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Abstract: Mathematical and physical modelling only provide an approximate description of
the true nature of a dynamic system. The higher the accuracy of the model, the more likely
it becomes analytically intractable; therefore, empirical models or black box models are used.
When dynamic systems are considered as black box models, almost no prior knowledge about
the system is considered. Deep Gaussian Processes, which use hierarchical structure to provide
adequate identification of very complex systems, can be used to identify the mapping between
the system input and output values. With the given mapping function, we can provide one-step
ahead prediction of the system output values together with its uncertainty, which can be used
advantageously. In this paper, we use deep Gaussian Processes to identify a dynamic system and
evaluate the method empirically. In the illustrative case, we study one-step-ahead prediction of
air temperature in the atmospheric surface layer.
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1. INTRODUCTION

A crucial issue in the case of an accident or the failure of a
nuclear power plant’s safety systems is that authorities
are able to act efficiently and promptly. The action of
the authorities includes following the prescribed security
protocols for such a situation and the potential evacuation
of local inhabitants in the vicinity of the nuclear power
plant. Authorities can take advantage of an Integrated
Assessment Modelling System that provides expert ser-
vices to assess and predict the consequences of radioactive-
material release to the atmosphere (Chang and Weng,
2013). This paper describes an evaluation that is a part of a
modelling study of atmospheric variables necessary for the
modelling of air-pollution with radionuclides. This mod-
elling is intended to be a part of an Integrated Assessment
Modelling System intended for the case of an accident at a
nuclear plant situated in complex terrain. The Integrated
Assessment Modeling System will be composed of meteo-
rological, dispersion and exposure assessment models. The
prediction of air-pollution dispersion in the vicinity, i.e., a
radius of at least ten kilometers, is necessary for the action
of the mentioned authorities. Nevertheless, the prediction
of the highly focused climatic condition is a necessary
input in the pollution-dispersion modelling system. The
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goal is, therefore, to get the best possible model of the
3D condition of the atmosphere above the area under
observation and consequently the dynamics of the cloud
of radionuclides.

The atmosphere, as a very complex system, highly depends
on the terrain below it. Physical or deterministic models
(Zhang et al., 2012a,b) contain relations among the phys-
ical and chemical variables and as such provide an insight
into the atmospheric and air-quality dynamics (Zhang
et al., 2012a). These kinds of air-quality models provide
prognostic time- and spatially-resolved concentrations for
various typical and atypical scenarios. Unfortunately, the
forecasts of weather over complex terrain, which comprises
a large part of Europe, are not yet sufficiently localised,
and this is exactly the problem we address in our study.
The input data for the correct function of air-pollution
dispersion models are those signals which describe the
condition of the atmosphere at the location of interest
during the passage of the radioactive pollution cloud.

The alternative to physical models are empirical or statisti-
cal models. The main goal of empirical modelling or system
identification is to match the modelled variable as close as
possible to the measured variable based on available ob-
servations of other variables. New approaches to modelling
based on numerical data have emerged in recent times.
Research in the area of methodology and the application
of Gaussian Processes (GPs) for numerical modelling has
raised a great deal of interest. The pioneering work in
this field is described in various works, e.g. (Rasmussen
and Williams, 2006; Shi and Choi, 2011; Kocijan, 2016).



The authors have shown that the approach is very useful
for experimental modelling or identification and is often
superior to other similar methods. However, it is a new
approach in the forecasting of meteorological variables in
association with the dispersion of radiological pollution.

The aim of this paper is to describe results of deep
Gaussian process (GP) method (Damianou and Lawrence,
2013) evaluation for the modelling of an atmospheric vari-
able, namely temperature. Deep GP modelling is a partic-
ular type of GP modelling. The purpose of this evaluation
is to test the utility of the method for the air-quality and
the big data modelling at the same time. Consequently,
a temperature is selected to be modelled because it is a
measured variable dependent from other variables that
are also measured at the site of a nuclear plant, which
facilitates the modelling procedure considerably.

In particular, the study focuses on the empirical modelling
and the short-term prediction of air temperature 2 meters
above the ground. The air temperature is meant to be only
one of the inputs into a physical model for radiological dis-
persion. The air temperature is a complex dynamic system
(Holton and Hakim, 2012). Besides daily variations, it also
contains seasonal variations, temperature-drop after rain,
heat waves, polar waves and other events impacting the
air temperature. The temperature dynamics is relatively
slow and related to the change of other meteorological
variables, e.g., air pressure, winds, solar radiation. Trends
of temperature variations may be dependent on a large
number of variables.

