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Abstract

Bearings are considered to be the most frequent cause for failures in rotational machinery. Hence efficient

means to anticipate the remaining useful life (RUL) on-line, by processing the available sensory records, is

of substantial practical relevance. Many of the data-driven approaches rely on conjecture that evolution of

condition monitoring (CM) indices are related with the aggravation of the condition and, indirectly, with

the remaining useful life of a bearing. Problems with trending may be threefold: (i) most of the operational

life show no significant trend until the time very close to failure; this is usually accompanied by rapidly

growing values of CM indices which is not easy to forecast, (ii) the evolution of CM indices is not necessarily

monotonous, (iii) variable and immeasurable fluctuations in operating may fool the trend. Motivated by

these issues we propose an approach for bearing fault prognostics that employs Rényi entropy based features.

It exploits the idea that progressing fault implicates raising dissimilarity in the distribution of energies across

the vibrational spectral band sensitive to the bearing faults. The innovative way of predicting RUL relies on

a posterior distribution following the Bayes’ rule using Gaussian process (GP) models’ output as likelihood

distribution. The proposed approach was evaluated on the data set provided for the IEEE PHM 2012

Prognostic Data Challenge.

Keywords: Prognostics, Gaussian process models, wavelet packet transform, Rényi entropy, remaining

useful life, Jensen-Rényi divergence

1. Introduction

According to several surveys, bearing faults represent the most frequent cause for failure of mechanical

drives [1, 2]. Therefore, suitable methods for fault detection and prognostics of bearing faults is of paramount

practical importance. As a result, a plethora of methods for detection of bearing faults have been developed.
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The most known methods rely on set of features, which is based on characteristic bearing fault frequencies

associated to specific bearing surface faults [3]. Although effective for bearing fault detection, these features

turn ineffective for estimating bearings’ remaining useful life (RUL). The reason is that their values stay

close to zero up to the moment when the failure itself occurs [4]. To cope with the problem we exploit the

idea according to which the progressing fault implicates raising dissimilarity in the pattern of distribution of

energies across particular vibrational spectral band, which is sensitive to the bearing faults. These patterns

are characterised by entropy indices while the dissimilarity is expressed in terms of divergence. Hence

the divergence appear as a feature indicating the condition aggravation level. Addressing the problem of

bearing fault prognostics, in this paper we propose new Rényi entropy features associated with the statistical

properties of the envelope of bearing’s vibrations.

Another key idea of the paper relies on the conjecture that discrepancy between the distributional

patterns is directly related with the bearing condition. As the worsening condition is monotone process it

is related with the bearing’s life span. Of course, it is impossible to determine this inter-relationship other

than by using measurements from a set of run-to-failure experiments. In this paper we propose a fully data

driven approach relying on Gaussian process (GP) models for calculating bearing’s RUL.

The problems of bearing fault prognostics attracted a lot of attention in the past years. The majority of

the proposed approaches try to describe the relationship between the defect growth and the time evolution of

some condition monitoring indices (or features) calculated from vibrations like energy, peak-to-peak values,

RMS, kurtosis, crest factor, changes in bearing natural frequency etc. [4–10]. In many cases additional signal

properties are calculated using variations of wavelet transform [11, 12]. Using somewhat similar approach,

Ocak et al. [13] model the evolution of the energy of particular wavelet packet nodes using hidden Markov

models. Changes in the nonlinear dynamics of the bearing enabled Janjarasjitt et al. [14] to estimate the

bearing’s RUL by tracking the increase of the dimensional exponents of the generated vibrations.

In this paper we show that the evolution of properly selected (Jensen-)Rényi entropy based indices

of the generated vibrations can be related to the bearing’s RUL. In addition, the process of inference

based on Jensen-Rényi divergence requires no prior information about the operating conditions. Under

some conditions the prognostic scheme is able to operate even under incomplete prior knowledge about the

physical characteristics of the monitored drive. This remarkable property has been demonstrated in the

context of fault diagnosis by Boškoski and Juričić [15, 16].

Based on the values of the Jensen-Rényi divergence, the bearing’s RUL is estimated using GP models.

