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Abstract: We construct a statistical model predicting wind vector over very complex terrain
characterized by low wind speeds and changeable wind directions. These are necessary inputs for
atmospheric dispersion modelling of hypothetical radioactive pollution events in short-term or
medium-term future to better protect the local population. The statistical model uses predictions
of a numerical weather prediction model as some of its inputs, so they together form a hybrid
model. The statistical model is realized as a nonlinear autoregressive exogenous model whose
dynamics is described with a Gaussian process model. It relies on training data, and there is more
training data available than the computing system is able to process. One possibility of avoiding
this issue is to use a randomly selected subset of the available historical measurements as the
training data. However, a better choice of training data may result in a model that performs
better. We develop and test a smart training set selection method that selects the training
data points based on Euclidean distances between them. The resulting model improvement is
insignificant and inconsistent. We explore the reasons for underperformance of the method. We
conclude that our example does not offer much opportunity for training set selection methods
to achieve better results than random selection.
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1. INTRODUCTION

The motivation for the study is atmospheric dispersion
modelling of a hypothetical unplanned radioactive emis-
sion in short-term and medium-term future. The pollutant
would be emitted from Krško Nuclear Power Plant (NPP),
Slovenia, and modelling results could be used to protect
the local population in such an event. There are already
existing facilities for this purpose in place. In the region of
interest, there are several weather stations and a numerical
weather prediction (NWP) system is in operation (Božnar
et al., 2012). We use these resources with the intention of
improving on them. We focus on wind speed and direction.

The atmospheric dispersion model requires local meteoro-
logical variables as its inputs. They can be either measured
or predicted, and when modelling atmospheric dispersion
for the future, only the latter option is available. Models
for predicting the local meteorological variables are thus
necessary.

There are various kinds of models for weather prediction.
NWP is based on physical understanding of the system.
However, it has low temporal and spatial resolution. It
cannot take into account detailed topography and land
use information, and its predictions are for cell averages,
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not for local meteorological variables at a meteorologi-
cal station. At the other extreme, there is persistence
method that uses the current measurement as forecast
and gives good short-term results on flat terrain (Potter
and Negnevitsky, 2006). There are also more sophisticated
statistical black box models (Wiener, 1961) that identify
patterns in training data and use them to make predic-
tions for the future from available inputs such as current
measurements. These models by definition do not utilize
explicit knowledge about the underlying mechanisms. In
our case, the statistical model for predicting ground level
wind at a certain location uses some outputs of the NWP
model for its inputs, forming a hybrid model.

For the statistical part of the hybrid model, we use Gaus-
sian process (GP) modelling. The main reason for using
GP is that it provides information on output uncertainty
(Kocijan, 2016). The GP model is typically nonparametric
and has the property of the universal approximator (of any
square-integrable function). However, the computational
burden of the GP model identification increases with the
number of measurements. The issue could be solved up
to an extent with the sparse GP modelling methods or
Evolving GP models (Kocijan, 2016; Petelin et al., 2015;
Kocijan et al., 2005). All sparse approximate methods try
to retain the bulk of the information contained in the
full training dataset, but reduce the size of the numerical
matrices to facilitate a less computationally demanding
implementation of the GP model (Petelin et al., 2013).
Instead of trying to solve the problem of infeasibly big
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Abstract: We construct a statistical model predicting wind vector over very complex terrain
characterized by low wind speeds and changeable wind directions. These are necessary inputs for
atmospheric dispersion modelling of hypothetical radioactive pollution events in short-term or
medium-term future to better protect the local population. The statistical model uses predictions
of a numerical weather prediction model as some of its inputs, so they together form a hybrid
model. The statistical model is realized as a nonlinear autoregressive exogenous model whose
dynamics is described with a Gaussian process model. It relies on training data, and there is more
training data available than the computing system is able to process. One possibility of avoiding
this issue is to use a randomly selected subset of the available historical measurements as the
training data. However, a better choice of training data may result in a model that performs
better. We develop and test a smart training set selection method that selects the training
data points based on Euclidean distances between them. The resulting model improvement is
insignificant and inconsistent. We explore the reasons for underperformance of the method. We
conclude that our example does not offer much opportunity for training set selection methods
to achieve better results than random selection.