Nevertheless, if a deep GP method proves itself as ap-
propriate for the described kind of big data modelling
problem, it can be used for the modelling of some other, in-
directly measured, variables. There are also other methods
that can be used for large amounts of data, e.g., (Kocijan
et al., 2016), but are beyond the scope of this paper.

The rest of the paper is organised as follows. In section 2,
the details of GP modelling with Gaussian process latent
variable model and deep GPs are briefly described. In
section 3, the results are reviewed and discussed. Finally,
conclusions are drawn and lessons learnt are described.

2. GAUSSIAN PROCESS LATENT VARIABLE
MODEL AND DEEP GAUSSIAN PROCESSES

2.1 Modelling with Gaussian processes

GP models are probabilistic, non-parametric models based
on the principles of Bayesian probability. GPs can be
seen as the kernel methods with a Bayesian interpretation
(Rasmussen and Williams, 2006). A GP model does not
approximate the modelled system by fitting the param-
eters of the selected basis functions, but implies a rela-
tionship among the measured data. The use of GP models
and the properties for modelling are thoroughly described
in (Rasmussen and Williams, 2006; Shi and Choi, 2011;
Kocijan, 2016).

GP models can be used for regression, where the task
is to infer a mapping from a set of N D-dimensional
regression vectors represented by the regression matrix
X = [x1,x2, . . . ,xN ]T to a vector of output data y =
[y1, y2, . . . , yN ]. The outputs are usually assumed to be

noisy realisations of the underlying function f(xi). A GP
model assumes that the output is a realisation of a GP
with a joint probability density function:

p(y) = N (m,K), (1)

with the mean m and the covariance K = [kij ] being
functions of the inputs x. Usually, the mean function is
defined as 0, while the covariance function or kernel

kij = C(xi,xj) (2)

defines the characteristics of the process to be modelled,
i.e., the statistical stationarity, smoothness, etc. The value
of the covariance function C(xi,xj) expresses the correla-
tion between the individual outputs f(xi) and f(xj) with
respect to the inputs xi and xj . Assuming the statistically
stationary data is contaminated with white noise, the most
commonly used covariance function is the composition
of the square exponential (SE) covariance function with
‘automatic relevance determination’ (ARD) hyperparam-
eters (Kocijan, 2016) and a constant covariance function
assuming white noise:

C(xi,xj) = σ2
f exp

[
−1

2
(xi − xj)

TΛ−1(xi − xj)

]
+ δijσ

2
n,

(3)
where Λ−1 is a diagonal matrix Λ−1 = diag([l−2

1 , . . . , l−2
D ])

of the ARD hyperparameters, σ2
f and σ2

n are hyperparam-
eters of the covariance function, and δij = 1 if i = j and 0
otherwise. The hyperparameters can be written as a vector
θ = [l−2

1 , . . . , l−2
D , σ2

f , σ
2
n]

T . The ARD property means that

l−2
i ; i = 1, . . . , D indicates the importance of the individual

inputs. If l−2
i is zero or near zero, it means that the

inputs in dimension i contain only a little information and
could possibly be discarded. Further covariance functions
suitable for various applications can be found in, e.g.,
(Kocijan, 2016).

The common aim of regression is to predict the output y∗

in an unobserved test location x∗ given the training data,
a known mean function and a known covariance function
C. The output predictive distribution can be obtained by
using the Bayes’ rule. The effect of unknown hyperpa-
rameters θ has to be taken into account. This leads to a
computationally very demanding, sometimes intractable,
task. A frequently used approximate solution to the prob-
lem of computation is to estimate the hyperparameters by
maximising the marginal likelihood from the Bayes’ rule.
The details of inferring hyperparameters can be found in
(Rasmussen and Williams, 2006; Kocijan, 2016).

Once the hyperparameter values are obtained, the predic-
tive normal distribution of the output for a new test input
can be calculated using

µ(y∗) = k(x∗)TK−1y, (4)

σ2(y∗) = κ(x∗)− k(x∗)TK−1k(x∗), (5)

where k(x∗) = [C(x1,x
∗), . . . , C(xN ,x∗)]T is the N × 1

vector of covariances between the test and the training
cases, and κ(x∗) = C(x∗,x∗) is the covariance between
the test input itself.