The reason why GP models are used is because it is non-parametric approach meaning that no prior as-

sumptions about the candidate model structures is needed, which in a sense makes modelling simpler than

in the case when parametric models are applied. Additional rationale is in the fact that the model output

is not a vector of real numbers but joint probability density function of the outputs. Hence full information

about the computed output, including uncertainties, is provided. The output of the GP models is a normal
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distribution, expressed in terms of mean and variance. The mean value represents the most likely output and

the variance can be interpreted as a measure of its confidence. Due to their properties, the GP models are

especially suitable for modelling when data are unreliable, noisy or missing, and therefore have been used in

various fields, for instance: biological systems [17, 18], environmental systems [19], chemical engineering [20]

and many others. Kocijan and Tanko [21] used GP models for modelling time series describing gear health

and the prediction of the critical value of harmonic component feature that indicates the wear of gear.

The paper is organised as follows. In section 2 the statistical model of vibrational signals is presented first.

The detailed definition of the selected features and their numerical estimation is presented in Section 3. The

properties of GP models are presented in Section 4. In Section 5, the RUL distribution p(RUL) is obtained

as a posterior distribution by using the output of the trained GP model as likelihood. The evaluation of

the proposed approach, presented in Section 6, is done on the data set provided for the IEEE PHM 2012

Prognostic Challenge [22].

2. Statistical model of bearing vibrations

Healthy bearings produce negligible vibrations. However, in the case of surface damage, vibrations are

generated by rolling elements passing across the damaged site on the surface. Each time this happens,

impact between the passing ball and the damaged site triggers a system impulse response s(t). The time

of occurrence of these impulse responses as well as their amplitudes should be considered as purely random

processes. Consequently, the vibrations generated by damaged bearings can be modelled as [23]:

y(t) =

+∞∑
i=−∞

Ais(t− νi) + n(t), (1)

where Ai is the impulse of force that excites the entire structure and νi is the time of its occurrence. The

final component n(t) defines an additive random component that contains all non-modelled vibrations as

well as environmental disturbances.

For healthy bearing, the envelope of the generated vibrations will be without any visible structure due

to the lack of impacts s(t − νi). The presence of bearing surface fault introduces additional components

that influence the shape of the envelope hence altering the shape of its distribution. Therefore, the goal is

to quantifying these changes in the shape of the envelope distribution for the purpose of RUL estimation.

3. Rényi entropy and related indices

Information about the evolving condition of the bearing is buried in the envelope of the vibration signal.

So, the first step is the estimation of the probability distribution functions (PDF) of the envelope of the

generated vibrations. Due to the link between the signal’s envelope and its instantaneous power [24], in this
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approach the underlying PDF is estimated through the energy distribution of the wavelet packet coefficients

of vibration signal.

For the computation of the coefficients the wavelet packet transform (WPT) is used [25]. The structure

of WPT is described by a binary tree structure, as shown in Figure 1. A wavelet packet tree with depth dM

and nodes (d, n), where d = {1, 2, . . . , dM} represents the depth of the tree and n = {1, 2, . . . , 2d} stands

for the number of the node at depth d. WPT allows arbitrary partition of the time-frequency plane. The

wavelet coefficients in the set of terminal nodes contain all information regarding the analysed signal. The

analysis of the envelope is performed by analysing the signal’s energy within each terminal node.

f(t)

(2,2)

(1,1)

(2,1)

(3,3)(3,2)(3,1) (3,4)

(2,4)

(1,2)

(2,3)

(3,7)(3,6)(3,5) (3,8)

Figure 1: Example of a full WPT tree with depth dM = 3.

Each of the n nodes at level d contains Nd wavelet coefficients Wd,n,t t = 0, . . . , Nd − 1, Nd = 2−dNs,

Ns is the sample length of the signal [26]. Using these coefficients, the portion of the signal’s energy Ed,n

contained within one node (d, n) reads [27]:

Ed,n =

Nd−1∑
t=0

‖Wd,n,t‖2 . (2)

The total signal’s energy can be obtained by summing the energy contained within the set of terminal nodes

T :

Etot =

Nd−1∑
t=0

d,n∈T

‖Wd,n,t‖2 =
∑
d,n∈T

Ed,n. (3)

The set Pd,n expresses the contribution of each wavelet coefficient to the energy of the signal within the

terminal node (d, n):

Pd,n =

{
pd,nt =

‖Wd,n,t‖2

Ed,n
, t = 0, · · · , Nd − 1

}
. (4)

A similar set can be defined for the contribution of the energy of each terminal node (d, n) ∈ T in the total

energy of the signal Etot:

PT =

{
pd,n =

Ed,n
Etot

, d, n ∈ T
}
. (5)

The elements contained in both sets Pd,n and PT can be treated as realisation of a random process.

