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Featured Application: The method of shortening the required time of data collection before the
construction of a small wind turbine is ready to be tested in actual candidate locations, particu-
larly in complex terrain in temperate regions.

Abstract: A long-term measured wind speed time series from the location is typically used when
deciding on placing a small wind turbine at a particular location. These data take a long time to
collect. The presented novel method of measuring for a shorter time, using the measurement data
for training an experimental model, and predicting the wind in a longer time period enables one to
avoid most of the wait for the data collection. As the model inputs, the available long-term signals
that consist of measurements from the meteorological stations in the vicinity and numerical weather
predictions are used. Various possible experimental modelling methods that are based on linear or
nonlinear regression models are tested in the field sites. The study area is continental with complex
terrain, hilly topography, diverse land use, and no prevailing wind. It is shown that the method gives
good results, showing linear regression is most advantageous, and that it is easy enough to use to be
practically applicable in small wind projects of limited budget. The method is better suited to small
turbines than to big ones because the turbines sited at low heights and in areas with low average
wind speeds, where numerical weather prediction models are less accurate, tend to be small.

Keywords: wind forecasting; wind resource characterization; hybrid model; model output statistics;
system identification; complex terrain

1. Introduction

Small wind turbines (Figure 1), which are defined as turbines with rotor swept area
under 200 m2 and generating electricity below a certain voltage [1], are popular and being
installed at an increasing rate [2–5]. The wind characteristics at the site of a wind turbine
have a big influence on its performance [6,7] and noise emissions [8]. Thus, it is important
to select a good site for placing it.

The standard method for evaluating a candidate site for a wind turbine is collecting
long-term wind measurements at the site. The decision on whether to install a wind turbine
at a particular location is most often based on the annual energy production, which can
be estimated from the wind speed distribution and the wind turbine power curve [9–11].
The measurement taking time and delaying the decision process is the issue addressed in
this work.

The motivation for this investigation is avoiding the long wait for wind measurements
from the candidate turbine site to be collected. A method for the fast evaluation of the
feasibility of a site for the possible placement of a wind turbine is developed and tested.
The method predicts the yearly time series of the wind speed at the site and derives the
wind speed distribution from it. The distribution is more important than the time series,
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because it is related to the annual energy production. The presented method would be
easy to use at different sites without requiring additional research—the goal is for the
application of the method to fit the budget of a small wind turbine construction.

Figure 1. A small wind turbine. Photo by Marija Zlata Božnar.

The assumed situation that is being addressed is the following:

• Because of time constraints, one month of wind speed measurements from the candi-
date turbine site is available.

• A fine resolution numerical weather prediction (NWP) model for the area is available
and its predictions for the past are available.

• Past measurements from meteorological stations in the area, but not from the site
under examination, are available.

• One year of wind speed and direction signals for the candidate site are sought after,
so 11 months are predicted.

• A yes/no decision on installing the wind turbine at the exact location is required—the
option of adjusting the location is not considered.

For clarification of the further notation, signal is a time-dependent physical quantity
that carries information regarding the system. It can be either measured on the real system
or obtained as an output of a model. System is the atmosphere and the other parts of
the environment that influence the weather, and model is a numerical approximation of
the system.

Shortening the measurement period involves risks that are proportional to the size
of the project. Therefore, it is particularly tempting to use an alternative and less accurate
site evaluation method if the wind turbine is small. One possible alternative would be
using NWP-predicted signals as a proxy for local wind speed, even though NWP models,
such as Weather Research and Forecasting model (WRF), do not reflect local terrain effects
as they represent values ascribed to staggered grid points [12]. Furthermore, unlike big
wind turbines, small ones may be used at low heights above ground and in areas with
low average wind speed, where NWP is particularly inaccurate in predicting local wind
speed. Because of these reasons, the presented method is likely to be especially suitable for
evaluating sites for small wind turbines.
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The goals are achieved with a novel approach in this field—system identification.
An experimental model (i.e., a mathematical model that is based on measurement data)
is trained with a short time series of training data, one month in our case. The output of
the model is the wind speed at the candidate turbine site, which only has to be measured
during the training period. The inputs of the model are the signals that are available for
the past independently from the wind project— measurements from the meteorological
stations in the vicinity and NWP signals. The trained model is then used as a soft sensor.
It predicts the wind signal for a longer past period in which the wind speed at the site was
not measured, but during which the model inputs are available.

To evaluate the feasibility of such use of modelling, model predictions are compared
to the measurements over a test period, which is separate from the training period. Several
methods of linear and nonlinear modelling are tested and their suitability for the purpose
is evaluated. The test locations are in a complex terrain with moderate winds. This is
desirable, because models for such sites are needed—near-future turbine technology will
allow harvesting of wind energy over low wind regions at wind speeds as low as 3 m/s [13].
Models have rarely addressed such areas because wind power forecasting has more often
been used in flat terrain with strong persistent winds. Modelling a complex terrain is also
a challenging test for the modelling method, which is beneficial.

