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Abstract: A dual gradient method is used for solving quadratic programs resulting from a model predictive control
problem in real-time control context. Evolution of iterates and residuals throughout multiple iterations is
studied. The decay of residuals is observed in intervals where the set of active constraints remains constant.
Dual residual can be expressed in a base that depends only on the system matrices and the set of active
constraints so that the components are decaying independently and uniformly, and their decay rates can be
calculated. The calculated decay rates match the rates observed in numerical simulations of MPC control of
the AFTI-16 benchmark model.

1 INTRODUCTION

Model predictive control (MPC) is traditionally lim-
ited to processes with relatively slow dynamics be-
cause of the computational complexity of online op-
timization (Qin and Badgwell, 2003). In the recent
decade, a considerable advance is seen in the field of
fast online optimization (Ferreau et al., 2008; Wang
and Boyd, 2010; Mattingley et al., 2011; Mattingley
and Boyd, 2012; Domahidi et al., 2012; Hartley et al.,
2014; Ferreau et al., 2014).

The advantages of MPC appear promising for
the implementation of advanced plasma current and
shape control in a tokamak fusion reactor (Gerkšič
and Tommasi, 2014). In particular, we are focusing
on fast online implementations of first-order methods
adapted for use with MPC (Richter, 2012; Giselsson,
2013; Kouzoupis, 2014; Giselsson and Boyd, 2015;
Patrinos et al., 2015) Generally, they may require
a considerable number of iterations to converge to
the optimum, compared to active-set or interior-point
methods. However, each iteration is relatively sim-
ple, so that the implementation is possible in restricted
hardware, and the methods were found to be compu-
tationally efficient for the computation of quadratic
programs arising from MPC where a relatively low
accuracy of the solution is sufficient.

In principle, we are highly interested in complex-
ity certification, that the solution with an acceptable
tolerance can be found in a certain maximum num-
ber of iterations (limited time). However, practically

useful certification is currently not available with any
of the relevant methods for practical cases of control
problems with state constraints. Despite this, a num-
ber of methods typically converge reasonably fast,
hence our interest in the practical rates of decay of
residuals.

In this work, we examine the rates of decay ob-
served with the dual gradient method. In our MPC
simulations, we have observed very different decay
rates, which we found to be in close relation with
the sets of constraints which were active in the cor-
responding intervals. We present a theoretical expres-
sion for the decay rates in intervals with a constant set
of active constraints, which can be computed from the
system matrices and the set of constraints. The result
is illustrated with MPC application to the AFTI-16
control benchmark (Kapasouris et al., 1990; Gisels-
son, 2013).

2 MPC

Optimal control of a linear system with constraints
and with quadratic cost in discrete time with finite
horizon N (Giselsson, 2013) is investigated. The dy-
namics is:

x(t +1) = Ax(t)+Bu(t) , (1)

where t is the time index, x is the system state, u is
system input, matrices A and B describe the system



dynamics. Value of x(0) is known. Possible sys-
tem states and inputs are constrained to x ∈ X ,u ∈U
where X ⊂ Rl , U ⊂ Rm are polyhedra. A cost func-
tion is defined:

J =
1
2

N

∑
k=0

(xk−xref)
T Q(xk−xref)+

(uk−uref)
T R(uk−uref)

(2)

where Q and R are symmetric positive semidefinite
cost matrices. Constant vectors xref, uref are reference
values.

The control is obtained by minimizing the cost
function J with respect to constraints

J∗ = min
x0,...,xN ,u0,...,uN

J (xk,uk)

subject to xk+1 = Axk +Buk,

xk ∈ X ,uk ∈U,

x0 = x(0) . (3)

The question of finding optimal u is a quadratic pro-
gram (QP) (Boyd and Vandenberghe, 2004). With the
receding-horizon implementation, only the first ele-
ment u(0) is applied as the current value of the con-
troller output.

3 QUADRATIC PROGRAM

We use the condensed form of the QP, in which only
uk are assembled into the optimization variable. The
xk-dependent terms of the cost function and the con-
straints on xk are substituted using (1) (Ullmann and
Richter, 2012).