Based on these realisations one can estimate the corresponding probability distributions and calculate their

entropies and statistical complexity according to relations (7) and (8).
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3.1. Entropy

The concept of entropy serves to characterise the PDF. For a discrete probability distribution P =

{p1, p2, . . . , pN}, the simplest definition of entropy is the one according to Shannon:

H(P) = −
N∑
i=1

pi ln(pi). (6)

For a discrete set with cardinality N the Shannon entropy can acquire values between 0 and N lnN .

A problem with the Shannon entropy is that it is relatively insensitive to the changes in the tails of the

distribution. In many cases, faults in the drives affect the tails. Consequently, we adopted an extension of

the Shannon entropy in the form of Rényi entropy [28]:

Hα(P) =
1

1− α
ln

N∑
i=1

pαi (x), α ≥ 0α 6= 1. (7)

Rényi entropy introduces the parameter α, which can be employed in order to manage the sensitivity of the

entropy towards particular segments of the probability distribution P.

The α exponent in the Rény entropy specifies the relative importance of small values versus large values

of the probability mass. This effect can be visualised using the isoentropy plots of Xu and Erdogmuns [29]

for all possible probability distributions over N bins. For the case where N = 3, the isoentropy plots for

different values of α are shown in Figure 2.

[1 0 0]

[0 1 0] [0 0 1]

(a) α = 0.2

[1 0 0]

[0 1 0] [0 0 1]

(b) α = 0.5

[1 0 0]

[0 1 0] [0 0 1]

(c) α = 1 Shannon en-

tropy

[1 0 0]

[0 1 0] [0 0 1]

(d) α = 2

[1 0 0]

[0 1 0] [0 0 1]

(e) α = 10

Figure 2: Rény Isoentropy plots for probability distributions with three components as in [29]

3.2. Jensen-Rényi divergence

Divergence is a concept which is helpful in expressing the dissimilarities (or “distance”) between the

distribution functions. The Jensen-Rényi divergence between two distribution functions P and Q defined

on the same set reads [30]:

Dw
α (P,Q) = Hα (wP + (1− w)Q)− {wHα(P) + (1− w)Hα(Q)} , (8)
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where w ≥ 0. The values of the exponent α governs the sensitivity of these two quantifiers to particular

segments of the PDF, i.e. it specifies the relative importance of small values versus large values of the

probability mass [31]. In the presented approach the value of α was set to α = 0.5.

The Jensen-Rényi entropy reflects the condition of the bearing. This fact will be utilised in the context

of prognostics as well. In most of the applications vibrational data records are collected during the repetitive

acquisition sessions at high enough sampling rate. Each session results in a vibrational record for which the

divergence index is calculated from coefficients of the wavelet packet transform.

The idea is illustrated in Figure 3. At the beginning of the monitoring process the reference condition

P0 should be defined by computing the corresponding Rényi entropy for both Pd,n and PT . If the bearing’s

condition is normal, no significant difference between the two distributions should exist. A fault in the

system can cause changes in the distribution of the particular node at hand into Pt, hence altering the

corresponding values of (8). This can be used as means to detect and, in some cases, to isolate a fault.

It is important to emphasise that the window length is usually very short and the operating conditions

within the node can therefore be assumed constant. If the speed actually varies, the spectral content will

also move along the frequency axis. In spite of that, the distribution pattern associated with the WPT

will not change much as the shifted harmonics are still within the specific frequency band associated to the

particular node. However, if a change in the operating speed is too big, it might happen that the frequency

content from one node moves to the adjacent node, thus fooling entirely the diagnostic reasoning. In the case

of variations in the load, mild variations normally have no significant impact on the frequency distribution

pattern. Furthermore, even in the case of significantly increased load, additional sideband components might

occur but without any major impact on the energy distribution within a node.

3.3. Statistical complexity

The statistical complexity C (P) of a signal with distribution P based on (7) and (8) is defined as [32]:

C (P) = Q0D
w
α (P,Pe)Hα(P), (9)

where Pe is the uniform distribution and Q0 is a normalisation constant so that Q0D
w
α (P,Pe) ∈ [0, 1]. The

product (9) is in accordance with the initial idea that signals with perfect order Hα(P) = 0 and maximal

disorder Dw
α (P,Pe) = 0 have the lowest complexity.

