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Abstract The topic of the paper is modelling and prediction of atmospheric
variables that are further used for prediction of the consequences of radioactive-
material release to the atmosphere. Physics-based models of atmospheric dynam-
ics provide an approximate description of the true nature of a dynamic system.
However, the accuracy of the model’s short-term predictions and long-term fore-
casts, especially over complex terrain, decreases when the information at a micro-
location is sought. Integration of a physics-based model with a statistical model
for enhancing the prediction power is proposed in the paper. Gaussian Processes
models can be used to identify the mapping between the system input and output
measured values. With the given mapping function, we can provide one-step ahead
prediction of the system output values together with its uncertainty, which can
be used advantageously. In this paper, we combine a physics-based model with
a Gaussian-process model to identify air temperature from measurements at dif-
ferent atmospheric surface layers as a dynamic system and to make short-term
predictions as well as long-term forecasts.

Keywords Hybrid model · Vertical temperature profile · Physics-based model ·
Statistical modelling · Gaussian-process model

1 Introduction

Modelling and prediction of vertical temperature profile using a hybrid model
are investigated. The modelled atmospheric variable is further used for prediction
of the consequences of a radioactive-material release to the atmosphere. Efficient
evacuation of the local inhabitants in the case of an accident of a nuclear power
plant requires prediction of air-pollution dispersion in the radius of at least ten kilo-
metres. A necessary input to the expert system, i.e., the air-pollution-dispersion
modelling system (Breznik et al., 2003) predicting the dynamics of the cloud of
radionuclides, is the prediction of the 3D state of the atmosphere above the study
area.

Two fundamentally different ways of modelling atmospheric variables are physics-
based modelling and statistical modelling. A physics-based model, also called a de-
terministic, theoretical or first-principles model (Zhang et al., 2012a,b) depending
on the professional field, is derived from physics-based relations among the physi-
cal and chemical atmospheric variables. It provides an insight into the atmospheric
and air-quality dynamics for various typical and atypical scenarios. Nevertheless,
this kind of model does not provide information in sufficiently fine spatial resolu-
tion. Statistical models, also known as experimental or empirical models, provide
strictly local information on atmospheric and air-quality conditions. They rely
only on measurements of various variables. Gaussian Processes (GPs) modelling
(Rasmussen and Williams, 2006; Shi and Choi, 2011; Kocijan, 2016) is one of the
statistical methods that can be used for empirical modelling. The utility of GP
modelling in environmental and atmospheric modelling has been demonstrated
(Kocijan et al., 2015, 2016, 2018). Nevertheless, such a model is confined to the
vicinity or region from where the data to obtain the model originates.

An evident solution avoiding the drawbacks of physics-based and statistical
models is combining both methods. This is not a new approach and is called in-
tegrated modelling (Gradǐsar et al., 2016) or statistical postprocessing (Worsnop
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et al., 2018) in atmospheric sciences and hybrid modelling (Von Stosch et al., 2014;
Ren et al., 2018) in system theory and mathematical modelling. Through combin-
ing the models, one retains the physical insight into the atmospheric dynamics and
the information about seasonality effects from the global physics-based model as
well as a model of deviations addressing a particular location from the statistical
model.

The focus of the study is modelling and prediction with hybrid models of the
vertical temperature profile at the location of the Nuclear Power Plant (NPP)
in Krško, Slovenia. For the study area, a fine-resolution physics-based model of
the temperature profile validated with profile measurements exists (Grašič et al.,
2019). The study of Grašič et al. (2019) identified several problems that are most
likely caused by atmospheric processes not modelled properly due to the spatial
resolution not being fine enough. These problems, suitable to be addressed by
hybrid modelling, are, e.g., thermal inversion, nocturnal local pools of cold air,
and ground-level overheating due to local land-use driven effects. The proposed
method is not constrained to the local region of the case study but can be used
to improve modelling in locations where a physics-based model alone cannot meet
the modelling criteria, e.g., in places surrounded by complex geographical terrain.

The temperature profile is one of the important inputs to the air-pollution dis-
persion model. It provides information about the air-mass movement (Ramaswamy
et al., 2006) and is often investigated with various methods for temperature data
retrieval (Emeis et al., 2012; Gangwar et al., 2014; Fochesatto, 2015; Rekhy et al.,
2018). Our intention is to develop a system integrated from several models pre-
dicting several different atmospheric variables, e.g., the wind speed and direction,
with the goal of ensuring a high-resolution forecast of the local atmospheric condi-
tions, which will enable a very good air-pollution forecast and consequently allow
for efficient evacuation actions to take place.

In the paper, prediction denotes short-term, usually one-step-ahead prediction,
while forecast denotes long-term, multistep-ahead predictions.

2 Site and measurements

The domain of our investigation extends over the area of 25 km × 25 km around
the Krško NPP, which is located in the East part of Slovenia close to Croatian
border. Nevertheless, the model that we are developing and consequently the cor-
responding variables are placed particularly on the location of the nuclear power
plant. The terrain around the power plant can be considered as a complex terrain
(Figure 1).

