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Abstract

The Gaussian process (GP) model is an example of a probabilistic, nonparametric

model with uncertainty predictions. It can be used for the modelling of complex

nonlinear systems and also for dynamic systems identification. The output of the

GP model is a normal distribution, expressed in terms of mean and variance. The

modelling case study of gas-liquid separator is presented in the paper. It describes

the comparison of three methods for dynamic GP model simulation in the phase of

model validation. The level of computational burden associated with each approach

rises with the complexity of computation necessary for approximation of uncertainty

propagation.
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1 Introduction

While there are numerous methods for the identification of linear dynamic

systems from measured data, the nonlinear systems identification requires

more sophisticated approaches. The most common choices include artificial

neural networks, fuzzy models etc. Gaussian process (GP) models present an

emerging, complementary method for a nonlinear system identification. The

GP model is a probabilistic, non-parametric black-box model. It differs from

most of the other black-box identification approaches as it does not try to

approximate the modelled system by fitting the parameters of the selected

basis functions but rather searches for the relationship among measured data.

GP models are closely related to approaches such as Support Vector Ma-

chines and specially Relevance Vector Machines [7]. The output of the GP

model is a normal distribution, expressed in terms of mean and variance.

The mean value represents the most likely output and the variance can be

interpreted as the measure of its confidence. The obtained variance, which

depends on the amount and quality of the available identification data, is im-

portant information, distinguishing the GP model from other methods. The

GP model structure determination is facilitated as only the covariance func-

tion and the regressors of the model need to be selected. Also the number of

model parameters, which need to be optimised is smaller than in other black-

box identification approaches. The disadvantage of the method is the potential

computational burden for optimization, which increases with the amount of

data and the number of regressors. The GP model was first used for solving
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a regression problem in the late seventies, but it gained popularity within the

machine learning community in the late nineties of the twentieth century. Re-

sults of a possible implementation of the GP model for the identification of

dynamic systems were presented only recently. The investigation of the model

with uncertain inputs, which enables the propagation of uncertainty through

the model, is given in [2] and illustrated in [5].

The paper is composed as follows. The next section will briefly describe the

modelling of dynamic systems with Gaussian process models. The description

of dynamic systems simulation will follow in the third section. The case study

is described next. Conclusions are given at the end of paper.

2 Modelling of Dynamic Systems with Gaussian Processes

A Gaussian process is an example of the use of a flexible, probabilistic, non-

parametric model with uncertainty predictions. Its use and properties for mod-

elling are reviewed in [7].

A Gaussian process is a collection of random variables which have a joint mul-

tivariate Gaussian distribution. Assuming a relationship of the form y = f(x)

between an input x and output y, we have y1, . . . , yn ∼ N (0, Σ), where

Σpq = Cov(yp, yq) = C(xp,xq) gives the covariance between output points cor-

responding to input points xp and xq. Thus, the mean µ(x) (usually assumed

to be zero) and the covariance function C(xp,xq) fully specify the Gaussian

process. Note that the covariance function C(., .) can be any function having

the property of generating a positive definite covariance matrix.
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A common choice is

C(xp,xq) = v1 exp

[
−1

2

D∑

d=1

wd(x
d
p − xd

q)
2

]
+ δpqv0, (1)

where ΘΘΘ = [w1 . . . wD v0 v1]
T are the ‘hyperparameters’ of the covariance func-

tions, v0 is estimated noise variance, v1 is the estimate of the vertical scale of

variation, D is the input dimension and δpq = 1 if p = q and 0 otherwise. Other

forms of covariance functions suitable for different applications can be found

in [7]. For a given problem, the parameters are learned (identified) using the

data at hand. After the learning, one can use the w parameters as indicators

of ‘how important’ the corresponding input components (dimensions) are: if

wd is zero or near zero it means that the inputs in dimension d contain little

information and could possibly be removed.