The QP (3) can be written as:

minimize
1
2

zTHz+ cTz

subject to Cz� b, (4)

z ∈ Rk·m is the optimization variable, constructed for
example as

z =


u0
u1
...

uN

 .
The Hessian H is symmetric positive semidefinite by
construction. We are particularly interested in exam-
ples with positive definite H which is often the case.
Lagrange duality is used. Unconstrained optimization

minimize
1
2

zTHz+ cTz+vTCz (5)

for constant value of vector v leads to the solution of
a related quadratic program with different constraints
(Everett, 1963)

minimize
1
2

zTHz+ cTz

subject to Cz� b′. (6)

Lagrange multiplier v can be adjusted until b = b′
and the solution of (5) solves the original problem (4).
Search for the correct value of Lagrange multiplier is
named solving the dual problem (Boyd and Vanden-
berghe, 2004).

4 DUAL PROXIMAL GRADIENT
METHOD ALGORITHM

The indicator function of the feasible set for d � b,
g(d), is defined as:

g(d) =
{

0; d� b
∞; otherwise. (7)

Its conjugate function g∗(d) is needed as well, it is
defined as

g∗(d) = supz(d
Tz−g(z)). (8)

The iteration scheme is best described using proxim-
ity operator

proxL
ψ (d) = argmin

y

(
ψ(y)+

L
2
‖y−d‖2

)
. (9)

The algorithm of the dual gradient method is:

yk = argmin
z

(
1
2

zTHz+ cTz+
(

vk
)T

Cz
)
(10)

vk+1 = proxL
g∗

(
vk +Cyk

)
(11)

where gradient of the Lagrange dual function of the
objective function in (4) is Lipschitz continuous with
the constant L. The highest eigenvalue of M =
CH−1CT can always be used as L (Giselsson and
Boyd, 2014). By scaling C, L = 1 can be achieved,
so without loss of generality, L = 1 is assumed and
notation prox1

g∗(d) = proxg∗(d) is used.
It follows from the Moreau decomposition (Rock-

afellar, 1970, Theorem 31.5) (Giselsson and Boyd,
2014) that the prox operator of the conjugate of an
indicator function is

proxg∗ (d) = d−proxg (d) . (12)

From definition of the proximity operator it follows
that proxg (d) is the projection of d onto the feasible



set for d � b, so it is a min operation and computa-
tionally inexpensive, rendering the whole (11) inex-
pensive. In addition, a closed form of the solution for
(10) exists:

yk =−H−1
(

CTvk + c
)

(13)

for every positive definite Hessian. Dual proximal
gradient method can thus be practically applied to
solving QPs of the form discussed above in (4).

5 RATES OF DECREASE OF
RESIDUALS

We define active constraints in step k as those whose
corresponding components of vk are positive. The set
of these constraints is the active set in step k, labelled
ωk. The vector of the positive components of vk is la-
belled vk[ωk]. The matrix formed from the rows of C
that correspond to active constraints is labelled C[ωk].
The matrix formed from the intersections of the rows
and columns corresponding to active constraints of M
is M[ωk|ωk] and is a principal submatrix of M.

Consider three iterations k, k+1, k+2 for which
the active set remains constant (ωk = ωk+1 = ωk+2 =
ω). Let us define dual residuals

∆
k = vk+1−vk (14)

∆
k+1 = vk+2−vk+1

and analyse the relationship between ∆k and ∆k+1.
The components of ∆k,k+1 that do not form

∆k,k+1[ω] are equal to 0, so it is sufficient to study
∆k,k+1[ω]. Expressing ∆k with vk, we get from (11):

vk+1 = proxg∗

(
vk +Cyk

)
(15)

According to (12),

vk+1 = vk +Cyk−proxg

(
vk +Cyk

)
. (16)

From (13), it follows

yk =−H−1
(

CTvk + c
)
. (17)

Equations (16, 17) combine into

vk+1 = vk−Mvk−CH−1c−proxg

(
vk +Cyk

)
.