4. Gaussian process models

The relationship between cause and consequence, or system input and system output, can be modelled

in many ways. If the physics behind the relationship is known one can use first principle models. If this is

not the case, models need to be derived out of the available input and output data. Those approaches are

referred to as data-driven.
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Figure 3: Monitoring the condition degradation by means of Jensen-Rényi divergence.

The most frequent way to relate input x ∈ RD and output y ∈ R is to use regression model parameterized

by a finite vector of model parameters θ ∈ RD. For the sake of simplicity we will consider static relationship

y(x) = f(x; θ) + ε (10)

where f : RD → R is a known function (e.g. linear, polynomial, radial basis function, neural network

etc.) known up to the vector θ, ε is noise term needed to describe model imperfection caused by random

disturbances or modelling errors. Usually the noise term is described by a probability density function

ε ∼ pϑ(ε) parameterized by ϑ. Having the data records in terms of pairs {xi, yi, i = 1, ..., N} the model (10)

can be identified from data by estimating the the unknown model parameters {θ, ϑ}.

The alternative to the parametric model (10) is to use structure-free non-parametric models. Such is the

case with the GP model. It is also referred to as Bayesian kernel model.

The idea of GP models is rather simple. An outline from the intuitive point of view will be provided,

however, more rigorous derivation can be found in [33, 34]. Assume we dispone of N D-dimensional inputs

X = [x1,x2, . . . ,xN ] and corresponding outputs y = [y1, y2, . . . , yN ]T . GP model assumes that the output

is realization of a GP with joint probability density function

y ∼ N (m,K) (11)
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with mean and covariance being functions of the inputs X. In the most general case we have

mi = m(xi), j = 1, . . . , N (12)

and

Kij = k(xi,xj), i, j = 1, . . . , N (13)

where the right side refers to as covariance function or kernel.

Presuming white noise and stationary data, the most commonly used is the composition of the squared

exponential covariance function and the constant covariance function

k(xi,xj) = v1 exp

[
−1

2

D∑
d=1

wd(xdi − xdj)2
]

+ δijv0, (14)

where wd are the automatic relevance determination hyperparameters, v1 and v0 are hyperparameters of

the covariance function, D is the input dimension, and δij = 1 if i = j and 0 otherwise. Hyperparameters

can be written as a vector Θ = [w1, . . . , wD, v1, v0]T . The wd indicate the importance of individual inputs.

If wd is zero or near zero, it means the inputs in dimension d contain little information and could possibly

be discarded. Other forms and combinations of covariance functions suitable for various applications can be

found in [34].

To accurately reflect the correlations presented in the training data, the hyperparameter values of the

covariance function need to be optimized. Due to the probabilistic nature of the GP models, the common

model optimization approach where model parameters and possibly also the model structure are optimized

through the minimization of a cost function defined in terms of model error (e.g. mean square error), is not

readily applicable. A probabilistic approach to the optimization of the model is more appropriate. Actually,

instead of minimizing the model error, the probability of the model is maximized.

Based on the data (X,y), and given a new input vector x∗, we wish to find the predictive distribution

of the corresponding output y∗. Based on training set X, a covariance matrix K of size N ×N is computed.

The output of GP model is predictive distribution p(y∗|y,X,x∗) of the target y∗, given the training data

(X,y) and an input x∗. However, this distribution is conditioned on the hyperparameters Θ, which should

be integrated out as:

p(y∗|y,X,x∗) =

∫
p(y∗|Θ,y,X,x∗)p(Θ|y,X)dΘ. (15)

The computation of such integrals can be difficult due to the intractable nature of the non-linear functions. A

solution to the problem of intractable integrals is to adopt numerical integration methods such as the Monte-

Carlo approach. Unfortunately, significant computational efforts may be required to achieve a sufficiently

accurate approximation.
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Another standard practice for determining the predictive distribution is by maximum-likelihood estima-

tion of hyperparameter values. This is achieved by minimising the following negative log-likelihood function:

L(Θ) = −1

2
log(| K |)− 1

2
yTK−1y − N

2
log(2π). (16)