The vertical temperature profile would ideally mean a continuous distribution
of the atmospheric temperature versus altitude, but data retrieval using sensors
at the Krško NPP can be achieved only with a finite resolution, i.e., only 4 tem-
peratures at heights of 2 m, 10 m, 40 m and 70 m can be retrieved. The vertical
temperature profile prediction at the selected geographical point shall be obtained
based on as many relevant predicted and measured meteorological variables as pos-
sible from the wider domain of interest. However, we are constrained by available
observations and it is necessary to gain maximal information about the tempera-
ture profile from what is available.
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Fig. 1 The geographical features of the surrounding terrain and the measurement station. The
plant and its measurement station (marked as ‘Stolp’) is situated in the basin surrounded by
hills and valleys, which influence micro-climate conditions. The vertices of the grid represent
points in space where physics-based model predictions are available.

MEIS company has been pursuing measurement activities and analysis for the
nuclear plant for years. Measurements used in our study are from the years 2016
and 2017 from automatic measurement stations that are spread unevenly in the
Krško basin (Figure 1), and are as follows:

– Brežice measurement station: temperature 2 m above the ground, wind speed
10 m above the ground, wind direction 10 m above the ground, relative hu-
midity 2 m above the ground;

– Cerklje measurement station: temperature 2 m above the ground, relative hu-
midity 2 m above the ground, air pressure;

– Cerklje airport measurement station: temperature 2 m above the ground, wind
speed 10 m above the ground, wind direction 10 m above the ground, relative
humidity 2 m above the ground, air pressure;

– Krško measurement station: temperature 2 m above the ground, wind speed 10
m above the ground, wind direction 10 m above the ground, relative humidity
2 m above the ground;

– Stolp measurement station at Krško NPP: temperature 2 m above the ground,
temperature 10 m above the ground, temperature 40 m above the ground,
temperature 70 m above the ground, wind speed 10 m above the ground, wind
direction 10 m above the ground, relative humidity 2 m above the ground,
global solar radiation, air pressure.

Automatic measuring stations take measurements in real-time at 30-minute
statistical intervals. The assimilation rate of data is also 30-minute and equal to
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the measuring time interval. Characteristics of the measurement equipment are as
follows.

– 2D ultrasonic anemometers are used to measure the horizontal component of
wind speed and direction. Measuring precision of wind speed is 0.1 m/s and
1◦ for wind direction. The accuracy of wind speed is ± 0.1 m/s for the range
from 0.0 m/s to 5.0 m/s and ± 2 % of measuring value above 5.0 m/s. The
accuracy of wind direction is ± 1◦. The sampling rate of wind measurements
is 1 second.

– Air temperature at 2 m and 10 m levels above the ground are measured using
Pt-100 (platinum resistance) probes with precision of 0.1 ◦C and accuracy of ±
0.1 ◦C. Aspirated thermo-linear thermistor temperature sensors are used for the
air temperature measurements at levels 40 m and 70 m. Their precision is 0.1
◦C and accuracy is ± 3 ◦C. The sampling rate of air-temperature measurements
is 10 seconds.

– Relative humidity is measured using a capacitive humidity sensor with the
precision of 0.1 % and accuracy of 1 %. The sampling rate of relative-humidity
measurements is 10 seconds.

– Global solar radiation is measured using pyranometer with the precision of 1
W/m2 and accuracy of ± 2.8 %. The sampling rate is 10 seconds.

– Air pressure measurements are made using barometric pressure transducer. Its
precision is 0.1 hPa and accuracy is ± 0.3 hPa. The sampling rate is 10 seconds.

Forecasts taken from the physics-based model, which in our case study is the
Weather Research & Forecast (WRF) model (Skamarock et al., 2008) and is de-
scribed in Section 3.1, at the location closest to Krško NPP, are as follows:

– temperature 2 m above the ground, wind speed 10 m above the ground, wind
direction 10 m above the ground, cloud cover, relative humidity 2 m above the
ground, global solar radiation and air pressure.

Sensor measurements at intervals of 30 min are used in our study. The measured
data are divided into data for identification, i.e., training data, and data for model
validation, i.e., test data. The measurements and predictions of WRF model, which
is described in the next section, from June 16, 2016, until June 30, 2016, are used
as identification data, and data from June 1, 2017, until June 30, 2017, are used
as validation data.

Validation using data different from the identification data provides an ad-
equate assessment of the obtained models. There are two reasons for the rela-
tively short period of identification data. The first is that seasonal and other
long-term variations of meteorological variables are already covered by the WRF
model. Therefore, the statistical model needs to model only the differences in the
WRF-model forecasts for which a relatively short period will do. This reasoning
is supported also by the fact that differences in the WRF-model forecasts are not
excessive, but are persistent (Božnar et al., 2012). The second reason is the com-
putational burden due to a large number of data and is kept reasonable with the
number of data used.



6 J. Kocijan et al.

3 Methods

The core idea of the proposed approach is to upgrade predictions obtained from
a physics-based model with a statistical model. In our case, these models are the
WRF model as the physics-based model and the GP model as the statistical model.
Our rationale to use GP models for the construction of a hybrid model is mani-
folds. They can highlight areas of the input space where model-prediction quality
is poor, due to the lack of data or its complexity, by indicating the higher variance
around the predicted mean. This property is very informative in assessing pre-
diction quality. GP models contain noticeably fewer coefficients to be optimised
than other statistic models and are therefore convenient for optimisation. Never-
theless, it is important to emphasise that other statistic models can also be used
to construct hybrid models.

