river Po and the industrial Friuli region in Italy. Koper is an in-
dustrial and port town on the Adriatic coast with a Mediterranean climate.
Ljubljana is the most populated region in Slovenia and has an unfavourable
geographical location in a wider basin with a continental climate, where in-
dustrial air pollution is combined with the air pollution from traffic and
domestic heating. Similar characteristics apply for the Celje region. A dif-
ferent situation applies for Zagorje, located in a region with highly complex
orography and consequently very complex micrometeorological conditions of
a generally continental climate, which means that the polluted industrial air
stays trapped in a basin and causes problems for the inhabitants.

The meteorological and air-quality variables at these locations are mea-
sured every half an hour and are stored in an internal database. The mea-
sured data were acquired for all the available variables, as listed in Table 1,
for each location for a period of 3 years (from the beginning of 2012 to the
end of 2014).

Based on the collected half-hour measurements for each variable, their
1-hour and 8-hour averages are calculated. Only the maximum daily values
are selected as the regressors used for both, i.e., the 1- and 8-hour, ozone-
prediction model. The wind-direction measurements (WindDir) are not cal-
culated as an 8-hour average.

As the ozone concentration depends on the present, and not only on the
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Figure 2: Geographical location of the selected locations.

past, conditions, the forecasts of the variables were added, as is common
practise in this type of investigation. To avoid the forecasts’ uncertainty we
applied the measurements of these variables, which, in our opinion, provides
a more accurate picture of the regressors’ relevance. Therefore, no numerical
forecasts from meteorological and air-quality models are used for regressors
in this paper. The use of numerical forecasts from other models as regressors
is certainly a feasible option, but it is beyond the scope of this paper.

With a number of available variables and its lagged values, the size of
the regression vector and, consequently, of the model, increases noticeably.
For this reason it is only necessary to select the regressors that add the most
information to the prediction. Various regressor-selection methods are avail-
able. Kocijan et al. (2015) used a method-selection strategy where various
methods were tested, and the one with best result was used. Glavan et al.
(2013) suggested the use of various algorithms, and the resulting regression
selection is achieved based on the average-weighted method. To support the
regressor-selection process, Gradisar et al. (2015) built up a ProOpter plat-
form, in which various regressor-selection algorithms are implemented. In
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Table 1: Available variables’ measurements.

’ Nova Gorica \ Koper Ljubljana Celje \ Zagorje ‘
03 03 03 03 03
GlSolRad | GlSolRad | GlSolRad | GlSolRad /
AirTemp AirTemp AirTemp AirTemp | AirTemp
RelHum RelHum RelHum RelHum RelHum
WindSpd WindSpd WindSpd / WindSpd
WindDir WindDir | WindDir / WindDir
NOzx NOzx NOzx NOzx NOzx
NO2 NO2 NO2 NO2 NO2
/ / S0O2 SO2 S0O2
Dust Dust Dust Dust Dust
Precip Precip Precip Precip Precip
DifSolRad | DifSolRad | DifSolRad | DifSolRad /
Pressure Pressure / / /
/ / co / /

this paper we have applied (i) the distance Correlation — dCorr, (ii) the Par-
tial Mutual Information — PMI and (iii) the model Linear in the Parameters
— LIP algorithms to rank the relevance of the regressors. Later, the results
were grouped in two stages. In the first stage, the rankings based on sta-
tistical measures achieved with all three mentioned methods were averaged
for every location. In the subsequent stage, the rankings from the first stage
(for every location) were averaged (over locations) again to obtain the final
sequence of regressors, ordered in terms of their importance. This procedure
made it possible to obtain an averaged set of regressors that encompassed
the significant regressors for all the involved locations. The rationale behind
this task is to obtain a single uniform regression vector for a lager area, in
our case Slovenia, and to avoid a regressor selection every time the mobile
station is moved around. The regressors that have measurements only for a
specific location were omitted from the general set of regressors.

In the next stage, we determine how many of regressors, out of those
selected in the first stage, should be used in order to produce the best pre-
diction.