A prediction of the GP model, in addition to the mean
value (4), also provides information about the confidence
of the prediction using the prediction variance (5). Usually,
the confidence in the prediction is interpreted with a 2σ
interval. This confidence interval highlights the areas of



the input space where the prediction quality is poor, due
to the lack of data or noisy data, by indicating a wider
confidence interval around the predicted mean.

2.2 Gaussian Process Latent Variable Model

One type of GP model is the Gaussian Process Latent Vari-
able Model (GP-LVM). GP-LVM is originally known as a
dimensionality-reduction method proven to be very robust
in big data applications (Damianou et al., 2016; Lawrence,
2006). Historically, GP-LVM was introduced for the needs
of unsupervised learning (Damianou, 2015); however, tran-
sition to supervised learning requires a minimum effort of
applying prior belief to input as it is illustrated in Fig. 1,
where the vector of inputs z is added to variational GP-
LVM.

The primary goal of a GP-LVM model in both cases
of learning, besides dimensionality reduction, is to find
a mathematical relation between high dimensional input
vector X ∈ RN×D and lower dimensional space of latent
variables Y ∈ RN×P . The main challenge here is the
unobserved vector X elements of input values in the case
of unsupervised learning. The GP-LVM model provides
an elegant solution to the challenge by treating the input
vector as latent variables and at the same time deploying
P independent GPs as prior belief (Lawrence, 2006): f =
f(X) = (f1(X), · · · , fp(X)) in a way that

fj(X) ∼ GP(0, C(X,X′)), j = 1, · · · , P. (6)

Choosing nonlinear covariance functions in equation (6)
enables nonlinear dimensionality reduction of a given
regression problem. More details on GP-LVM can be found
in (Lawrence, 2006).

The problem of big data training can be solved by in-
troducing auxiliary inducing points U, which expand the
probability space. Inducing points are interpreted as addi-
tional variables yet to be optimised by an optimisation
algorithm (Snelson, 2006). They are used for low-rank
approximations for covariance matrix, leading to highly
reduced computational cost (Damianou, 2015).

Another challenging part of Bayesian methodology is prop-
agation of prior probability p(X) belief through nonlinear
mapping function f . The optimisation algorithm requires
the calculation of the joint probability

p(y) =

∫
p(y|f)

(
p(f |X)p(X)dX

)
df , (7)

where y is a vector of targets, which corresponds to,
e.g., regression model with single output. As it turns
out, the inputs X of the kernel matrix K are contained
in the joint probability (7) in a very complex nonlinear
manner, leaving the integration over domain X in most
cases intractable.

To avoid this intractability a standard variational Bayesian
methodology is used to approximate the marginal likeli-
hood of p(y) with a variational lower bound (Damianou,
2015).

Effectively applying standard variational Bayesian method-
ology makes the lower bound of marginal likelihood p(y)
tractable, meaning we are able to propagate all the un-
certainties related to the input data, even in the case of
nonlinear mapping.

Fig. 1. Graphical representation of a) standard GP-LVM
model, b) variational GP-LVM model and c) varia-
tional GP-LVM model for supervised learning.

GP-LVMs can be used to assemble deep GPs.

2.3 Deep Gaussian processes

Deep GPs were introduced as a flexible non-parametric
approach to deep learning (Damianou, 2015; Damianou
and Lawrence, 2013). The deep GP consists of L hidden
layers of latent variables hl. Gaussian processes govern
the mappings between the layers. Simply put, a deep
GP model are nested GPs, in our case GP-LVMs, where
outputs of a GP are treated as inputs to another GP (see
Fig. 2):

y = f1:L + ϵ = fL(fL−1(· · · f1(X))) + ϵ, (8)

where each fi is an independent GP model and L number
of hidden layers, also called the depth of a deep learning
model. In this paper, white noise with normal distribution
is added to the outputs of each layer (Damianou, 2015).
Joint distribution of a deep GP model with L hidden layers
can be written as

p(y, {hl}Ll=1) = p(y|hl)p(hL,hL−1) · · · p(h2|h1)p(h1) (9)

for every set of latent variables hl.