(18)
By definition of ω, (18) turns into

vk+1 [ω] =
(

vk−Mvk−CH−1c−b
)
[ω] (19)

and

vk+1 [ω] = vk [ω]−M [ω|ω]vk [ω]−
(
CH−1c+b

)
[ω]

(20)

follows. Definition (14) leads to

∆
k [ω] = vk+1 [ω]−vk [ω] (21)

and (20, 21) give

∆
k [ω] =−M [ω|ω]vk [ω]−

(
CH−1c+b

)
[ω] . (22)

In (19) we have taken into account that proxg(vk +

Cyk)[ω] = b[ω], following from the definition of ω.
∆k+1 can be expressed with ∆k:

∆
k+1 [ω] = −M [ω|ω]vk+1 [ω]−

(
CH−1c+b

)
[ω]

∆
k+1 [ω] = −M [ω|ω]

(
vk [ω]+∆

k [ω]
)
−(

CH−1c+b
)
[ω]

∆
k+1 [ω] = ∆

k [ω]−M [ω|ω]∆k [ω]

∆
k+1 [ω] = (I−M [ω|ω])∆

k [ω] , (23)

where I is the identity matrix the same size as
M[ω|ω].

Since M[ω|ω] is symmetric, its eigenvectors are
orthogonal (Graselli, 1975, p. 83) and (23) can be
conveniently diagonalized using eignedecomposition
into

dk+1 = (I−D)dk, (24)

where D = VTM[ω|ω]V, dk,k+1 = VT∆k,k+1[ω], V
is orthogonal and its columns are eignevectors of M,
D is diagonal with eigenvalues λω

i of M[ω|ω] on the
diagonal.

In each iteration, the i-th component of dk gets
multiplied by 1−λω

i . If 0 < λω
i < 2, the component is

decreasing toward 0. It can be shown that the compo-
nents of vk that lie in the nullspace of M[ω|ω] do not
affect yk (see appendix) so if λω

i = 0, the correspond-
ing component does not influence the primal solution
y. Moreover, dk

i = 0 for λω
i = 0 if ω is a feasible ac-

tive set, as shown in the appendix. For a given ω, the
qudratic norm of residual is thus decreasing toward 0
if 0≤ λω

i < 2 for every λω
i . The slowest component of

residual to decay corresponds to the lowest non-zero
λω

i , components of residual proportional to higher λω
i

have faster dynamics. If the ω being studied is the
final active set and will not change in subsequent iter-
ations, the lowest non-zero λω

i determines the conver-
gence rate.

From theorem 4.3.15 in (Horn and Johnson, 1990)
it follows that the lowest eigenvalue of the symmetric
matrix M forms the lower bound for eigenvalues of
the principal submatrices M[ω|ω] of M, and the high-
est eigenvalue of M is the upper bound for eigenval-
ues of M[ω|ω]. M is positive semidefinite, so its low-
est eigenvalue is bigger or equal to 0. It has been as-
sumed that the highest eigenvalue of M is set below or
equal to 1 through multiplying C and b with a positive



constant. It guarantees convergence of the method for
L = 1. Scaling the problem influences the local rate of
decrease of residual: enlarging M also enlarges each
M[ω|ω] and its eigenvalues, among them each lowest
non-zero eigenvalue that determines the local rate of
decrease of the slowest component of residual.

In MPC-related practical examples, the lowest
eigenvalue of M is typically equal to 0. The theo-
rem is thus not sufficient to derive a positive lower
bound for the lowest non-zero eigenvalue of the prin-
cipal submatrices M[ω|ω]. In particular, the lowest
non-zero eigenvalue of a principal submatrix M[ω|ω]
can be smaller than the lowest non-zero eigenvalue of
M.

It is worth noting that the vectors determining
the QP do not directly influence the convergence rate
other than through ω and that analysis of the matri-
ces yields convergence rate estimates that are inde-
pendent of current MPC system state and reference.
Analysing eigenvalues of M[ω|ω] for various ω is suf-
ficient.