3.1 The numerical weather prediction model—WRF

The physics-based model, i.e., the WRF model, is used for fine-resolution nu-
merical weather predictions for the studied domain. The WRF model is used for
atmospheric research, but its primary purpose is operational forecasting. It is a
system for numerical weather prediction.

The WRF software framework consists of two dynamics solvers for the model
computation: the Advanced Research WRF (ARW) and the Nonhydrostatic Mesoscale
Model (NMM) solver. The ARW solver, version 3.4, by NCAR, is used in our case
study and is hereafter referred to as the WRF model. The WRF ARW 3.4 model
has the following settings Gradǐsar et al. (2016):

– it covers a larger and a smaller geographical domain: central part of Europe
and Slovenia with surroundings,

– the larger domain consists of 101 by 101 cells, each cell size is 12 km, model
temporal resolution is 3 hours,

– the smaller domain consists of 76 by 76 cells, each cell size is 4 km, model
temporal resolution is 0.5 hour,

– the prediction is made for two days and three hours in advance,
– the Global Forecasting Model (GFS) data are used for initial and boundary

conditions,
– the simulation is made twice per day, with data at 00:00 Universal Time Co-

ordinated (UTC) and 12:00 UTC,
– results are available with a delay of 5.5 hours,
– a new prediction overwrite the previous one for the time intervals that overlap.
– The weather prediction is better than it would be if made only once per day.

The predicted meteorological variables are used as regressors for the statistical
part of the hybrid model.

Validation of the above-described system is described in Božnar et al. (2012).

3.2 Gaussian Process Models

The GP model is a non-parametric Bayesian model used for regression (Rasmussen
and Williams, 2006; Kocijan, 2016). Its task is to infer a mapping given the data
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used for model identification D = {Z,y}, where y(zi) = f(zi) + ν; i = 1 . . . , N with
the white noise ν ∼ N (0, σ2ν) and the regression matrix Z = [z1, z2, . . . , zN ]T repre-
sents N D-dimensional regression vectors. The outputs y(zi) are usually assumed
to be noisy realisations of the underlying function f(zi). The underlying function
is represented as a Gaussian process:

f(z) ∼ GP(m(z), k(zi, zj)); i, j = 1 . . . , N. (1)

The mean function m(z) is often taken as zero, while the covariance or kernel
function k(zi, zj) controls the smoothness of the GP. A selection of covariance func-
tions is given in, e.g., (Kocijan, 2016; Rasmussen and Williams, 2006). Covariance
functions contain so called hyperparameters. The values of the hyperparameters
depend on the data-at-hand and it is difficult to select their prior distribution. If
a uniform prior distribution is selected, which means that any values for the hy-
perparameters are equally possible a priori, then the hyperparameters’ posterior
distribution is proportional to the marginal likelihood of the GP posterior

p(y|θ) =

∫
p(y|f)p(f)df = N (y|0,K + σ2νIn), (2)

where θ comprises the hyperparameters. The hyperparameters are obtained with
the maximisation of log marginal likelihood

log p(y) = −n
2

log 2π − 1

2
log |K + σ2νIn| −

1

2
yT(K + σ2νIn)−1y. (3)

For the sake of clarity, the hyperparameters θ now are omitted from the condi-
tioning of the distribution.

Given the identification data (also referred to as training data), D, and the
inferred hyperparameters, the predictive distribution
p(f∗|D, z∗) = N (f∗|µ(z∗), σ2(z∗)) at a validation point (also referred to as a test
point) z∗ has the mean and variance respectively expressed as

µ(z∗) = kT(K + σ2νIn)−1y, (4)

σ2(z∗) = κ− kT(K + σ2νIn)−1k, (5)

where k = k(z∗,Z) and κ = k(z∗, z∗). For y∗, we need to consider the noise such
that p(y∗|D, z∗) = N (y∗|µ(z∗), σ2(z∗) + σ2ν).

GP models can, like other regression methods, be used to model static nonlin-
earities and can, therefore, be used for the modelling of dynamic systems as well
as time series if delayed samples of the output signals are fed back and used as
regressors. A review of recent developments in the modelling of dynamic systems
using GP models and their applications can be found in Kocijan (2016). A single-
input single-output dynamic GP model is trained as the nonlinear autoregressive
model with an exogenous input (NARX) representation, where the output at time
instant k depends on the delayed output y and the exogenous control input u:

y(k) = f(y(k − 1), . . . , y(k − n), u(k − 1), . . . , u(k −m)) + ν(k), (6)

where f denotes a function, ν(k) is white noise disturbance with normal distri-
bution, n,m ∈ N and the output y(k) depends on the regression vector z(k) =
[y(k − 1), . . . , y(k − n), u(k − 1), . . . , u(k −m)] at time step or time instant k.
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The evaluation of the long-term behaviour of the dynamic model, i.e., long-
term forecasts or model validation is done with a simulation. The simulation is a
multistep-ahead prediction when the number of steps in the prediction horizon is
infinite or at least as large as the time horizon of interest for the foreseen analysis
of the model’s behaviour. There are two implementation options for the simulation
or for the multistep-ahead prediction (Kocijan, 2016):

– a direct method, where different models are learnt for every perceived horizon
or

– an iterative method, where the one-step-ahead prediction is iteratively re-
peated.

The problem of the direct method is that the horizon needs to be known and fixed
in advance. In the case that the horizon is changed, the model has to be learnt
again. The second issue with the direct method is that highly nonlinear systems
need a large horizon and, consequently, a large amount of learning data.