Since the covariance matrix K in (16) depends on Θ, the likelihood function is non-linear and multi-

modal. Therefore efficient optimisation routines require gradient information. The computation of the

derivative of L(Θ) with respect to each of the parameters is as follows:

∂L(Θ)

∂θi
= −1

2
trace

(
K−1

∂K

∂θi

)
+

1

2
yTK−1

∂K

∂θi
K−1y. (17)

GP models can be easily utilised for regression, where the goal is to find the distribution of the corre-

sponding output y∗ for some new input vector x∗ = [x1(N+1), x2(N+1), . . . , xD(N+1)]. For the collection

of random variables [y1, . . . , yN , y
∗] we can write:

p(y, y∗|X,x∗) = N (0,K∗), (18)

with the covariance matrix

K∗ =



K k(x∗)

kT (x∗) κ(x∗)


, (19)

where y = [y1, . . . , yN ] is an 1×N vector of training targets, k(x∗) = [C(x1,x
∗), . . . , C(xN ,x

∗)]T is the N×1

vector of covariances between the test and training cases, and κ(x∗) = C(x∗,x∗) is the covariance between

the test input itself. The predictive distribution of the output p(y∗|y,X,x∗) is obtained by marginalising

(18) and has a normal PDF with mean and variance:

µ(y∗) = k(x∗)TK−1y, (20)

σ2(y∗) = κ(x∗)− k(x∗)TK−1k(x∗). (21)

As can be seen from (21), the GP model, in addition to the mean value, also provides information about

the confidence in prediction by the variance. Usually the confidence of the prediction is depicted with a 2σ

interval which corresponds to approximately 95%. This confidence region can be seen as a grey band in

Figure 4. It highlights areas of the input space where the prediction quality is poor due to the lack of data

or noisy data, by indicating a wider confidence band around the predicted mean.
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Figure 4: Modelling with GP models: in addition to mean value (prediction), we obtain a 95% confidence region for the

underlying function f (shown in grey).

5. Procedure for RUL prediction

The procedure for estimation of RUL relies on the assumption that off line data records from run-

to-failure test on similar bearings have been performed a priori. Each such data record contains time

track of Jensen-Rényi divergences calculated at the corresponding instances of time. Hence one gets pairs

{τ,Dw
α (Pt,P0)}, where Pt denotes the distribution of energies in current operating window while P0 stands

for the distribution at the beginning of the operating life, when bearing is assumed to be in the nominal

condition.

Due to the statistical nature of the Jensen-Rényi divergence feature, the feature time series includes a

relatively large random component. Therefore, each dataset is pre-processed by an individual GP model

with a composite covariance function (14). The result of a GP modeling is a smooth time series described

by a set of Gaussian distributions N (µt, σ
2
t ) for each dataset. The training feature used in the subsequent

steps is the vector of GP model mean values µt.

In addition to acquisition of off-line data and its pre-processing, the procedure for estimation of RUL

consists of two main steps, which will be presented here in more detail. First one is to infer an appropriate

model of the feature value and the second one is to use the model and the current measurements to predict

the RUL.

5.1. RUL modelling with GPs

The joint distribution of all the training time-series in the training dataset are used to infer a set of GP

models that model the relation between the feature value and the bearing’s RUL. As the duration of the

training datasets varies, the actual experiment time t was replaced by the life-cycle relative time index τ ,

where 0 ≤ τ ≤ 1. Value τ = 1 means that the bearing has reached the end of life. Such rescaled training

data are shown in Figure 5.
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The result of the training process is a GP model which defines the evolution of the feature value for each

τ ∈ [0, 1]. Given the input value of τ , the output of the GP model is a normal distribution describing the

PDF of the feature value at the relative time τ :

p(Dw
α (Pt,P0)|τ) ∼ N (µ(τ), σ2(τ)) τ ∈ [0, 1]. (22)

The mean values µτ are shown with thick line in Figure 5.
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t
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Figure 5: Time evolution of Dwα (Pt,P0) normed in the interval [0, 1].

5.2. RUL estimation

The bearing’s RUL is estimated by computing the posterior distribution of the bearing relative time τ .