6 PRACTICAL EXTENSIONS

6.1 Preconditioning or Generalization

Use of the generalized prox operator in place of prox
operator can improve convergence (Giselsson, 2013).
The generalized prox operator is defined in the fol-
lowing way:

proxLµ
ψ (d) = argmin

y

(
ψ(y)+

1
2
‖y−d‖2

Lµ

)
, (25)

where Lµ is chosen to be a diagonal positive definite
matrix. (11) is modified using the generalized prox
operator to obtain

vk+1 = proxLµ
g∗

(
vk +Cyk

)
. (26)

Consider the following quadratic program:

minimize
1
2

zTHz+ cTz

subject to C̃z� b̃, (27)

where C̃ stands for EC and b̃ is Eb, E being a di-
agonal positive definite matrix. Taking into account
(Giselsson, 2013)

proxLµ
g∗ (d) = d−L−1

µ prox
L−1

µ
g (Lµd) (28)

it follows that using (10, 11) to solve (27) is equiva-
lent to solving (4) using (10, 26) if E = L−1

µ .
The procedure of generalization or precondition-

ing consists of finding a suitable E and changing the

QP in (4) into the one in (27). It is then solved us-
ing (10, 11). The matrix M is replaced by M̃ =
C̃H−1C̃T = EME. The highest eignevalue of M̃ is
chosen by scaling E and should be ≤ 1 for conver-
gence to be guaranteed taking L = 1. Better choices
of E lead to bigger lowest positive eigenvalues of the
encountered M̃[ωk|ωk].

6.2 Upper and Lower Boundaries

In MPC, it is typical to have upper and lower bounds
on the same signals, which leads to the same linear
functionals of the optimization variable in QP having
both upper and lower bounds as well. If the QP is
given in the form of (4), C can thus be written as:

C =

[
C1
−C1

]
. (29)

Then inequality (4) can be reformulated as

b1 � C1z� b2. (30)

In the computational code, C is replaced with C1, re-
sulting in smaller matrices (among them M) and in
halving the length of Lagrange multiplier, the same
component now corresponding to both the upper and
the lower boundary depending on its sign. It follows
that g(d) becomes the indicator function of the feasi-
ble set for b1� d� b2. It causes proxg (d) to turn into
projection onto a box that can be implemented using
a min and a max operation.

The modification does not change theoretical be-
haviour of the system but lowers the computational
needs. Importantly, rewriting (4) in the form of (29)
halves the size of M while keeping the same eigen-
values of M̃[ω|ω] and preserving the relationship be-
tween M̃[ω|ω] and local rate of decrease of residual.

6.3 Soft Constraints

QP resulting from MPC problem with state con-
straints may not be feasible, meaning it does not nec-
essarily have a solution. However, in practice we
want the controller to produce a sensible output u also
when the constraints cannot be satisfied. One way
of doing it is relaxing the inequality state constraints
from (4) with a slack variable which is penalized in
the cost function. The QP expands to the form:

minimize
1
2

zTHz+ cTz+wTs (31)

subject to Cz� b+ s, (32)

where s ∈Rn
+ is the slack variable, and w ∈Rn

+∪∞ is
its weight (Giselsson, 2013; Kouzoupis, 2014). If the
QP in (4) has a feasible solution and if the weight w



is big enough, the solution of the new problem is the
solution of the original QP and s = 0. For smaller w
or for infeasible QP, s has non-zero components.

A way to efficiently implement soft constraints
with linear cost of constraint violation can be seen by
comparing (5) to (31). If w is taken to be the up-
per bound for Lagrange multipliers v, dual proximal
gradient method solves the soft-constrained problem.
The components of the dual residual corresponding to
the violated soft constraints are 0, thus violated soft
state constraints appear among inactive constraints
when calculating the local rate of decrease of resid-
ual.