The iterative method for Gaussian process models of dynamic systems means
that the current output estimate depends on previous model estimations and on
the measured inputs as described with the following equation:

ŷ(k) = f(ŷ(k − 1), . . . , ŷ(k − n), u(k − 1), . . . , u(k −m)) + ν(k), (7)

where ŷ(k − i); i = 1 . . . n denotes the output estimate i samples or time steps in
the past.

In the case of a multistep-ahead prediction, we wish to make a prediction at
z∗, but this time the input vector z∗ contains uncertain input values fed back from
the outputs. Within a Gaussian approximation, the input values can be described
by the normal distribution z∗ ∼ N (µz∗ ,Σz∗), where µz∗ and Σz∗ are the vector
and the matrix of the input mean values and variances, respectively. To obtain
a prediction, we need to integrate the predictive distribution p(y∗|z∗,D) over the
input data distribution, that is

p(y∗|µz∗ ,Σz∗ ,D) =

∫
p(y∗|z∗,D)p(z∗)dz∗, (8)

where

p(y∗|z∗,D) =
1√

2πσ2(z∗)
exp

[
− (y∗ − µ(z∗))2

σ2(z∗)

]
. (9)

Since p(y∗|z∗,D) is, in general, a nonlinear function of z∗, the new predictive
distribution p(y∗|(µy∗ ,Σy∗ ,D)) is not Gaussian and this integral cannot be solved
without using an approximation. In other words, when the Gaussian distribution
is propagated through a nonlinear model, it is not a Gaussian distribution at
the output of the model. One of the possible approximations that can be used
for simulation is Monte Carlo simulation, where response is calculated based on a
large number of model responses utilising sampling of stochastic variables from the
model (Korn, 2007). The Monte Carlo simulation is, in our case, implemented as
the large number of deterministic realisations of the simulation, where the values
of ν and f are obtained using random sampling from their predicted Gaussian
distributions based on deterministic inputs at each time step. Mean value and
variance of the output variable as a function of time are then estimated from the
sample of realisations. Other approximation methods are reviewed in (Kocijan,
2016).
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3.3 Hybrid models

Three different sorts of hybrid models incorporating the WRF ARW model and
GP model that are evaluated in this paper are as follows:

– Models that combine WRF predictions of temperature with delayed tempera-
ture predictions of the model itself, as described with Equation (7), and with
measurement updates from Krško NPP except for temperature measurements
and measurement updates from other stations (Figure 2) in each time step. This
kind of model is realisable when only half-hour-ahead predictions are neces-
sary. Exogenous variables for the GP part of this hybrid model are, therefore,
WRF prediction of temperature, measurement updates from Krško NPP except
temperature measurements, and measurement updates from other stations. For
prediction horizons beyond the interval of sampling, one needs a parallel model
for each of the input variables and, consequently, models for each of the par-
allel models’ inputs. This means that models for every measured variable are
necessary, which is rather inconvenient but realisable. With this model, the
locally conditioned geographical information is contained within the tempera-
ture variable and within measurements from the measurement stations, which
comprises identification data for the GP part of the model. We name this model
as Hybrid 1.

– Models that combine WRF predictions of temperature with delayed tempera-
ture predictions of the model itself, as described with Equation (7), and WRF
predictions of other necessary variables (Figure 3) are used as a replacement
for measurements used in the previous hybrid model. Exogenous variables for
the GP part of this hybrid model are, therefore, WRF prediction of temper-
ature and WRF predictions of other necessary variables. With such a model,
the locally conditioned geographical information is contained only within the
temperature variable because the model itself is trained with temperature mea-
surements. We name this model as Hybrid 2.

– Models that use only WRF predictions of temperature and delayed tempera-
ture predictions of the model itself, as described with Equation (7) (Figure 4).
The exogenous variable for the GP part of this hybrid model is only WRF pre-
diction of temperature. This model is the simplest form of a hybrid model that
enables long-term forecasts, but it possesses the least amount of information
about the complex environment. With such a model, the locally conditioned
geographical information is contained only within the temperature variable
because the model itself is trained with temperature measurements. We name
this model as Hybrid 3.

Procedures for modelling and prediction using a hybrid model are as follows.

Modelling

1. Selection of the geographical point of interest.
2. Acquisition of the history of measurements from the weather-measurement

station at the location of interest and measurements from stations distributed
in surroundings to capture data the characterise the complexity of the terrain.

3. Acquisition of the history of atmospheric-variables forecasts from physics-based
model for the location of interest.
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WRF temperature
prediction

Temperature
prediction

Delays

GP modelWRF

Meteo
variables’ field
measurements

Hybrid 1

Fig. 2 Hybrid model of the WRF ARW model and statistical model trained with measure-
ments from available measurement stations – Hybrid 1. This hybrid model requires measure-
ments of meteorological variables for making forecasts in each time step.

WRF temperature
prediction

Temperature
prediction

Delays

GP modelWRF

WRF meteo
variables’

predictions

Hybrid 2

Fig. 3 Hybrid model of the WRF ARW model and statistical model where the statistical part
of the model uses WRF predictions to replace measurements from measurement stations in
each time step – Hybrid 2. The statistical part of this hybrid model is trained with temperature
measurements and WRF predictions of all relevant meteorological variables.