Consider a set of N D-dimensional input vectors X = [x1,x2, . . . ,xN ] and a

vector of output data y = [y1, y2, . . . , yN ]T . Based on the data (X,y), and

given a new input vector x∗, we wish to find the predictive distribution of the

corresponding output y∗. Unlike other models, there is no model parameter

determination as such, within a fixed model structure. With this model, most

of the effort consists in tuning the parameters of the covariance function. This

is done by maximizing the log-likelihood of the parameters, which is computa-

tionally relatively demanding since the inverse of the data covariance matrix

(N ×N) has to be calculated at every iteration. Nevertheless, the number of

parameters to be optimized is small (D + 2, see Eq. (1)), which means that

optimization convergence might be faster and that the ‘curse of dimensional-

ity’ so common to black-box identification methods is circumvented or at least

decreased.
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The described approach can be easily utilized for regression calculation. Based

on training set X a covariance matrix K of size N×N is determined. As already

mentioned, the aim is to find the distribution of the corresponding output y∗

at some new input vector x∗ = [x1(N + 1), x2(N + 1), . . . , xD(N + 1)]T .

For a new test input x∗, the predictive distribution of the corresponding output

is y∗|(X,y),x∗ and is Gaussian, with mean and variance

µ(x∗) = k(x∗)T K−1 y, (2)

σ2(x∗) = κ(x∗) − k(x∗)T K−1 k(x∗),
(3)

where k(x∗) = [C(x1,x∗), . . . , C(xN ,x∗)]T is the N × 1 vector of covariances

between the test and training cases, and κ(x∗) = C(x∗,x∗) is the covariance

between the test input and itself.

Gaussian processes can, like neural networks, be used to model static nonlin-

earities and can therefore be used for modelling of dynamic systems [1–3,5] if

delayed input and output signals are fed back and used as regressors. In such

cases an autoregressive model is considered, such that the current output de-

pends on previous outputs, as well as on previous control inputs.

x(k) = [y(k − 1), y(k − 2), . . . , y(k − L), u(k − 1), u(k − 2), . . . , u(k − L)]T ,

ŷ(k) = f(x(k)) + ε, (4)

where k denotes the consecutive number of data sample. Let x denote the

state vector composed of the previous outputs y and inputs u up to a given

lag L, and ε is white noise.

As can be seen from the presented relations, the obtained model not only

describes the dynamic characteristics of nonlinear system, but also provides
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information about the confidence in these predictions by means of prediction

variance. The Gaussian process can highlight areas of the input space where

prediction quality is poor, due to the lack of data, by indicating the higher

variance around the predicted mean.

3 Dynamic model simulation

When only the mean values of model predicted values are feed back the simu-

lation was named ‘naive’. However, to get more realistic picture of the dynamic

model multi-step ahead prediction we have to take account of the uncertainty

of future predictions which provide the ‘inputs’ for estimating further means

and uncertainties. The partial overview of results given in [2] is given as fol-

lows.

In the case of multi-step ahead prediction we wish to make a prediction at x∗,

where input vector x∗ contains also uncertain inputs fed back from outputs.

Within a Gaussian approximation, input values can be described by normal

distribution N (µµµx∗ ,ΣΣΣx∗), where µµµx∗ and ΣΣΣx∗ are the vector and the matrix

of input mean values and variances respectively. To obtain a prediction we

need to integrate the predictive distribution p(y∗|(X,y),x∗) over the input

distribution, that is

p(y∗|(X,y),µµµx∗ ,ΣΣΣx∗) =
∫ +∞

−∞
p(y∗|(X,y),µµµx∗)p(x∗|µµµx∗ ,ΣΣΣx∗)dx

∗, (5)

where

p(y∗|(X,y),x∗) =
1√

2πσ2(x∗)
exp

[
−(y∗ − µ(x∗))2

σ2(x∗)

]
. (6)

Since p(y∗|(X,y),x∗) is a nonlinear function of x∗, the new predictive distribu-

tion p(y∗|(X,y),µµµx∗ ,ΣΣΣx∗) is not Gaussian and this integral cannot be solved
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without using approximation.

Approximations can be roughly divided into numerical, for example Monte-

Carlo numerical methods, and analytical approximations.

3.1 Analytical approximation with Taylor expansion

In order to achieve computational simplicity the analytical approximation

which consists of computing only the first two moments, namely the mean

and variance of p(f(x∗)|(X,y),x∗) can be used.