The whole process itself is no longer interpreted as a GP
model or GP-LVM. By recursing the procedure, we form
multiple layers to an arbitrary depth of a deep learning
model. Inputs to each layer in the hierarchical structure are
considered to be latent, leading to an analytically tractable
non-parametric model as explained in the previous subsec-
tion. This again leads to a numerical model appropriate for
unsupervised learning where the transition to supervised
learning effectively means only additionally bounding the
input data with a prior belief, similar to the representation
of supervised learning in Fig. 1(c).

Most of the deep learning algorithms need big data to
identify mapping functions fi; i = 1 . . . L (Goodfellow
et al., 2016). Using complex and deep models on a low
number of input data seems to be redundant, particularly
when computational complexity and the amount of all
necessary approximations to make the model analytically
tractable are considered (Damianou, 2015).



Fig. 2. Deep GP with two hidden layers

Using hierarchy provokes the question as to whether con-
sidering more hidden layers always results in better iden-
tification of a dynamic system, i.e., ignoring overfitting
and the increase of the number of parameters. In practice,
very deep models are rarely used as they normally result
in identifying special cases instead of general behaviour
of a dynamic system (Damianou, 2015). Otherwise said,
it turns out that deep models focus their computational
power on a very small sample of input data. Luckily,
Bayesian methodology prevents the algorithm from look-
ing for too complex structures in the input data (Hensman
and Lawrence, 2014) in the first place.

The computational cost of NLM3 of deep GP models,
where M is number of inducing points, grows linearly with
the number of layers L and remains almost unaffected by
the number of output dimensions P (Damianou, 2015),
which makes the model very usable for high dimensional
data (Bui et al., 2016; Hensman and Lawrence, 2014).
For comparison, the computational cost of GP-LVM is
N3 for supervised and NM2 for unsupervised learning
(Damianou, 2015).

3. RESULTS AND DISCUSSION

The wider domain of interest in our case is a size of
25 km × 25 km around the nuclear power plant in
Krško, Slovenia. The model of interest, however, deals with
variables at the site of the nuclear plant, which is situated
in a complex terrain (Fig. 3).

The set of meteorological variables that we would like to
use for the modelling of temperature should be as rich as
possible. Nevertheless, we are constrained by available ob-
servations and we are trying to gain maximal information
about modelled-variable dynamics from what is at hand.

A comparison of deep GP as a multilayer GP-LVM and
a single GP-LVM is done in this study to highlight the
utility of deep GP.

MEIS company has been pursuing measurement activities
and analysis for the nuclear plant for years. Available

Fig. 3. The geographical features of the surrounding ter-
rain and the measurement station. The plant and its
measurement station (marked as ‘Stolp – postaja’) is
situated in the basin surrounded by hills and valleys,
which influence micro-climate conditions.

measurements for the period of four years (2013–2016),
which can be used for modelling, are:

• temperature (T ) 2 m above ground,
• relative humidity (φ) 2 m above ground,
• atmosphere stability (PG),
• air pressure (pr),
• global solar radiation (R), and
• wind speed (v) 10 m above ground.

The atmosphere stability is defined with Pasquill-Girard
stability classes A–G, where A means extremely unstable
and G extremely stable atmosphere (Air Resource Lab-
oratory, 2009). Stability classes are defined qualitatively,
e.g., class A means cloudless sunny day with less than 2
m/s general wind. All measurements are acquired at 30
min interval, which means approximately 17,500 samples
per year per variable or approximately 70,000 samples per
variable for four years. Gaussian process modelling is, in
our case, pursued with software (Hensman et al., 2012)
and (Dai et al., 2017).

The data are normalised with mean value 0 and variance
1 and further divided into identification and validation
sets. The measurements from years 2013, 2014 and 2015
are used as training data, and 2016 as validation data.
A training-data period of three years should be long
enough to encompass for most of the seasonal and other
temperature variations.

The regressor for system identification is selected using the
backward-elimination method (May et al., 2011) starting
with dynamic systems order or lag of 4. The evaluation cri-
terion was normalised root-mean-square error (NMRSE),
but the 95 % confidence interval was checked as well.