4. Selecting the structure, e.g., regressors, etc., and training the statistical part
of the hybrid model to improve forecasts of physics-based model to be as close
to measured values.

Prediction

1. Acquisition of present and for the hybrid-model-relevant past measurements
from weather stations in the location of interest and surroundings to act as
some of the inputs of statistic-part of the hybrid model.

2. Acquisition of present values and forecasts from physics-based model to act
like the rest of the inputs of statistic-part of the hybrid model.

3. Prediction of the hybrid-model output over a horizon of interest using acquired
inputs.

Hybrid models, described in Section 3.3 for temperatures at heights of 2 m,
10 m, 40 m and 70 m are trained for one-step-ahead predictions on identification
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WRF temperature
prediction

Temperature

Delays

GP modelWRF

Hybrid 3

Fig. 4 Hybrid model of the WRF ARW model and statistical model using temperature-
prediction time series and WRF temperature predictions only – Hybrid 3. The statistical
part of this hybrid model is trained with temperature measurements and WRF predictions of
temperature.

data, that is half-hour-ahead predictions, and are consequently also evaluated on
validation data for the predictions. These models can be validated and provide
enough information that a vertical temperature profile for low heights can be
formed. They are compared with the WRF-model predictions as well as with
predictions of the so-called trivial model, where predictions equal predecessor.

While these short-term predictions are useful for the selection of statistical-
model regressors and to test the identified model, they do not fulfil the main
purpose. The long-term models’ forecasts are required to be used as inputs to the
air-pollution dispersion model. The WRF model’s long-term forecasts are com-
posed of 12-hour-lasting piecewise parts as described in Section 3.1. Therefore, an
option for validating a long-term forecast would be to compare one of the 12-hour-
lasting WRF predictions with the hybrid models’ predictions. Having in mind,
however, that assessment in a longer period would reveal a more realistic picture
of the hybrid models’ ability and that the WRF model is also updated periodi-
cally, the decision to take a longer forecasting horizon was made. We are aware of
the fact that in this way the composed WRF forecasts themselves are better than
the WRF forecasts of a single, but longer run. Nevertheless, this will not influence
the purpose of the assessment, which is to test whether or not the hybrid models
improve the forecasts of the WRF model locally.

Consequently, long-term forecasts of hybrid models for up-to 5 days are as-
sessed besides short-term predictions. These long-term forecasts are obtained as
the hybrid-models’ simulations by an iterative method, as described in Section 3.2,
and used as the ultimate validation for the models of temperature at the selected
heights. This means that the up-to-5-days simulation is realised so that the model
is fed with input signals only, e.g., WRF forecasts in each time step for the Hybrid
3 model from the start of the validation signal until the end of the 5-day period,
while output estimates are fed back instead of future observations. This way, the
model output in each time step is independent of the observations of the output
variables from the beginning of the simulation until the end of the 5-day period.
The simulation run is, therefore, a single run from the beginning to the end of the
5-day period, but the uncertainty of the model response due to stochastic output
is realised with Monte Carlo simulation as described in Section 3.2.
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Our division to short-term predictions and long-term forecasts is conditioned
by the available data sampling interval and the purpose of the models and can be
selected differently in other applications.

4 Results

This section provides results that show a comparison between the three differ-
ent hybrid models between the WRF model and the GP model for short-term
predictions and long-term forecasts as explained in Section 3.2.

One of the main issues with designing a statistical model is finding relevant
regressors. The model depends on relevant regressors, which should not be re-
dundant to avoid conditioning problems. There exist several regressor-selection
methods that are classified differently. One known type is the classification on
wrappers or wrapper methods, embedded methods and filter methods (May et al.,
2011). Several methods have been tested and, in the end, two methods were se-
lected with a cut-and-try approach. For temperatures at heights of 2 m and 10 m,
the best set of regressors is found with an exhaustive search based on log marginal
likelihood as described with Equation (3), which can be classified as a wrapper
method. Surprisingly, for heights of 40 m and 70 m, the best set of regressors is
obtained with the Relieff method (Kononenko et al., 1997). The Relieff method is
a filter method. It selects regressors based on the identification of regression value
differences between nearest-neighbour instance pairs.

The final regression vector for each height level is shown in Table 1.
The covariance or kernel function used for the calculation of the covariance

matrix K and other covariances in our model, selected due to achieving the best
results on the identification data set, is the composition of the square exponential
(SE) covariance function and linear covariance function with ‘automatic relevance
determination’ (ARD) hyperparameters (MacKay, 1998; Kocijan, 2016):

k(zi, zj) = σ2f exp

[
−1

2
(zi − zj)

TΛ−1
SE(zi − zj)

]
+ zTi Λ

−1
LINzj , (10)

where Λ−1
i ; i ∈ {SE,LIN} denotes Λ−1

i = diag([l−2
1 , . . . , l−2

D ]) of the ARD hyper-
parameters and σ2f is the scaling factor. All hyperparameters can be written as a

vector θ = [l−2
1 , . . . , l−2

2D, σ
2
f ]T . Other parameters used for the GP model are con-

stant mean function and the Exact inference method with Gaussian likelihood
(Rasmussen and Nickisch, 2015). Log-marginal likelihood of Equation (3) is used
as the cost function for model identification.