Keywords: Gaussian processes, Wind speeds, Modelling errors, Statistics, Autoregressive
models, Probabilistic models

1. INTRODUCTION

The motivation for the study is atmospheric dispersion
modelling of a hypothetical unplanned radioactive emis-
sion in short-term and medium-term future. The pollutant
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model dataset in a general way, we are concerned with
the influence of the choice of regressors (statistical model
inputs) and training data set on the model performance
in the case of statistical weather prediction. In our case,
we study the consequences of reducing the set of mea-
surements in two specific ways: randomly picking the data
and selecting based on the Euclidean distance between
datapoints.

2. METHODS

We use a hybrid model with WRF-ARV version 3.4.1
(Skamarock et al., 2008) NWP as the physics-based part
and Gaussian process nonlinear autoregressive exogenous
model (GP-NARX) as the statistical part to predict
ground level winds at a certain location. Two separate GP-
NARX models are formed for wind components. Inputs to
the GP-NARX are called regressors and are passed to GP-
NARX as a vector. The model then predicts the output
value based on the inputs and on the training data.

The structure of GP-NARX can be presented in the form
of a nonlinear stochastic recurrent equation like (Kocijan,
2016)

y (t) =f (y (t− 1) , . . . , y (t− n) ,

u (t− 1) , . . . ,u (t−m)) + ν.
(1)

The vector u consists of the model inputs, while the output
signal is named y. The discrete parameter tmarks the time
for which the prediction is made and its value increases by
1 in every time step. The term ν is noise. In the case of
GP-NARX, the nonlinear function f is a GP.

The GP-NARX models are validated by simulation. The
model is used to calculate its output variable throughout
a time period. Measurements and NWP outputs are used
as input regressor values for the outside signals. When the
wind component that the model predicts is used as the
model input, delayed model output is used, except at the
beginning when measured wind component values before
the simulation time period are used. The model output
and the measured value time series can then be compared.
1-step ahead predictions or predictions with a larger fixed
prediction horizon are not analysed in this study.

2.1 Regressor selection

Increasing the amount of training data used improves the
model performance. However, there are practical limits on
the training set size determined by the available historical
data and available computing resources. Limited size of the
training set in turn limits the number of regressors that can
be used. Specifically, additional regressors, in particular
irrelevant ones, increase the required amount of training
data. For this reason we desire having a small number of
regressors that are all relevant and that, taken as a whole,
contain as much information relevant for predicting the
output as possible.

We thus limit ourselves to a certain number of regressors
that we select from all possible regressor candidates using
a regressor selection method. The tool we use for regressor
selection is ProOpter IVS (Gradǐsar et al., 2015). We test
different criteria for regressor selection – LIP, MI, and PMI
are part of ProOpter IVS and we have added RELIEFF

(Kononenko et al., 1997) as implemented in MATLAB R©
built-in function relieff() to ProOpter IVS. We use
the default values of the free parameters of the methods
because optimising them would be excessive. However, of
the four tested methods, we present the results with the
one that gave best results, which is LIP.

ProOpter IVS works by ranking the regressor candidates.
We use some of the best ones as regressors.

2.2 Gaussian process modelling

By definition, GP is a stochastic process f (z) for which
any finite set of values {f (z1) , f (z2) , . . . , f (zM )} is
jointly normally distributed. For a selection of points
z1, . . . ,zM , the joint probability density function of
f (z1) , . . . , f (zM ) is p (f (z1) , . . . , f (zM )) = N (m,Σ),
where m is the mean vector and Σ is the covariance
matrix.

A way to construct a GP is computing the elements mi

of m as values of a mean function m (z), mi = m (zi).
Similarly, the matrix elementsΣij can be values of a kernel
function or covariance function k (z, z′), Σij = k (zi, zj).
The role of covariance function can be served by any
function that results in a positive, semi-definite covariance
matrix (Kocijan, 2016).

The goal of stochastic modelling of a dynamic system is
to determine the relation between the input z and the
output y. It can be given in the form y (z) = f (z) + ν,
where f (z) is an underlying function and ν is the error,
composed of both measurement and model errors. For a
model to be complete, the error has to be modelled. Our
choice of the error model is white noise ν ∼ N

(
0, σ 2

z

)
.