As the training data points are normalised on the interval τ ∈ [0, 1], the RUL is simply 1− τ . The posterior

PDF of the distribution p(τ) is computed from the current feature value Dw
α (Pt,P0) at the time instant t

by following the Bayes’ rule in the following form:

p(τ |Dw
α (Pt,P0)) ∝ p(Dw

α (Pt,P0)|τ)p(τ), (23)

where the likelihood p(Dw
α (Pt,P0)|τ) is given by the GP model (22) and the prior p(τ) in (23) includes

any additional knowledge related to the RUL distribution. If the knowledge is missing one set it to an

uninformative distribution.

If the informative prior is used in (23), the distribution p(τ) has to satisfy two main criteria. Firstly, it

has to include information about the current experiment duration t, and secondly, it should be designed in

a way that will give more weight to the prior at the beginning and more weight on the measurements, once

they become significant. For this purpose, we propose the truncated normal distribution TN
(
µ, σ2

)
with

PDF given as:

p(τ) =
1√

2πσ2

exp

(
− (τ − µ)

2

2σ2

)

Φ

(
b− τ
σ

)
− Φ

(
a− τ
σ

)I[a,b](τ), (24)
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where Φ( · ) is the standard normal cumulative density function and I[a, b](τ) = 1 if a ≤ τ ≤ b and zero

otherwise.

The posterior distribution is interpreted as a relative time of the experiment and therefore the prior

should be limited to positive values of τ . To achieve this, the support of (24) is set to a = 0, b = 1.

Furthermore, the conditioning of the prior to the current experiment time t is achieved by setting its mean

value to µt = E(1 − τ)−t, where E(1 − τ) is the mean time to failure. Finally, the covariance is time

dependent and set to σ2
t = V0 · t, where V0 is the inflation constant. The result of inflation is that in the

initial stages of the bearing’s life cycle, the prior will have low covariance and will be the dominating part of

(23). As the time progresses, the inflating covariance will put more weight to the observed data and the GP

model likelihood P (Dw
α (Pt,P0)|τ) will dominate. Using the above definition, the proposed prior distribution

p(τ) takes the form:

p(τ) =
1√

2πV0t

exp

(
− (τ − (E(1− τ)− t))

2V0t

)
Φ

(
1− (E(1− τ)− t)

2V0t

)
− Φ

(
− (E(1− τ)− t)

2V0t

)I[0,∞](τ). (25)

The important characteristic of this specific prior distribution is the truncation, which limits the prior

only to the positive values of time τ . From (25), it can be seen that when the mean value is far above 0, the

truncation has practically no effect and the distribution is indistinguishable from Gaussian one. However,

when the mean value is approaching 0, the truncation limits the support to the selected interval and the

denominator in (25) normalizes the function values. The resulting distribution thus has a mean value that

is always greater than 0 and is slowly approaching it, which is an expected behavior of the distribution of

the RUL.

The numerical estimation of the posterior (23) is schematically described in Figure 6. For a specific

feature value Dw
α (Pt,P0), measured at time t, the likelihood p(Dw

α (Pt,P0)|τ) is computed for each value of

τ ∈ [0, 1]. The likelihood is then multiplied by the prior (25), evaluated at the same values of τ . The result

of the computation is the posterior PDF p(τ |Dw
α (Pt,P0)).

6. Experimental results

6.1. The experimental setup

The proposed approach was evaluated on data sets for the IEEE PHM 2012 Data Challenge [22]. Data

consist of three batches, each corresponding to different speed and load conditions. The generated vibrations

were sampled with 22 kHz for duration of 100 ms, repeated every 5 minutes. The experiments were stopped

when the RMS value of the generated vibrations exceeded 20 m/s2.

Some of the experimental runs were rejected from the training process, since the time evolution of their

features substantially differs from the majority. These rejections can be justified in two ways. Firstly,
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Figure 6: Calculating the probability for feature value Dwα (Pt,P0) = 1.15.

the tested bearings were subjected to loads several orders higher than the nominal ones. Secondly, the

criterion for experiment end was selected as a hard threshold. Consequently, regardless of the initial high

values of the vibration variance, some experiments lasted significantly longer. Therefore, as the majority

of the experiments, 11 out of 17, show similar feature evolution, we assumed that the 6 rejected are not

representative candidates, therefore were omitted from the training process.

6.2. Results

Using the Bayes’ rule (23) with the truncated prior (25) bearing’s RUL can be computed at any time

moment. Such an evolution of RUL is shown in Figure 7. As experiment durations vary, the x-axis is

normalised on the interval [0, 1]. The results exhibit almost linear relationship between the experiment time

and the increase of the used life.
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Figure 7: Evolution of P (τ |Dwα (Pt,P0)) (bearings’ used life) using the 3rd WP node.