A Gaussian-process model was used to obtain the best set of regressors,
where SE with the ARD covariance function and a constant mean value was
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applied. We used all the available data and divided them into 11 subsets.
A 10-fold cross-validation was used for the prediction validation on the 10
subsets, while the remaining, larger subset is used for testing the prediction.
To score the performance of the models we chose the following statistical
measures:

e The root-mean-square error - RMSE:

N
1 .
RMSE = N Z(E(yz) —¥i)% (8)
i=1
where y; and ¢; are the observation and the prediction in the ¢-th step,
respectively, E(-) denotes the expectation, i.e., the mean value, of the
random variable, and N is the number of used observations.

e The standardised mean-squared error - SMSE (Rasmussen and Williams,
2006):

1N (B() - v)?
SMSE = — ” , (9)

where U; is the variance of the observations.

e The mean standardised log loss - MSLL (Rasmussen and Williams,

2006):
N
1 (E(9:) — vi)?
MSLL = — 1 2y p Y T
N
1 2, Wi — Ey))”
T N {log(ay) + v a— (10)
i=1 Y
where o? is the prediction variance in the i-th step, and F(y) is the

expectation, i.e., the mean value, of the vector of the observations.

e The Pearson’s correlation coefficient - PCC:

e — 2 () — E@) (i = E(y))

Noyoy

, (11)

where E(y) is the expectation, i.e., the mean value, of the vector of
predictions, and o,,0; are the standard deviations of the observations
and the predictions, respectively.
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e The mean fractional bias - MFB:

1 :& — Y
MFB = —
N i—1 % +yz)

Mz

(12)

e The factor of the modelled values within a factor of two of the obser-
vations - FAC2:

al 5 < |20 <

FAC2 — %Zn with n; — {(1) Zsre'o SsISEI=2 g
RMSE and SMSE are frequently used measures for the accuracy of the pre-
dictions’ mean values, which are 0 in the case of perfect model. SMSE is the
standardised measure with values between 0 and 1. MSLL is a standardised
measure suited to predictions in the form of random variables. It weights
the prediction error more heavily when it is accompanied by a smaller pre-
diction variance. The MSLL is approximately zero for the simple models
and negative for the better ones. PCC is a measure of associativity and is
not sensitive to bias. Its value is between -1 and +1, with ideally linearly
correlated values resulting in a value 1. MFB is the measure that bounds
the maximum bias and gives additional weight to underestimations and less
weight to overestimations. Its value is between -2 and +2, with the value 0
in the case of a perfect model. FAC2 indicates the fraction of the data that
satisfies the condition from Equation (13). Its value is between 0 and 1, with
the perfect model resulting in a value of 1.

The final ranking of regressors was obtained based on statistical measures
calculated for different models’ predictions with 10-fold cross-validation. The
models for this stage were built from the set of potential regressors deter-
mined in the first stage.

The first nine regressors from the final ranking give the best results, on
average, for all the locations and measures, and are presented in Table 2,
separately for Daily mazimum and for the maximum of §-hour averages.
Again, the one-hour-averaged daily maximum values of the regressors and
the 8-hour-averaged daily maximum values of the regressors are used for
the daily maximum and the 8-hour-averaged daily maximum predictions,
respectively. If there are no measured values for some of the variables in the
final selection at a particular location, the prediction is made without them.
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Table 2: Regressors for the final models. k denotes consecutive time instants, where k + 1
means the present-day maximum values, i.e., at the prediction time, and k the recent
maximum values, i.e., from yesterday. Instead of forecasts, measurements are used for the
present-day values, as explained earlier in the text.

Daily maximum  8-hour average

1 O3(k) O3(k)

2 GlSolRad(k +1) GlSolRad(k + 1)
3 AirTemp(k+1) AirTemp(k+ 1)
4 AirTemp(k) AirTemp(k)

5 GlSolRad(k) NOz(k+1)

6 RelHum(k+1) RelHum(k+ 1)

7 NOz(k+1) Pressure(k)

8 Pressure(k+1) Pressure(k+1)
9 Pressure(k) GlSolRad(k)

Finally, we used selected regressors for a one-day prediction of the ozone
based on the EGP. First, 60 days are needed to initialise the GP model. After
that, the evolving GP model is applied. Also, in this case we applied SE with
the ARD covariance function and a constant mean value. The number of
optimisation iterations in each EGP step is limited to 70 and the maximum
size of the active set is determined as 90 datapoints. Lower values for any of
these design parameters resulted in a worse prediction model, while higher
values increased the computational time for each iteration step.