In the case of GP modelling, the modelled measurement
y (z) is based on the sum of a GP and the noise signal.
The choice of covariance function of the GP is based on
our knowledge of the system, and as the prior estimate of
the mean function, typically m (zi) ≡ 0 is used. When
the training data is taken into account, the posterior
distribution p (y (z)) results. By training data we mean
the regression matrix Z of the regression vectors, Z =

[z1, . . . ,zN ], and the vector y = [y1, . . . , yN ]
T
of training

outputs yi. We label it as D = {Z,y}. We assume the
training outputs represent noisy realizations of the GP
model, f (zi) = y (zi) + νi, p (ν1, . . . , νN ) = N (0,Σν).
We assume the noise is identically and independently
distributed with the covariance matrix Σν = σ 2

ν I. We
introduce matrixK defined asK = Σ+Σν . At a test point
z∗, we predict the distribution of the process as (Kocijan,
2016)

p (f (z∗) |D, z∗) = N
(
µ (z∗) , σ2 (z∗)

)
, (2)

where µ (z∗) and σ2 (z∗) are defined by

µ (z∗) = kTK−1y (3)

σ2 (z∗) = κ (z∗)− kTK−1k. (4)

Furthermore, k and κ are defined as k1×N = k (z∗,Z)
T

and κ1×1 = k (z∗, z∗). To obtain the probability density
of the measured output y∗ at z∗, noise has to be taken
into account. The resulting expression is p (y∗|D, z∗) =
N

(
µ (z∗) , σ2 (z∗) + σ 2

ν

)
.
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model dataset in a general way, we are concerned with
the influence of the choice of regressors (statistical model
inputs) and training data set on the model performance
in the case of statistical weather prediction. In our case,
we study the consequences of reducing the set of mea-
surements in two specific ways: randomly picking the data
and selecting based on the Euclidean distance between
datapoints.

2. METHODS

We use a hybrid model with WRF-ARV version 3.4.1
(Skamarock et al., 2008) NWP as the physics-based part
and Gaussian process nonlinear autoregressive exogenous
model (GP-NARX) as the statistical part to predict
ground level winds at a certain location. Two separate GP-
NARX models are formed for wind components. Inputs to
the GP-NARX are called regressors and are passed to GP-
NARX as a vector. The model then predicts the output
value based on the inputs and on the training data.

The structure of GP-NARX can be presented in the form
of a nonlinear stochastic recurrent equation like (Kocijan,
2016)

y (t) =f (y (t− 1) , . . . , y (t− n) ,

u (t− 1) , . . . ,u (t−m)) + ν.
(1)

The vector u consists of the model inputs, while the output
signal is named y. The discrete parameter tmarks the time
for which the prediction is made and its value increases by
1 in every time step. The term ν is noise. In the case of
GP-NARX, the nonlinear function f is a GP.

The GP-NARX models are validated by simulation. The
model is used to calculate its output variable throughout
a time period. Measurements and NWP outputs are used
as input regressor values for the outside signals. When the
wind component that the model predicts is used as the
model input, delayed model output is used, except at the
beginning when measured wind component values before
the simulation time period are used. The model output
and the measured value time series can then be compared.
1-step ahead predictions or predictions with a larger fixed
prediction horizon are not analysed in this study.

2.1 Regressor selection

Increasing the amount of training data used improves the
model performance. However, there are practical limits on
the training set size determined by the available historical
data and available computing resources. Limited size of the
training set in turn limits the number of regressors that can
be used. Specifically, additional regressors, in particular
irrelevant ones, increase the required amount of training
data. For this reason we desire having a small number of
regressors that are all relevant and that, taken as a whole,
contain as much information relevant for predicting the
output as possible.

We thus limit ourselves to a certain number of regressors
that we select from all possible regressor candidates using
a regressor selection method. The tool we use for regressor
selection is ProOpter IVS (Gradǐsar et al., 2015). We test
different criteria for regressor selection – LIP, MI, and PMI
are part of ProOpter IVS and we have added RELIEFF

(Kononenko et al., 1997) as implemented in MATLAB R©
built-in function relieff() to ProOpter IVS. We use
the default values of the free parameters of the methods
because optimising them would be excessive. However, of
the four tested methods, we present the results with the
one that gave best results, which is LIP.

ProOpter IVS works by ranking the regressor candidates.
We use some of the best ones as regressors.