The distribution of the RUL at particular time moments is shown in Figure 7(b). The distributions



Mechanical Systems and Signal Processing 52/53 (2015) 327–337 doi: 10.1016/j.ymssp.2014.07.011

represent vertical slices at particular time moments of the posteriors shown in Figure 7(a). At the very

beginning, up to 15% of the experiment time, the prior (25) has sufficiently low variance and dominates

the shape of the posterior (23). In the middle of the experiment, around 50% of the experiment time, the

posterior is almost uniformly spread, which limits the capabilities for accurate prediction. However, towards

the experiment end, around 70% of the experimental time, the posterior clearly shows that the bearing has

used up almost all of its useful time. The posterior PDF is right skewed with sufficiently low variance and

mode in the vicinity of 90%.
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Figure 8: P (τ |Dwα (Pt,P0)) estimates for different WP nodes.

6.3. Overall RUL prediction

It should be noted that the RUL evolution differs depending on the wavelet packet (WP) node. In

the current approach the employed WP tree has 16 terminal nodes. For each WP node one can calculate

the corresponding posterior (23). The final RUL prediction can be achieved using different approaches,

for instance: selecting the WP node that spans the most informative frequency band or perform fusion of

posteriors from each WP nodes.

When performing fusion of posteriors from different WP nodes, it should be noted that WP nodes

spanning higher frequency bands exhibit early RUL decrease. On the other hand, the WP nodes spanning

lower frequency bands become sensitive to RUL changes towards the end of the experiment. This effect, for

WP nodes 4 and 14, is shown in Figure 8. It is clearly visible that the posterior distribution (23) for the 4th

WP node has its mode around τ = 30% for the majority of the experiment duration. At the same time, the

posterior distribution (23) for the 14th WP node assigns sufficiently high likelihood values for τ > 70% fairly

early in the experiment. This effect can be employed as an early warning indicator of condition deterioration.

Since the bearings used for generating the data sets were from the same type, it is rather straightforward

to determine the frequency band in which bearing faults are most visible. Therefore, we selected the

information from the 4th WP node as the most representative one for RUL prediction.
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6.4. Comments on the results

The result of the proposed method is the posterior distribution (23) describing the bearing’s used life.

Generally, the posterior distribution is defined only on positive semi-axis and therefore is not Gaussian.

Consequently when analysing the results, besides the mean and the variance of the the posterior (23),

additional statistical properties should be considered, such as skewness, kurtosis etc. Therefore, the complete

posterior distribution of the bearing’s used life can be considered as more informative.

Despite the apparent complexity of the approach, the only design parameter for calculating the posterior

distribution (23), is the prior distribution P (τ). In our case, the prior describing the expected bearing’s

behaviour was specified by a truncated Gaussian distribution (25). The parameters of the prior can be

determined by taking into consideration typical information regarding the bearing quality, for instance the

L10 coefficient. Therefore, the proposed method inherently allows integration of prior knowledge either in a

form of producer’s information or experience from historical data.

7. Conclusions

In the paper we show that monitoring the evolution of the Jensen-Rényi divergence of vibrational signals

using GP models leads to the sufficiently accurate prediction of bearing’s RUL. The proposed approach has

two main advantages. Firstly, the calculation of the corresponding entropy based features requires no prior

knowledge about the bearing’s physical characteristics and no information about the operating conditions.

Secondly, their numerical using wavelet packet transform estimation imposes no limits on the statistical

characteristics of the analysed signals, which makes them suitable for monitoring bearings running under

constant as well as variable operating conditions.

The bearing’s remaining useful life is estimated as a posterior distribution using the Bayes’ rule. The

likelihood distribution, describing the evolution of the Jensen-Rényi divergence, is estimated by using GP

models. This paper proposes an informative prior in a form of truncated Gaussian distribution, whose

parameters can be selected based on some typical information about the bearing quality. As a result, the

proposed procedure becomes broadly applicable.

The evaluation was performed on a relatively limited data set. Increasing the set of available data should

contribute to more precise definition of the prior distribution as well as, to the accuracy of the estimated

likelihoods. However, regardless of the size and the quality of the available data set, the proposed approach

is generally applicable for estimating bearing’s RUL.
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