The information gain is defined by the maximum Euclid distance of the
i-th element to any other. Exponential forgetting, with a forgetting factor of
0.9995, was determined empirically.

5. Results

This section provides the results for the on-line model predictions. As
already mentioned, we expect from the developed model approximately the
same prediction accuracy at all the considered locations.

The results of the performance measures for the test data are given in
Table 3 for daily maximum concentrations and in Table 4 for the maximum
8-hour-averaged concentrations.

Comparable values of the performance measures for all the considered lo-
cations with very different geographical and meteorological conditions are ob-
served. This confirms the adaptivity of the selected algorithm. The same can
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Table 3: Performance measures at different locations for predictions of the daily maximum

concentrations.

Performance measure H Nova Gorica \ Koper \ Ljubljana \ Celje \ Zagorje ‘

RMSE 17.456 14.616 | 15.028 | 16.678 | 14.962
SMSE 0.19 0.19 0.16 0.21 0.21
MSLL -0.81 -0.79 -0.86 -0.76 -0.74
PCC 0.904 0.900 0.918 0.890 | 0.898
MFB 0.069 0.025 0.057 0.082 | 0.108
FAC2 0.95 0.98 0.93 0.93 0.93

Table 4: Performance measures at different locations for predictions of the maximum

8-hour-averaged concentrations.

’ Performance measure H Nova Gorica \ Koper \ Ljubljana \ Celje \ Zagorje ‘

RMSE 15.490 13.406 | 14.915 | 15.940 | 14.316
SMSE 0.16 0.17 0.16 0.20 0.20
MSLL -0.91 -0.85 -0.88 -0.80 -0.78
PCC 0.927 0.914 0.924 0.900 | 0.901
MFB 0.110 0.033 0.159 0.105 | 0.121
FAC2 0.93 0.98 0.89 0.91 0.91

be concluded for the daily maximum and for the maximum 8-hour-averaged

predictions of the ozone concentrations.

A visual presentation of the model’s predictions with scatter plots and
time responses is given in Figures 3 - 8 for one of the considered locations,
i.e, for Ljubljana, which is the capital city of Slovenia.

It is clear from Figures 3 - 8 that the model predictions follow the values
of the test measurements. Moreover, most of the measurements are contained

within the 95 % confidence interval provided by the model.
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Figure 3: Predicted values versus observation values for 1-h daily maximum ozone con-
centrations for Ljubljana.
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Figure 4: Predicted values versus observation values for maximum 8-hour-averaged ozone
concentrations for Ljubljana.
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Figure 5: Time-series plot of predictions for 1-h daily maximum ozone concentrations for
Ljubljana.
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Figure 6: Zoomed part of Figure 5.

18



GP model prediction

200
prediction (u)
" ﬂ - - - measurement
150y f\‘ {l |
o l 'l !;Ll
: M i
20 GEL
S fw‘l““ "\ W I
© 1:1‘”.’;',‘ ! llm 7 ,'_3 ol l'.
50{:‘. HHI‘ ;,! FUM S i
F! | 'L"’ ' il g i
arh R
' I." 114 y l
0 il E.U’kl‘ A |
01-Jan-2012 01-Jan-2013 01-Jan-2014 01-Jan-2015
t

Figure 7: Time-series plot of predictions for maximum 8-hour-averaged ozone concentra-
tions for Ljubljana.
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Figure 8: Zoomed part of Figure 7.
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6. Conclusions

In this paper we describe an algorithm for on-line statistical modelling
that could be used for one-day-ahead predictions of the daily maximum
ozone concentrations and the maximum 8-hour-averaged ozone concentra-
tions. The algorithm is designed for a mobile air-quality-measurements sta-
tion that could be used relatively quickly after being deployed in the field.

The EGP algorithm fulfilled the given objective and the described tests
showed that the algorithm behaved comparably well using the data from five
different locations in Slovenia with different geographical and meteorological
properties. The selection of the common regression vector for all the consid-
ered locations enabled a procedure for the regressors’ selection that does not
need to be repeated every time the station is deployed in the field.

Various field tests, algorithm alternatives and potential improvements of
the algorithm are foreseen in the future. Moreover the possibility to include
numerical forecasts from meteorological and air-quality models as regressors
and the influence of their uncertainty will be investigated.
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