2.2 Gaussian process modelling

By definition, GP is a stochastic process f (z) for which
any finite set of values {f (z1) , f (z2) , . . . , f (zM )} is
jointly normally distributed. For a selection of points
z1, . . . ,zM , the joint probability density function of
f (z1) , . . . , f (zM ) is p (f (z1) , . . . , f (zM )) = N (m,Σ),
where m is the mean vector and Σ is the covariance
matrix.

A way to construct a GP is computing the elements mi

of m as values of a mean function m (z), mi = m (zi).
Similarly, the matrix elementsΣij can be values of a kernel
function or covariance function k (z, z′), Σij = k (zi, zj).
The role of covariance function can be served by any
function that results in a positive, semi-definite covariance
matrix (Kocijan, 2016).

The goal of stochastic modelling of a dynamic system is
to determine the relation between the input z and the
output y. It can be given in the form y (z) = f (z) + ν,
where f (z) is an underlying function and ν is the error,
composed of both measurement and model errors. For a
model to be complete, the error has to be modelled. Our
choice of the error model is white noise ν ∼ N

(
0, σ 2

z

)
.

In the case of GP modelling, the modelled measurement
y (z) is based on the sum of a GP and the noise signal.
The choice of covariance function of the GP is based on
our knowledge of the system, and as the prior estimate of
the mean function, typically m (zi) ≡ 0 is used. When
the training data is taken into account, the posterior
distribution p (y (z)) results. By training data we mean
the regression matrix Z of the regression vectors, Z =

[z1, . . . ,zN ], and the vector y = [y1, . . . , yN ]
T
of training

outputs yi. We label it as D = {Z,y}. We assume the
training outputs represent noisy realizations of the GP
model, f (zi) = y (zi) + νi, p (ν1, . . . , νN ) = N (0,Σν).
We assume the noise is identically and independently
distributed with the covariance matrix Σν = σ 2

ν I. We
introduce matrixK defined asK = Σ+Σν . At a test point
z∗, we predict the distribution of the process as (Kocijan,
2016)

p (f (z∗) |D, z∗) = N
(
µ (z∗) , σ2 (z∗)

)
, (2)

where µ (z∗) and σ2 (z∗) are defined by

µ (z∗) = kTK−1y (3)

σ2 (z∗) = κ (z∗)− kTK−1k. (4)

Furthermore, k and κ are defined as k1×N = k (z∗,Z)
T

and κ1×1 = k (z∗, z∗). To obtain the probability density
of the measured output y∗ at z∗, noise has to be taken
into account. The resulting expression is p (y∗|D, z∗) =
N

(
µ (z∗) , σ2 (z∗) + σ 2

ν

)
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The knowledge of the system is typically not sufficient to
fully define the noise variance and a suitable covariance
function in advance. Instead we determine the parameters
of the covariance function Θ that are named hyperpa-
rameters from the training data with optimization – we
maximize the likelihood p (Θ|Z,y). If we start from the
assumption that every value of each hyperparameter is
equally likely, we get (Kocijan, 2016)

p (Θ|Z,y) ∝ p (y|Z,Θ) . (5)

Taking the logarithm of the normal distribution on the
right, we get (Kocijan, 2016)

log p (y|Z,Θ) = −n

2
log 2π − 1

2
log |K| − 1

2
yTK−1y (6)

and use that expression for optimization.

2.3 Simulation

The distribution of y (t) from (1) is not simple because of
the non-linearity of f . We thus do not simulate analytically
and use the Monte Carlo method instead. To obtain
a realization, we sample the values of ν and f for all
values of t from their distributions. Both distributions
are Gaussian, including the distribution of the values of
f because the inputs of f are sampled values, meaning
that their distributions are Dirac delta. We use a sample
of realizations to estimate the expected value and variance
of the modelled variable.