NMRSE = 1− ∥y − µ∥2

∥y − E(y)∥2
, (10)

where y is the vector of validation values, µ is the vector
of mean predicted values and E(y) is the mean value of
y. NRMSE has value 1 for a perfect match and −∞ for
extremely bad match of validation and mean predicted
values.



The final regression vector is obtained after an exhaustive
search and contains 12 regressors as follows:

z= [T (k − 2), T (k − 1),

φ(k − 2), φ(k − 1),

PG(k − 2), PG(k − 1),

R(k − 4), R(k − 3), R(k − 2), R(k − 1),

pr(k − 2), pr(k − 1)]
T
, (11)

where k represents consecutive time instant. The regressor
selection procedure eliminated wind speed of 10 m above
ground from regression vector. Values of identified hyper-
parameters with their relative importance are shown in
Fig. 4.
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Fig. 4. Components of regression vector and their relative
importance

Another structural issue that has to be solved using deep
GP is the number of the deep model’s layers. The number
of layers is, in our case, determined with a trial-and-error
method. One hidden layer proved to be enough for our
modelling and provided the best NMRSE results.

The inducing points are, in our case, selected randomly
with uniform distribution. 10 inducing points are utilised
in every layer of deep GP, while GP-LVM contains 100
inducing points. Again these parameters are determined
with a trial-and-error method. The best obtained results
according to NRMSE and corresponding computational
time after multiple runs are shown in Table 1.

Table 1. Comparison of NRMSE and compu-
tational time for both kinds of models on a
desktop computer with 64-bit operation sys-
tem, i5-6400 2,7 GHz quad-core processor and

24 GB RAM.

Model No. induced varb. Computn. time [s] NRMSE

GP-LVM 100 400 0.923

deep GP 10 172 0.947

Segments of obtained prediction results for normalised
validation data of the GP-LVM model and the deep
GP model to illustrate prediction ability of the model
are shown in Figs. 5 and 6. Absolute errors and 95 %
confidence interval for both models are shown in Fig. 7.

Both identified models, GP-LVM and deep GP, predict
temperature relatively well 2 m above ground as can be
seen from evaluation criterion in Table 1 and from Fig. 7.
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Fig. 5. One-step-ahead prediction with the GP-LVMmodel
(mean value – full line, 95 % confidence interval – grey
band) on normalised validation data (measured data
– dashed line) with corresponding absolute error and
95 % confidence interval (bottom figure) – a segment
of 200 samples to illustrate prediction ability of the
model.
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Fig. 6. One-step-ahead prediction with the deep GP model
(mean value – full line, 95 % confidence interval – grey
band) on validation data (measured data – dashed
line) with corresponding absolute error and 95 %
confidence interval (bottom figure) – a segment of 200
samples to illustrate prediction ability of the model.

Illustrative segments of results on Figs. 5 and 6 confirm
this statement. The difference in NRMSE is not significant.
The main difference is computational consumption. The
deep GP model of the selected structure is identified faster
and provides more realistic confidence bands. Nevertheless,
it is important to keep in mind that deep GP becomes rea-
sonable to utilise when the number of data is high, much
higher than a few thousand data samples per variable,
which is the number that can be handled with most other
GP models.
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Fig. 7. Absolute error and 95 % confidence interval for
model predictions on the entire set of validation data.

4. CONCLUSION

The paper describes an attempt to use deep GP modelling
and prediction of air temperature 2 m above the ground.
Accurate prediction of this variable is necessary as it is one
of the variables that are used as the input into the physical
model of pollution dispersion at the selected microlocation.

The obtained results show that deep GP models may be
successfully used for the modelling when there are large
amounts of measurement data. For the problem at stake,
deep GP provided slightly better results more efficiently.

The experimentation with deep GP model structure shows
no improvement in the case of multiple hidden layers, and
random selection of induced variables provided satisfac-
tory results. This does not mean that a more directed
search of induced variables would not provide better re-
sults, but this investigation remains the topic of future
research.

The temperature 2 m above ground is just one of many
variables to be modelled and predicted. Other meteorolog-
ical variables of interest such as a complete temperature
profile containing heights up to a hundred meters, air
pressure, global solar radiation, wind speed and direction,
and others are yet to be modelled with this or other
modelling methods. Moreover, other modelling methods
will also be evaluated on the same and similar problems.
The obtained models shall be accurate enough to enable
long-range prediction.
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