The evaluation criterions for all experiments are normalised root-mean-square
error (NRMSE), standardised mean square error (SMSE), and Pearson correlation
coefficient (PCC) for evaluating the most likely values of the predictions, and mean
standardised log-loss (MSLL) for evaluating the complete GP model output, i.e.,
prediction distributions in every time instant with their mean values and variances.
The explanation of the used evaluation criterions is given in the Appendix.

Both kinds of experiments, for half-hour-predictions and up-to-5-day forecasts,
have to be compared to output observations of the WRF model alone. The compar-
ison gives information about the improvement of the WRF-model output, which
is the main purpose of our investigation.
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Table 1 The final regression vectors for each height level. The delay in samples explains the
lag of observations and value +1 means prediction. These four regression vectors are used
for training and prediction of the statistical-model part of the hybrid models for each of the
investigated heights.

2 m level:
Mes. station Variable Delay in samples
Stolp temperature at 2 m 1
Stolp temperature at 2 m 0
Stolp global solar radiation 1
Cerklje temperature at 2 m 0
Stolp wind speed 0
Stolp global solar radiation 0
WRF model temperature at 2 m ‘+1’
WRF model global solar radiation ‘+1’

10 m level:
Stolp temperature at 10 m 1
Stolp temperature at 10 m 0
Krško temperature at 2 m 1
Cerklje temperature at 2 m 0
Krško temperature at 2 m 0
Krško wind speed 0
WRF model temperature at 2 m ‘+1’

40 m level:
Stolp temperature at 40 m 1
Stolp temperature at 40 m 0
Brežice relative humidity 1
Cerklje temperature at 2 m 1
Cerklje relative humidity 1
Cerklje airport temperature at 2 m 1
Krško wind speed 1
Krško wind direction 1
Libna temperature at 2 m 1
Stolp relative humidity 1
WRF model wind speed ‘+1’
WRF model temperature at 2 m ‘+1’

70 m level:
Stolp temperature at 70 m 1
Stolp temperature at 70 m 0
Cerklje temperature at 2 m 1
Stolp global solar radiation 0
WRF model temperature at 2 m ‘+1’

Figure 5 shows a scatter plot of the WRF model’s half-hour-ahead predictions
in comparison with the measurements at the location of interest on the data for
validation.

Figure 6 shows scatter plots of the hybrid models from Figure 2 for half-
hour-ahead predictions at different heights in comparison with the measurements
that were not used for the identification of the statistical model at the location
of interest. The hybrid model is a combination of the WRF model and selected
measurements as regressors. It is clear from Figures 5 and 6 that predictions of
hybrid models from Figure 2 for all four heights have substantially less variations
than the measurements. The performance evaluation with the criterions used for
each type of hybrid model shown in Figures 2 to 4 as presented in the previous
section is given in Table 2 and confirms substantial improvements in the quality
of the predictions. The performance measures are selected to provide assessment
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Fig. 5 WRF temperature forecasts (blue circles) vs. temperature measurements for the period
of 30 days at the height of 2 m in the location of Krško NPP. The red line shows the line of
the ideal match between forecasts and measurements.

of the most likely prediction values, i.e., square-error-based measures, as well as
of predicted random variables, i.e., log-loss-based measure.

However, the real test of purpose fulfilment is the forecast for a longer period. In
our case, a few-hours-ahead forecast is obligatory for successful evacuation plan-
ning, but any further forecasts are preferred as well. The obtained models are
evaluated with forecasts for the period up to 5 days, which, at least in our case,
can be considered as long-term forecasts. These forecasts are obtained with Monte
Carlo simulation (Korn, 2007) based on the iterative method as described in Sec-
tion 3.2 with feeding back delayed output predictions to prediction model inputs.
1000 samples of prediction distributions are used in the Monte Carlo simulations.
Figure 7 shows a time series of WRF forecasts for the period of up to 5 days at a
height of 2 m in comparison with the measurements at the location of interest.

Figure 8 shows a time series of forecasts for the hybrid models of Figure 2
at different heights for the period of up to 5 days in comparison with the mea-
surements that were not used for identification, i.e., data for validation. Again,
this hybrid model is a combination of the WRF model and selected measurements
as regressors. It is expected that the WRF-model forecasts are better at higher
altitudes due to the decreased influence of complex terrain. On the other hand,
the accuracy of the hybrid models depends on the selection of regressors and the
identification data. The best results in our case are demonstrated at 10 m height,
otherwise the higher the height, the lower the accuracy. However, the 95 % confi-
dence band provides information about the variance of the distribution. It is clear
from Figure 8 that 95 % of the absolute forecast errors, in comparison with mea-
surements not used for model identification, are within the confidence band. This
information about forecast accuracy that is inherent to Bayesian modelling meth-
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Half-hour predictions at 40 m
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Fig. 6 Comparison of scatter plots for temperature half-hour-ahead predictions vs. tempera-
ture measurements for the period of 30 days at heights 2 m, 10 m, 40 m and 70 m, respectively
with the hybrid model of Figure 2. The red line shows the line of ideal match between hybrid-
model temperature forecasts and temperature measurements.

ods, to which GP modelling belongs, is very valuable when pollution dispersion is
predicted.
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Fig. 7 WRF forecasts for the period of up-to 5 days at the height of 2 m (full line – upper fig-
ure) and measurements (dashed line – upper figure). Absolute values of the difference between
forecasts and the measurements are shown in the bottom figure.
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Long-term forecasting - 40 m
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Long-term forecasting - 70 m
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Fig. 8 Comparison of time responses for long-term forecasts of temperature for the period
up-to 5 days at heights 2 m, 10 m, 40 m and 70 m, respectively. Legend: mean values of
forecasts – full line in upper figure, 95 % confidence interval – grey band in upper figure,
measurements – dashed line in upper figure, the absolute value of the difference between
forecasts and measurement – full line in the bottom figure, 95 % confidence interval – grey
band in the bottom figure.
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The performance evaluation with the criteria used for each type of hybrid
model as shown in Figures 2 to 4 is given in Tables 2 and 3. The expressions and
explanations of performance measures for evaluation are given in Appendix A.