3. DESCRIPTION OF THE EXPERIMENTS

3.1 The studied example

We are predicting west-east and south-north components
of the wind at ground level (10 m above ground) at Stolp
meteorological station that is adjacent to Krško NPP.
In the surrounding area of 25 km × 25 km, data from
5 other meteorological stations (Brežice, Cerklje, Cerklje
Airport, Krško, Lisca) is available to us. They measure
wind, temperature, relative humidity, and air pressure, not
all of them at every station. At Stolp weather station,
temperature is measured on 4 levels up to 70 m above
ground and relative humidity on 3 levels up to 40 m high
using sensors on a tower. In total, there are 32 signals from
meteorological stations available. There is also SODAR
(Brown and Hall Jr., 1978) next to the tower, measuring all
3 wind components in 24 layers. We only use the lowermost
5 layers as they are the most reliable ones, providing
15 signals. We use predictions for 1 cell of the NWP
model, which is 7 signals, and one more signal (diffuse
solar irradiation) is generated from NWP signals using an
artificial neural network and treated like a NWP signal.
We also produce 4 mathematical signals representing time
of day and season, they are sine and cosine signals with
period of 1 day and 1 year starting at the beginning of
the day or the year. There are 59 signals in total, data is
available for 6 years starting at the beginning of 2012, and
one sample is available every 30 minutes.

From the signals, we generate 122 possible regressors: we
use two delays for each measurement corresponding to
t − 1 and t − 2 where t is the time index corresponding
to the time for which the prediction is made. For the
WRF signals, we are not limited to the past and we use 3

Table 1. Best regressors according to ProOpter
IVS LIP method. They are listed from best
one on. A positive number in the “delay”
field means that the signal value that is used
corresponds to a time before the time to which
the prediction corresponds, and vice versa.

Best regressors for W-E wind

source variable delay

Stolp W-E wind 1
WRF W-E wind −1
Cerklje Airport W-E wind 1
Krško W-E wind 1
Cerklje Airport W-E wind 2
Brežice W-E wind 1
Krško air temperature 1
WRF global solar irradiation −1
Cerklje Airport S-N wind 1
WRF global solar irradiation 1
SODAR W-E wind, layer 1 1
Cerklje Airport air temperature 1
Cerklje air pressure 2
Stolp air pressure 1
Krško S-N wind 1

Best regressors for S-N wind

source variable delay

Stolp S-N wind 1
Brežice S-N wind 1
Krško S-N wind 1
Cerklje Airport W-E wind 1
Cerklje Airport S-N wind 1
Cerklje Airport S-N wind 2
WRF S-N wind −1
SODAR S-N wind, layer 3 1
WRF global solar irradiation −1
Stolp air temperature, 70 m 2
Lisca S-N wind 1
Krško air temperature 1
WRF W-E wind −1
Cerklje Airport air pressure 1
Cerklje Airport air temperature 2

values corresponding to t − 1, t, and t + 1, while for the
mathematical signals, we deem the value at t sufficient.

We rank the regressors using ProOpter IVS and use at
most 15 best of them. The 15 best regressors for predicting
each wind component are shown in table 1.

3.2 Model construction

For the covariance function, we pick squared exponential
function. Its form, expressed with components, is

k (z, z′) = σ 2
f exp

[
−1

2

D∑
d=1

(
zd − z′

d

)2
l 2
d

]
. (7)

The D+1 hyperparameters are σf and ld for all the values
of d. The noise covariance σν also has to be determined. We

replace σν with another parameter λ =
σ 2
ν

σ 2
f

. The optimum

value of σf can then be computed using the relationship
(Stepančič and Kocijan, 2017)

σf =

(
N

yT(Σ+ λI)−1y

) 1
2

. (8)

We use conjugate gradient method (Rasmussen and
Williams, 2006; Rasmussen and Nickisch, 2010) to de-
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termine the optimal values of λ and of the remaining
hyperparameters. The criterion function is given in (6).

3.3 Reduction of training data

Too much training data is available and not all of it can be
used due to computing limitations. We thus select a subset
of it as our training data set. The obvious way of doing
it is downsampling. We select every s-th sample from the
training data in order to change the training data set’s
size by the factor 1/s (where s is a number bigger than
1). This selection method is essentially random – whether
an available data point ends up in the training data set or
not is determined by chance.

One can use a more advanced and hopefully smarter
method to select the data points to be used for training
with the intention of achieving better modelling results
than with random selection. Several data selection meth-
ods have been presented in the literature (Khosravani
et al., 2016, 2017). The smart selection method we use
is based on Euclidean distance between training points.
Every data point is treated as a vector with (normalized)
regressor and measured output values as its coordinates.
For every point in the initial training data, the distance
to its nearest neighbour is computed. The points whose
distances to their nearest neighbours are large are kept in
the output training set, the ones with neighbours nearby
are rejected. The procedure is done iteratively: in each
step, 95 % of the points are kept and 5 % are discarded,
and the obtained output training set is reduced again until
the desired number of training points is reached.