To distinguish between µ(x∗) and σ2(x∗), the mean and variance of the Gaus-

sian predictive distribution in the case when there are no uncertain inputs,

we denote by m(µµµx∗ ,ΣΣΣx∗) the mean and by v(µµµx∗ ,ΣΣΣx∗) the variance of the

non-Gaussian predictive distribution p(y∗)|(X,y),µµµx∗ ,ΣΣΣx∗), corresponding to

x∗ ∼ N (µµµx∗ ,ΣΣΣx∗). This can be interpreted as a Gaussian approximation, such

that

p(y∗|(X,y),µµµx∗ ,ΣΣΣx∗) ≈ N (m, v). (7)

The predictive mean and variance of the output corresponding to a noisy input

x∗ are obtained by solving [2]

m = Ex∗ [µ(x∗)], (8)

v = Ex∗ [σ
2(x∗)] + varx∗ [µ(x∗)]

= Ex∗ [σ
2(x∗)] + Ex∗ [µ(x∗)2]− (Ex∗ [µ(x∗)])2,

(9)

where Ex∗ [·] denotes the expectation for expression in brackets at the noisy

input x∗.
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Instead of working with the expressions of µ(x∗) and σ2(x∗), equations (8)

and (9) are solved by approximating directly µ(x∗) and σ2(x∗) by their first

and second order Taylor expansions respectively around µµµx∗ . The second order

expansion is required in order to get a correction term for the new variance.

This is a relatively rough approximation.

Consequently, within a Gaussian approximation and a Taylor expansion µ(x∗)

and σ2(x∗) around x∗ = µµµx∗ , the predictive distribution is again Gaussian with

mean and variance [2]

m(µµµx∗ ,ΣΣΣx∗) = Ex∗ [µ(x∗)] ≈ k(µ(x∗)TK−1y, (10)

v(µµµx∗ ,ΣΣΣx∗) = Ex∗ [σ
2(x∗)] + varx∗(µ(x∗))

≈ σ2(µ(x∗)) +
1

2
Tr





∂2σ2(x∗)
∂x∗∂x∗T

∣∣∣∣∣
x∗=µµµx∗

ΣΣΣx∗





+
∂µ(x∗)

∂x∗

∣∣∣∣∣
T

x∗=µµµx∗
ΣΣΣx∗

∂µ(x∗)
∂x∗

∣∣∣∣∣∣
x∗=µµµx∗

.

(11)

For a more detailed derivation see [2]. Eqs. (10) and (11) can be applied to

calculation of multi-step ahead prediction with propagation of uncertainty.

3.2 Alternative analytical approximation

The alternative approach to approximation is that instead of approximation

of entire mean and variance only the integral of (5) is approximated. The

simulation with this kind of approximation is named ‘exact’. The expressions

for mean and variance are expressions (8) and (9). We consider the Gaussian

covariance function given by (1). Since what we get at the nonlinear system

output as a response to noisy input with Gaussian distribution is not really
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a Gaussian distribution, it is denoted by N for notational convenience (not

by N as Gaussian distributions), because it just denotes some function of the

same parametric form. We write it as we would a Gaussian distribution for

xi, centered on xj:

C(xi,xj) = τNxi
(xj,W) (12)

with

τ = (2π)D/2|W|1/2v1 (13)

where W = diag[w1, . . . , wD].

We have seen that in order to predict at a noisy input, we needed to inte-

grate the predictive distribution over the input distribution (Eq. (5)). Then,

a Gaussian analytical approximation of this integral reduced the problem to

computing the mean and variance of p(f(x)|D,µµµx∗ ,ΣΣΣx∗).

The exact derivations can be found in [4]. Here we are presenting just the final

results.

The new predictive mean is equivalent to that obtained for a noise-free test

input, except that the covariance between the noisy input and the noise-free

training input is computed using a modified covariance function which accounts

for the uncertainty on the test input. We can write

m(µµµx∗ ,ΣΣΣx∗) =
N∑

i=1

βiCmod1(µµµx∗ ,xi) (14)

where

Cmod1(µµµx∗ ,xi) = v1|I+W−1ΣΣΣx∗|−1/2 exp
[
−1

2
(µµµx∗ − xi)

T (W + ΣΣΣx∗)
−1(µµµx∗ − xi)

]

(15)
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I is D ×D identity matrix and βi is i-th element of vector βββ = K−1y.