Table 2 Performance measures, explained in Appendix A, for short-term predictions of tem-
perature are the normalised root-mean-square error (NRMSE), the standardised mean-squared
error (SMSE), the Pearson correlation coefficient (PCC), the mean standardised log loss
(MSLL) for the following models: WRF model, hybrid model with measurement updates in
each step – Hybrid 1 (Figure 2), hybrid model with WRF supplements in each step – Hybrid
2 (Figure 3), hybrid model containing WRF temperature observations – Hybrid 3 (Figure 4),
and trivial model.

Half-hour predictions
2 m 10 m 40 m 70 m

NRMSE WRF model 0.513 0.479 0.380 0.364
Hybrid 1 0.895 0.898 0.882 0.870
Hybrid 2 0.888 0.886 0.858 0.871
Hybrid 3 0.890 0.893 0.878 0.868
Trivial model 0.843 0.850 0.847 0.842

SMSE WRF model 0.206 0.273 0.415 0.489
Hybrid 1 0.011 0.010 0.014 0.016
Hybrid 2 0.012 0.013 0.019 0.016
Hybrid 3 0.012 0.011 0.015 0.017
Trivial model 0.025 0.023 0.023 0.025

PCC WRF model 0.922 0.900 0.863 0.846
Hybrid 1 0.995 0.995 0.993 0.992
Hybrid 2 0.994 0.994 0.991 0.992
Hybrid 3 0.994 0.995 0.993 0.992
Trivial model 0.988 0.989 0.988 0.988

MSLL WRF model \ \ \ \
Hybrid 1 -2.178 -2.352 -2.130 -2.044
Hybrid 2 -2.143 -2.165 -1.942 18.528
Hybrid 3 -2.263 -2.266 -2.106 -2.055
Trivial model \ \ \ \
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Table 3 Performance measures for long-term forecasts of temperature are the normalised
root-mean-square error (NRMSE), the standardised mean-squared error (SMSE), the Pearson
correlation coefficient (PCC), the mean standardised log loss (MSLL) for the following models:
WRF model, hybrid model with measurement updates in each step – Hybrid 1 (Figure 2), hy-
brid model with WRF supplements in each step – Hybrid 2 (Figure 3), hybrid model containing
WRF temperature observations – Hybrid 3 (Figure 4), and trivial model.

Long-term forecasts up-to 5 days
2 m 10 m 40 m 70 m

NRMSE WRF model 0.500 0.478 0.400 0.401
Hybrid 1 0.795 0.844 0.656 0.427
Hybrid 2 0.677 0.608 0.562 0.381
Hybrid 3 0.559 0.525 0.216 -0.374

SMSE WRF model 0.249 0.320 0.475 0.558
Hybrid 1 0.042 0.025 0.107 0.215
Hybrid 2 0.106 0.125 0.171 0.231
Hybrid 3 0.183 0.195 0.407 0.676

PCC WRF model 0.934 0.916 0.889 0.890
Hybrid 1 0.979 0.988 0.946 0.904
Hybrid 2 0.958 0.942 0.911 0.897
Hybrid 3 0.931 0.921 0.849 0.778

MSLL WRF model \ \ \ \
Hybrid 1 -1.651 -1.773 -1.131 -0.774
Hybrid 2 -1.110 -1.011 -0.623 -0.732
Hybrid 3 6.517 0.630 0.155 1.467
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Hybrid models that do not encompass measurements from neighbouring sta-
tions are at a loss as it can be seen from Tables 2 and 3. Again, the models are
worse at higher altitudes. Nevertheless, it is clear that especially the hybrid models
with WRF supplements instead of measurements provide useful utility. The use
of hybrid models with supplements is an improvement for short-term predictions
as well as for long-term forecasts, except for 70 m heights, over the use of the
WRF model’s forecasts at the geographical point of interest, i.e., the location of
Krško NPP. However, it is clear from Tables 2 and 3 that the hybrid model us-
ing WRF supplements (Figure 3) does not overperform the WRF model at 70 m
height. Moreover, the hybrid model using the temperature-prediction time series
(Figure 4) does not overperform the WRF model at 40 m height, all in the case
of forecasts for the period of up-to 5 days.

The graphical presentation of the assessed-models’ performance measures de-
pending on height is given in Figure 9 for half-hour predictions and in Figure 10
for long-term forecasts.
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Fig. 9 Graph for comparison of performance-measure values for half-hour-ahead predictions
vs. investigated heights. The performance-measure values are depicted as solid dots, while
interpolation lines are depicted with dashed line to illustrate the trend of performance-measure
value changes with height.