Statistical models work well in the regions of regression
space where the density of training points is high and
perform badly when they extrapolate (Kocijan, 2016).
By making sure the training points are spread out and
not randomly clustered, the model can be expected to
perform better on average. We check this hypothesis by
comparing the model performance with smartly selected
training points to the performance of a model with the
points randomly selected.

3.4 Model evaluation

Two simulations are performed for each model, one for
the first 14 days of June and one for the first 14 days
of December 2017. Two time periods are chosen in order
not to focus on a single season, and data for 2017 is used
because newer data is more complete (since missing data
would make simulation impossible, every missing value is
filled in with the value obtained with linear interpolation
between the first preceding and first succeeding valid
value). Two performance measures, normalized root-mean-
square error (NRMSE) and mean standardised log loss
(MSLL), of the simulation result are then computed.

NRMSE is expressed as

NRMSE = 1− ‖y − µ‖
‖y − E (y) ‖

, (9)

where y are measured values and µ are mean predicted
values. Bigger NRMSE value is better, perfect model has
NRMSE = 1 and there is no lower limit. NRMSE is easily
generalised to be used in cases when the model predicts a
vector quantity such as wind in two dimensions.

MSLL is computed as (Rasmussen and Williams, 2006)

MSLL =
1

2N

∑(
ln
(
σ2
i

)
+

(µi − yi)
2

σ2
i

)

− 1

2N

∑(
ln
(
σ2
y

)
+

(yi − E(y))
2

σ2
y

)
.

(10)

The symbol E(y) stands for the mean of the measured
values, σy is variance of the measured values, and σi is
prediction variance. MSLL is supposed to be around 0 for
simple methods and negative for better ones (Rasmussen
and Williams, 2006). Its advantage is that it takes predic-
tion variance into account.

4. RESULTS

4.1 Basic models

The training data that GP-NARX requires is obtained
from the signals for the years 2012–2017 without the parts
of June and December 2017 that are kept for validation.
Only data points with all the 15 regressors and the output
signal available are used. However, the number of available
complete data points is too big for further computation, so
the random reduction method from section 3.3 is utilized.
Only every 19-th one is used as a part of the training
data set. 19 is used as a quotient because it is a coprime
of 48, the number of data points in a day, minimizing the
probability of biases in the sample. Since regressors for the
two models are different, the final number of data points
used in training is different between the two as well: there
are 2545 for the W-E wind model and 2114 for the S-N
model.

For each model, both simulations are then performed and
evaluated as a whole and the performance measures are
computed. The W-E model achieves MSLL of −0.585, and
MSLL of the S-N model is −0.512. NRMSE is calculated
for wind as a 2D vector resulting from simulations of both
models and equals 0.409.

Simulation result for the first week of December for W-E
model is shown in Fig. 1 as an example.

4.2 Models with smart training set selection

The training data is obtained from the signals for 2012–
2017 except the parts that are kept for validation through
simulation. Only data points with complete regression
vectors are used. With the smart method from section 3.3,
the number of training points to be used is reduced to 2545
for the W-E wind model and 2114 for the S-N model, the
same training point numbers as in section 4.1.

The simulations are performed for each model and eval-
uated as a whole. The W-E model achieves MSLL of
−0.690, and MSLL of the S-N model is −0.261. NRMSE
is calculated for wind as a 2D vector and equals 0.440.

Simulation result for the first week of December for W-E
model is shown in Fig. 2.

4.3 Models with fewer regressors

The same operations as in sections 4.1 and 4.2 are per-
formed for models with every number of regressors between
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termine the optimal values of λ and of the remaining
hyperparameters. The criterion function is given in (6).

3.3 Reduction of training data

Too much training data is available and not all of it can be
used due to computing limitations. We thus select a subset
of it as our training data set. The obvious way of doing
it is downsampling. We select every s-th sample from the
training data in order to change the training data set’s
size by the factor 1/s (where s is a number bigger than
1). This selection method is essentially random – whether
an available data point ends up in the training data set or
not is determined by chance.