7 EXAMPLE

A discrete-time form of the AFTI-16 benchmark
model as in (Giselsson, 2013) has the system matri-
ces

A =

 0.9993 −3.0083 −0.1131 −1.6081
−0.0000 0.9862 0.0478 0.0000

0.0000 2.0833 1.0089 −0.0000
0.0000 0.0526 0.0498 1.0000



B =

 −0.0804 −0.6347
−0.0291 −0.0143
−0.8679 −0.0917
−0.0216 −0.0022


in (1). The constraints are:

X =
{

x ∈ R4;−0.5− s1 ≤ x2 ≤ 0.5+ s1,

−100− s2 ≤ x4 ≤ 100+ s2}
U =

{
u ∈ R2;−25≤ u1 ≤ 25,
−25≤ u2 ≤ 25} . (33)

The constraints on the components of x are soft, lin-
ear weight on the components of the slack is w =
[105,105]T and wTs(k) is added to the sum term in
(2). The cost matrices are

Q= diag(10−4,102,10−3,102), R= diag(10−2,10−2)
(34)

The reference xr is 0 in all components except for the
first 50 time steps of the simulation, where for x4 it is
10. Initial state at the beginning of the simulation is
x(0) = [0,0,0,0]T

A family of QP in condensed form (4) correspond-
ing to the MPC problem is formed for N = 10 using
QPgen (QPgen, 2014; Giselsson and Boyd, 2014).
The matrices C and H are constant while the vectors
b and c are dependent on the system state and the ref-
erence. The QPs are 20-dimensional (10 x 2 compo-
nents of u) with 40 lines in C (limits on 10 x 2 input
signals and 10 x 2 state components).

The preconditioning diagonal matrix E is chosen
so as to minimize the condition number of the non-
singular part of M while setting the highest eigen-
value of M to 1. QPgen finds E = diag(10.4796,
3.5413, 9.9973, 10.0080, 9.9987, 10.0005, 10.0000,
10.0037, 9.9990, 9.9997, 10.0001, 10.0033, 9.9989,
9.9979, 10.0003, 10.0036, 9.9999, 9.9965, 9.9972,
10.0034, 0.2058, 0.0918, 0.1003, 0.1000, 0.1007,
0.1001, 0.1005, 0.1000, 0.1004, 0.1001, 0.1007,
0.1000, 0.1004, 0.1001, 0.1009, 0.0999, 0.1004,
0.1000, 0.1013, 0.1000). The model is initially simu-
lated in closed loop with 106 iterations in every time
step for 100 time steps. The system state x is recorded
at every time step and used as the input initial state
for observing convergence of the QP. Algorithm be-
haviour is analysed in all time steps for 1 to 3000 it-
erations.

Figure 1 shows the active sets through iterations
for the first 10 time steps. White columns are delim-
iters of time steps.

In Figure 2, convergence through active set
changes in time step 1 is shown graphically. Firstly
we analyse the behaviour with the final ω. The
quadratic norm of the primal residual is 0.22805 in
300th iteration and 8.74325×10−12 in 1800th itera-
tion, so the difference gets multiplied by 0.98414 in
each iteration. This gives the estimate for the small-
est non-zero eigenvalue of the relevant M[ω|ω] of
1− 0.98414 = 0.01586. In fact, 20 constraints are
active during the considered iterations (and no soft
ones are violated), 9 of them soft corresponding to
state constraints and 11 hard corresponding to input
constraints. The matrix M[ω|ω] is non-singular and
its lowest eigenvalue is 0.01587, showing good agree-
ment with the numerical behaviour.

There is another longer interval in the first sample
where the active set does not change between 24th and
153th iteration. The set has 22 elements, 9 of which
are soft constraints and 13 are hard, no constraint is
violated. If the dual residual is transformed into the
eigenspace of M[ω|ω], one expects the components
to decay in proportion with their corresponding eigen-
values of M. In Figure 3, these components are plot-
ted. It can be seen that the 22 lines decay with dif-
ferent slopes in the relevant region and that the ones
listed higher in the legend decay slower – they are
listed in ascending order with respect to eigenvalues
(the first 2 correspond to the eigenvalues that are 0
and stay constant). Similarly, the active set is con-
stant from 161th iteration on, has 20 elements, and
M[ω|ω] has no eigenvalues equal to 0. The corre-
sponding eigendecomposition of the dual residual is
shown in Figure 4.