That is to say, the correlation length is ‘lengthened’ to account for the un-

certainty on the new input and the vertical amplitude of variation (formally

controlled by v1) is accordingly diminished.

The new predictive variance can also be written using modified covariance

functions

v(µµµx∗ ,ΣΣΣx∗) = v1 +
N∑

i,j=1

(βiβj −K−1
ij )Cmod2(xi,xj)Cmod3 −m2(µµµx∗ ,ΣΣΣx∗) (16)

where Cmod2(xi,xj) = τNxi
(xj, 2W)

and Cmod3(µµµx∗ ,xb) = τNµµµx∗

(
xi+xj

2
, W

2
+ ΣΣΣx∗

)
.

4 Modelling case study

4.1 Gas-liquid separation plant

The semi-industrial process plant used for the case study in the paper is the

unit for separating the gas from liquid that forms part of a larger pilot plant.

The scheme of plant is given in Fig. 1.

[Insert figure 1 about here]

The role of the separation unit is to capture flue gases under low pressure from

the effluent channels by means of water flow, to cool them down and then

supply them under high-enough pressure to other parts of the pilot plant.

The flue gases coming from the effluent channels are absorbed by the water

flow into the water circulation pipe through injector.
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The water flow is generated by the water ring pump. The speed of the pump

is kept constant. The pump feeds the mixture of water and gas into the tank,

where gas is separated from water. Hence the accumulated gas in tank forms a

sort of ‘gas cushion’ with increased internal pressure. Owing to this pressure,

the flue gas is blown out from tank into the neutralization unit. On the other

side, the ‘cushion’ forces water to circulate back to the reservoir. The quantity

of water in the circuit is constant.

In order to understand the basic relations among variables and to illustrate

the nonlinearity of the process a mathematical model is introduced. The gas-

liquid separation pressure sub-system of interest can be described by a set of

two equations.

dp1

dt
=

1

S1(hT1 − h1)
(p0(α0 + α1p1 + α2p

2
1

− k1R
u1−1
1

√
p1) + (p0 + p1)(Φw − k2R

u2−1
2

√
p1 + kw(h1 − hT2))),

dh1

dt
=

1

S1

(Φw − k2R
u2−1
2

√
p1 + kw(h1 − hT2)),

(17)

where ui is the command signal of valve Vi, i = 1, 2, hi is the level in tank

Ti, i = 1, 2, p1 is the relative air pressure in tank T1, Si is the section area

of tank Ti, p0 is atmospheric pressure, hT i is height of tank Ti, i = 1, 2, Ri

is the ratio of flows at maximum and minimum aperture of valve Vi, i = 1, 2,

ki is the flow coefficient of valve Vi, i = 1, 2, Φw is the known constant water

flow through pump P1 i = 1, 2, αi; i = 1, 2, 3 are constant parameters.

From the model presented, it can be seen that the nonlinear process is of

a multivariable nature (two inputs and two outputs with dynamic interac-

tions between the channels). In our case a level feedback control was imple-
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mented. Consequently the dynamic system could be approached as a single-

input single-output dynamic system with the command signal of valve V1 as

the input and the pressure in tank T1 as the output. As can be seen from

Eqs. (17) pressure is nonlinearly related to level and input flow which results

in different dynamic behaviour depending on the operating region.

The real-time experiments were pursued in the environment schematically

shown in Fig. 2.

[Insert figure 2 about here]

User-friendly experimentation with the process plant is enabled through inter-

face with the Matlab/Simulink environment [6]. This interface enables PLC

access with the Matlab/Simulink using DDE protocol via Serial Communica-

tion Link RS232 or TCP/IPv4 over Ethernet IEEE802.3. Control algorithms

for experimentation can be prepared in Matlab code or as Simulink blocks and

extended with functions/blocks, which access PLC. In our case all schemes for

data acquisition were put together as Simulink blocks.