One can use a more advanced and hopefully smarter
method to select the data points to be used for training
with the intention of achieving better modelling results
than with random selection. Several data selection meth-
ods have been presented in the literature (Khosravani
et al., 2016, 2017). The smart selection method we use
is based on Euclidean distance between training points.
Every data point is treated as a vector with (normalized)
regressor and measured output values as its coordinates.
For every point in the initial training data, the distance
to its nearest neighbour is computed. The points whose
distances to their nearest neighbours are large are kept in
the output training set, the ones with neighbours nearby
are rejected. The procedure is done iteratively: in each
step, 95 % of the points are kept and 5 % are discarded,
and the obtained output training set is reduced again until
the desired number of training points is reached.

Statistical models work well in the regions of regression
space where the density of training points is high and
perform badly when they extrapolate (Kocijan, 2016).
By making sure the training points are spread out and
not randomly clustered, the model can be expected to
perform better on average. We check this hypothesis by
comparing the model performance with smartly selected
training points to the performance of a model with the
points randomly selected.

3.4 Model evaluation

Two simulations are performed for each model, one for
the first 14 days of June and one for the first 14 days
of December 2017. Two time periods are chosen in order
not to focus on a single season, and data for 2017 is used
because newer data is more complete (since missing data
would make simulation impossible, every missing value is
filled in with the value obtained with linear interpolation
between the first preceding and first succeeding valid
value). Two performance measures, normalized root-mean-
square error (NRMSE) and mean standardised log loss
(MSLL), of the simulation result are then computed.

NRMSE is expressed as

NRMSE = 1− ‖y − µ‖
‖y − E (y) ‖

, (9)

where y are measured values and µ are mean predicted
values. Bigger NRMSE value is better, perfect model has
NRMSE = 1 and there is no lower limit. NRMSE is easily
generalised to be used in cases when the model predicts a
vector quantity such as wind in two dimensions.

MSLL is computed as (Rasmussen and Williams, 2006)

MSLL =
1
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The symbol E(y) stands for the mean of the measured
values, σy is variance of the measured values, and σi is
prediction variance. MSLL is supposed to be around 0 for
simple methods and negative for better ones (Rasmussen
and Williams, 2006). Its advantage is that it takes predic-
tion variance into account.

4. RESULTS

4.1 Basic models

The training data that GP-NARX requires is obtained
from the signals for the years 2012–2017 without the parts
of June and December 2017 that are kept for validation.
Only data points with all the 15 regressors and the output
signal available are used. However, the number of available
complete data points is too big for further computation, so
the random reduction method from section 3.3 is utilized.
Only every 19-th one is used as a part of the training
data set. 19 is used as a quotient because it is a coprime
of 48, the number of data points in a day, minimizing the
probability of biases in the sample. Since regressors for the
two models are different, the final number of data points
used in training is different between the two as well: there
are 2545 for the W-E wind model and 2114 for the S-N
model.

For each model, both simulations are then performed and
evaluated as a whole and the performance measures are
computed. The W-E model achieves MSLL of −0.585, and
MSLL of the S-N model is −0.512. NRMSE is calculated
for wind as a 2D vector resulting from simulations of both
models and equals 0.409.

Simulation result for the first week of December for W-E
model is shown in Fig. 1 as an example.

4.2 Models with smart training set selection

The training data is obtained from the signals for 2012–
2017 except the parts that are kept for validation through
simulation. Only data points with complete regression
vectors are used. With the smart method from section 3.3,
the number of training points to be used is reduced to 2545
for the W-E wind model and 2114 for the S-N model, the
same training point numbers as in section 4.1.

The simulations are performed for each model and eval-
uated as a whole. The W-E model achieves MSLL of
−0.690, and MSLL of the S-N model is −0.261. NRMSE
is calculated for wind as a 2D vector and equals 0.440.

Simulation result for the first week of December for W-E
model is shown in Fig. 2.