Hybrid model of the near-ground temperature profile 21

-0.5 0 0.5 1

NRMSE

0

10

20

30

40

50

60

70

H
ei

gh
t [

m
]

Long-term forecasting

WRF
Hyb+mea
WRF+t.ser.
Hyb+supp

0 0.2 0.4 0.6 0.8

SMSE

0

10

20

30

40

50

60

70

H
ei

gh
t [

m
]

Long-term forecasting

WRF
Hyb+mea
WRF+t.ser.
Hyb+supp

0.75 0.8 0.85 0.9 0.95 1

PCC

0

10

20

30

40

50

60

70

H
ei

gh
t [

m
]

Long-term forecasting

WRF
Hyb+mea
WRF+t.ser.
Hyb+supp

-2 0 2 4 6 8

MSLL

0

10

20

30

40

50

60

70
H

ei
gh

t [
m

]
Long-term forecasting

Hyb+mea
WRF+t.ser.
Hyb+supp

Fig. 10 Graph for comparison of performance measures for long-term forecast up-to 5 days
vs. investigated heights. The performance-measure values are depicted as solid dots, while
interpolation lines are depicted with dashed line to illustrate the trend of performance-measure
value changes with height.

Figures 9 and 10 illustrate data from Tables 2 and 3 and confirm a deterioration
of the results with height, which is the expected result.

It is important to emphasise that investigated models predict vertical temper-
ature profile in one geographical point only. As such they cannot be used for the
assessment of the spatial distribution of modelling errors in a wider geographical
area. This can be done using a set of models each containing model describing the
situation at a different location and possibly at different terrain.

5 Conclusions

This paper described an empirical assessment of the integration of a physics-based
and a statistical, i.e., first-principles and empirical, model for vertical-temperature-
profile modelling at low heights. The shown short-term predictions and long-term
forecasts demonstrate a successful use of the integration of a physics-based and
a statistical model for vertical-temperature-profile modelling at low heights. In
the presented example, a WRF model and a GP model are integrated. The im-
provements over WRF model predictions alone are large enough that a noticeable
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difference is expected when using hybrid-model predictions for radiation dispersion
forecasting.

The innovation of the presented hybrid approach is the use of a statistical model
to enhance the prediction power of a physics-based model. Such a method is useful
in situations where the physics-based model is not accurate enough and its further
development would be too expensive while measurement data for the locality is
readily available. The use of a dynamic statistical model in a hybrid model with
a dynamic physics-based model is a step beyond the traditional static statistical
postprocessing of physics-based model forecasts. The described approach is not
constrained to the study area and may have a general utility for any complex
terrain.

The main disadvantage of the presented method is that the developed model
is constrained to the location for which it is made.

Three different types of hybrid models, each one having a different amount
of measurements available, are evaluated in the investigation. All three provide
improvements over the physics-based model.

The investigation taught us several lessons.

– Caution needs to be exercised when such models are used for longer-period
forecasts. The improvement depends on the amount of measurement informa-
tion and decays with the increasing horizon of forecasting.

– Modelling of the vertical temperature profile as described in this investigation
is a big-data problem and has to be handled as such. Options for more efficient
treatment of the big data are online learning (Kocijan et al., 2016) and the use
of High-Performance Computing (Matthews et al., 2017).

– It is worth putting a lot of effort into the selection of regressors.
– On the positive note, GP modelling is a valuable tool due to the information it

provides about prediction confidence, which is of particular importance when
spatial variability of the forecasts is needed.

Modelling of other variables that are necessary for pollution-dispersion mod-
elling and forecasting is planned for the immediate future.
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A Performance measures

We use the following statistical measures for the assessment:

– The normalised root-mean-square error – NRMSE

NRMSE = 1−
‖y − µ‖2

‖y − E(y)‖2
, (11)

where
y – the vector of validation values,
µ – the vector of mean predicted values,
E(y) – the mean value of y.

NRMSE is 1 for a perfect match and −∞ for a very bad match of the validation and mean
predicted values.

– The standardised mean-squared error – SMSE

SMSE =
1

N

∑N
i=1(E(ŷi)− yi)2

σ2
y

, (12)

where
σ2
y – the variance of the observations.

SMSE is a frequently used standardised measure for the accuracy of predictions’ mean
values with values between 0 and 1, where the value 0 is the result of a perfect model.

– The Pearson’s correlation coefficient - PCC:

PCC =

∑N
i=1(E(ŷi)− E(ŷ))(yi − E(y))

Nσyσŷ
, (13)

where
E(ŷ) – the expectation, i.e., the mean value, of the vector of predictions,
σy – the standard deviation of the observations,
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σŷ – the standard deviation of the predictions.
PCC is a measure of associativity and is not sensitive to bias. Its value is between -1 and
+1, with ideally linearly correlated values resulting in a value of 1.

– The mean standardised log loss - MSLL (Rasmussen and Williams, 2006):

MSLL =
1

2N

N∑
i=1

[
ln(σ2

i ) +
(E(ŷi)− yi)2

σ2
i

]

−
1

2N

N∑
i=1

[
ln(σ2

y) +
(yi − E(y))2

σ2
y

]
,

(14)

where
σ2
i – the prediction variance in the i-th step,
E(y) – the expectation, i.e., the mean value, of the vector of the observations.

MSLL is a standardised measure suited to predictions in the form of random variables. It
weights the prediction error more heavily when it is accompanied by a smaller prediction
variance. The MSLL is approximately zero for the not very good models and negative for
the better ones.