4.2 Process identification

Since the process to be identified is characterised as predominantly the first

order system, a model of the form (18) is identified

p1(k + 1) = f(p1(k), u1(k), h1(k)), (18)

which means that pressure p1(k), valve signal u1(k) and liquid level h1(k)

are selected for regressors. Pressure p1(k) is fed back as distribution, and the

predicted mean and variance are calculated in three different ways as described

in the previous section. Attempts have been made to identify the system with
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a higher order model, but the results were not better.

Based on the response and iterative cut-and-try procedure, a sampling time of

15 seconds is selected. Identification data consists of pseudo random changes

of valve signal u1 in regions with different liquid level h1, so that as wide a

region as possible was encompassed in 967 samples for each signal.

Obtained hyperparameters of the first order Gaussian process were:

ΘΘΘ = [w1, w2, w3, v0, v1]

= [20.2759, 78.0774, 0.1517, 2.9145 · 10−5, 0.1162], (19)

where hyperparameter w1 corresponds to pressure signal p1, w2 corresponds

to valve signal u1, w3 corresponds to level signal h1, v0 is estimated noise

variance, and v1 is the estimate of the vertical scale of variation.

The validation signals that are given in Fig. 3 are different from the identifi-

cation signals, though of the same kind. Response of the model to validation

signal and comparison with process response are given in Figs. 4, 5 and 6.

[Insert figure 3 about here]

[Insert figure 4 about here]

[Insert figure 5 about here]

[Insert figure 6 about here]

It is difficult to notice differences among responses and especially confidence

bounds that correspond to standard deviation multiplied by 2 in Figs. 4, 5 and

6. Confidence bounds comparison is more pronounced in the graph of stan-

dard deviation changes without contribution of estimated white noise, which

is given in Fig. 7. The standard deviation in the case of ‘exact’ simulation

is larger, though standard deviations of other two approaches also indicate
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regions where identification data was sparse.

[Insert figure 7 about here]

Fitting of the response for validation signal is evaluated with the following

measures:

• average squared test error

ASE =
1

N

N∑

i=1

(ŷi − yi)
2, (20)

• log density error

LD =
1

2N

N∑

i=1

(
log(2π) + log(σ2

i ) +
(ŷi − yi)

2

σ2
i

)
(21)

The evaluation results are given in Tab. 1. The results for ‘exact’ simulation

Table 1

Fitting of the response for validations signal

ASE LD

‘naive’ simulation 3.2744·10−4 365.78

Taylor approximation 3.2744·10−4 149.07

‘exact’ simulation 3.2753·10−4 -1.37

show low value of both measures. The relatively low value of average squared

test error in comparison with the relatively high value of log density error for

‘naive’ simulation and simulation with Taylor approximation of uncertainty

propagation shows that while the model mean values follow the process re-

sponse well, the variance may not be large enough. Nevertheless, the standard

deviation still clearly indicates the regions where identification data is sparse,

as can be seen from Fig. 7, which is good enough for certain purposes, for
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example control design. The calculation times for ‘naive’ simulation can be

a magnitude of order lower than in the ‘exact’ simulation depending on the

system order.

5 Conclusions

The modelling case study of gas-liquid separator was presented in the paper.

The emphasis of the paper was on the comparison of three methods for dy-

namic model simulation based on Gaussian processes. All three methods are

approximations. The ‘naive’ simulation is feeding back only the mean values

of model predicted values. The Taylor approximation approach and ‘exact’

approach approximate the model predicted distribution with Gaussian distri-

bution, but in different ways.

The level of computational burden rises with the complexity of computation.

Different approaches give different confidence bounds, but it is an important

question whether the increased precision is worth increased computational

complexity. The purpose of developed model is the main issue that helps

answering this question. If the absolute value of variance is an issue in the

developed model than computational cost is acceptable. In the case that only

the indication of confidence in the model prediction is required than ‘naive’

simulation will suffice.
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Fig. 1. The scheme of gas-liquid separation plant

Fig. 2. Experimental set-up for data acquisition and control algorithm testing

Fig. 3. Validation signal and response

Fig. 4. Simulation results for ‘naive’ simulation

Fig. 5. Simulation results for simulation with Taylor approximation

Fig. 6. Simulation results for ‘exact’ simulation

Fig. 7. Standard deviations without contribution of estimated white noise
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