4.3 Models with fewer regressors

The same operations as in sections 4.1 and 4.2 are per-
formed for models with every number of regressors between
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Fig. 1. Measured and modelled W-E wind speed in the
first week of December 2017 for the model with 15
regressors and random selection of training points.
The upper panel shows the measured value, the mean
value of the simulation result, and the band around
the mean value with half-width of double standard
deviation. In the lower panel, the error (difference
between the measurement and the modelled mean
value) and the standard deviation are compared.
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Fig. 2. Measured and modelled W-E wind speed in the
first week of December 2017 for the model with 15
regressors and smart selection of training points. The
upper panel shows the measured value, the mean
value of the simulation result, and the band around
the mean value with half-width of double standard
deviation. In the lower panel, the error (difference
between the measurement and the modelled mean
value) and the standard deviation are compared.
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Fig. 3. NRMSE value for the simulation results as a
function of the number of regressors used. Results
for both models resulting from randomly and smartly
selected training points are shown.
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Fig. 4. MSLL value for the simulation results of the west-
east wind component model as a function of the
number of regressors used. Results for both models
resulting from randomly and smartly selected training
points are shown.

2 and 15. In every case, the best regressors (the ones
located highest in the relevant part of the table 1) are
used. All the W-E models use 2545 training points and all
the S-N ones 2114 training points. To get these numbers
of points with the random selection method, it has to
be modified as the number of available complete training
points increases with decreasing number of regressors. The
points are downsampled with the highest prime number
that leaves enough points and the extra points at the end
of the dataset are discarded.

The values of the performance measures are shown graph-
ically, NRMSE in Fig. 3 and MSLL in Figs. 4 and 5.

5. DISCUSSION

The distance method is meant to select the training points
in such a way as to uniformly cover the regression space,
or at least the part of it that the process / training data
covers. In contrast, selecting the points randomly causes
the chosen point distribution to reflect the training point
distribution. The distance method thus better preserves
information about the more sparsely sampled parts of the
regression space, preventing extrapolation and improving
model behaviour in the less common situations.

However, the regression space is too big (too many regres-
sors bring too many dimensions) to be uniformly covered
with a reasonable number of training points. The distance
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Fig. 5. MSLL value for the simulation results of the south-
north wind component model as a function of the
number of regressors used.

method results in the points being chosen more on the
outskirts of the process than in the central crowded part.
In the example of south–north wind component, the result-
ing reduction in extrapolation appears to be outweighed
by less dense training points in the most frequented parts
of the space. In the case of the west–east wind direction,
the intended effects of the distance method happen to
outweigh the side effects, leading to an improvement of
the model.

In the case of 15 regressors, the number of training points
cannot be increased enough to cover the regression space
uniformly because the space is too big. Another option is
decreasing the number of regressors to shrink the space
and observing the performance of the smart selection
method in that case. We reduce the number of regressors
while keeping the number of training points constant.
As shown in Figs. 3–5, the smart selection method does
not outperform random selection in the case of fewer
regressors. Possibly the models with fewer regressors are
lacking necessary information for modelling the output
and points that are close to each other in the regressor
subspace do not necessarily correspond to similar system
states.

6. CONCLUSION

In development of a GP-NARX model as part of a hybrid
model for predicting local meteorological variables, we
encounter the issue of being able to use only a small part
of the available training data because of computational
limitations. A trivial solution of this problem would be to
use a randomly selected subset of the data for training.

We seek a different way of selecting the subset of the
data to use that would lead to better results than ran-
dom selection. The method we test, which is supported
by mathematical reasoning, fails to provide a consistent
and significant improvement. Further exploration indicates
that for the given system and the given allowed number of
training data points, random selection results in a training
set that is close to optimal. It seems that the system is too
complex to be described with so few training data points
regardless of the exact selection. Alternatively, some of
the model dynamics is missing, there may be influences
on the output variable that cannot be recognised from the
available regressors, in which case neither better choice nor
bigger number of training data points would help.
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limitations. A trivial solution of this problem would be to
use a randomly selected subset of the data for training.

We seek a different way of selecting the subset of the
data to use that would lead to better results than ran-
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by mathematical reasoning, fails to provide a consistent
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that for the given system and the given allowed number of
training data points, random selection results in a training
set that is close to optimal. It seems that the system is too
complex to be described with so few training data points
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the model dynamics is missing, there may be influences
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term fine resolution WRF forecast data validation in
complex terrain in Slovenia. International Journal
of Environment and Pollution, 50(1-4), 12–21. doi:
10.1504/IJEP.2012.051176.

Brown, E.H. and Hall Jr., F.F. (1978). Advances in
atmospheric acoustics. Reviews of Geophysics, 16(1),
47–110. doi:10.1029/RG016i001p00047.
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