Similar results for the time step 76 are shown in
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correspond to the input constraints on u from 1st to Nth time step, the following 20 are from constraints on x, again for 10
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Figure 2: Convergence of the quadratic norm of the primal (blue) and the dual (red) solution in time step 1 as a function of
the iteration number. The yellow circles mark iterations in which the active set changes.
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Figure 3: The components of the dual residual parallel to eigenvectors of M[ω|ω] between iterations 24 and 153 (red frame)
for time step 1 as a function of the iteration number. The components are listed in the order of ascending corresponding
eigenvalues.
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Figure 4: The components of the dual residual parallel to eigenvectors of M[ω|ω] from iteration 161 on (red frame) for time
step 1 as a function of the iteration number. The components are listed in the order of ascending corresponding eigenvalues.



Figures 5 and 6. For the majority of iterations, ω has
4 elements and the lowest eigenvalue of M[ω|ω] is
0.1266 so convergence is faster than in time step 1.

8 CONCLUSION

The local rate of decrease of residuals for dual gra-
dient method is explained. For an active set ω, it is
limited by the lowest non-zero eigenvalue of M[ω|ω].
The problem of certification can thus be seen as
seeking a lower bound for non-zero eigenvalues of
M[ω|ω].

In further work, we intend to test lower bounds
of as many active sets as possible, although it is gen-
erally known that this problem is plagued with com-
binatorial complexity. We will also try to extend the
approach to the fast dual gradient method without and
with restarting and use the results in the precondition-
ing phase to speed up convergence.
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Figure 5: The quadratic norm of the primal (blue) and the dual (red) residual in time step 76 as a function of the iteration
number. The yellow circles mark iterations in which the active set changes.
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Figure 6: The components of the dual residual parallel to eigenvectors of M[ω|ω] from iteration 6 on for time step 76 as a
function of the iteration number. The components are listed in the order of ascending corresponding eigenvalues.
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APPENDIX

Components of vk Corresponding to
Nullspace of M[ω|ω] Do Not Influence yk

Let M[ω|ω]vω[ω] = 0. By definition,
M[ω|ω] = C[ω]H−1(C[ω])T. Since H−1 is
positive definite, zTH−1z > 0 for every z dif-
ferent from 0 (Graselli, 1975, p. 90). Let z =
(C[ω])Tvω[ω]. Then 0 = (vω[ω])TM[ω|ω]vω[ω] =
(vω[ω])TC[ω]H−1(C[ω])Tvω[ω] = zTH−1z. Thus
z = (C[ω])Tvω[ω] = 0. According to (13), addition
of vω[ω] to vk[ω] does not affect yk.

Dual Residual Is Perpendicular to
Nullspace of M[ω|ω] for Feasible ω

If the definition of M[ω|ω] is taken into account in 22,
it follows:

∆
k [ω] =−C [ω]H−1 (C [ω])T vk [ω]−C [ω]H−1c−b [ω] .

(35)
Let t be a vector from nullspace of M[ω|ω]. Taking
the result from the previous appendix into account, it
follows (C[ω])Tt = 0. Next, we calculate:

tT
∆

k [ω] = −tTC [ω]H−1 (C [ω])T vk [ω]− tTC [ω]H−1c− tTb [ω]

= −
(
(C[ω])T t

)T
H−1 (C [ω])T vk [ω]

−
(
(C[ω])T t

)T
H−1c− tTb [ω]

= −tTb [ω] .

If ω is a feasible active set, there exists a vector u so
that C[ω]u = b[ω]. Thus

tT
∆

k [ω] =−tTC [ω]u=−
(
(C[ω])T t

)T
u= 0. (36)

An arbitrary vector t from the nullspace of M[ω|ω]
is orthogonal to ∆k[ω], so ∆k[ω] is orthogonal to the
nullspace of M[ω|ω].