The requirements in candidate wind turbine site evaluation are somewhat different
than in either wind power forecasting or in wind resource assessment. Recent wind
power forecasting research "can predict the fluctuation of output wind power in wind
farms” [14] and, therefore, helps to ensure safe operation of the power system [15]. Multi
step forecast is achieved by singular spectrum analysis and a hybrid Laguerre neural
network [14] or based on extreme learning machine in multi-objective optimization algo-
rithm [16] or Convolutional Neural Network cascaded with a Radial Basis Function Neural
Network [17].

The task of predicting local wind signals from other signals with a limited amount of
training data introduces different constraints than wind power forecasting modelling:

• The prediction is not real-time, eliminating the timing constraints—model inputs do
not have to be available before the time for which the prediction is made. Reanalyses,
which are more accurate, can be used.

• No measurement of the wind parameters on the candidate site is available as a model
input. The measurements are available as training data to train the model, but not as
an input at times close to the time for which the prediction is made.

The wind resource assessment models give the answer on the energy yields in
the region under examination. Over complex terrain, the results of mesoscale numerical
weather prediction model WRF can fulfill this need [18]. Wind resource assessment models
with fine spatial resolution can solve the problem of optimal siting of turbines within a
wind farm, while taking the interactions among the turbines and with complex terrains
into account [19]. To achieve the same goal of increasing energy yields, measurements from
several masts can be coupled using computational fluid dynamics [20].

The proposed models for evaluating a candidate site differ from the wind resource
assessment models in the following aspects:

• The available data cover a very limited time period.
• The focus is on a single location.
• There is a lack of time for measuring, while the wind resource assessment models are

addressing the lack of measurement sites in spatial dimensions.

Table 1 summarizes the requirements of candidate site evaluation, wind power fore-
casting, and wind resource assessment.

The novel contribution of the presented work is the method how experimental
modelling of wind speed time series is used to help with decisions on small wind turbine
placement in complex terrain. To our knowledge, there have been no prior attempts to use
a shorter measurement time series and compensate for it using modelling. The classical
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approach is collecting a long-term time series of wind measurements at the site and basing
the decisions on these measurements. The drawback is the wait for the measurements to be
collected. The proposed solution avoids the wait through measuring for a shorter period
and using the collected measurements to train a model that is then able to predict the wind
speed at the site for a longer period in the past. The model predictions can inform the
turbine placement decisions, provided that they are close enough to the real wind speed
values. Several different linear and nonlinear modelling methods are used, and results they
provide are evaluated.

Table 1. Requirements for fulfilling different needs in wind power. Wind resource assessment
characterizes the resource over an area, is performed on historical data, and has long-term time series
data available at most for a limited set of locations in the area. Wind power forecasting addresses
a selected site, has to work in real time, and it has real-time measurements from the site available.
Evaluating a candidate site is done for a selected site on historical data. Traditionally, it requires
long-term time series measurement data from the site, while the proposed method performs it with a
shorter-term time series of measurements from the site, supported with other available signals.

Addressed Need Location? Real-Time Output
or Historic Data?

Local Measurements?

Wind resource assessment area historic spatially limited
Wind power forecasting point real-time available
Candidate site evaluation point historic available *

* The proposed solution enables evaluation with temporally limited local measurements.

Even though the wind speed is available as a NWP grid cell variable, experimental
modelling is necessary to obtain its local value, because NWP discretization is coarse as
compared to the length scale of interest. The use of modelling to obtain local weather
variables from NWP predictions is established and it is called model output statistics
(MOS) [21]. MOS has been successfully used for wind power forecasting and nowcast-
ing [22–24] and for wind resource assessment [25–27], but not for site evaluation. When
compared to typical MOS studies, the original contributions of the manuscript are the use
of short training data sets, improving MOS through the use of measurements from the
meteorological stations in the vicinity, and evaluation of the results from the perspective
of wind turbine placement by emphasizing the predicted wind speed distribution. The
shortness of the training data sets reflects the fact that the time used for data collection
delays the subsequent stages of the project. The work is significant, since wind power,
including small wind turbines, is popular and the work proposes a way for shortening
the delay between the start of measuring and the turbine installation. No similar solution
seems to have been suggested before.

The proposed method is better suited for small wind turbines than for large ones
for several reasons. Small wind turbines tend to be installed in places with low wind
speeds [28], especially in off-grid applications [29], and at smaller heights. NWP signals
predict the wind speed at these locations less accurately than high above a flatter, windier
terrain. While large wind turbines may be located in a wind farm and distributed so as
to optimally use the available area, economic reasons, such as land ownership, are likely
to limit a small wind turbine to an exact location, aligning it with the assumptions of the
method. In addition, it is easier to envisage making the decision to build a wind turbine
based on a short period of local wind measurements when the turbine in question is small.

Crucially for future practical application of the work, the proposed experimental
modelling method is easy to use and no special modelling skills are required for utilizing it
(the best performance is achieved with the most usual linear regression fitted with least
squares using a few straightforward independent variables). Thus, its use would fit into
the small planning budget for a small wind turbine.
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2. Methods

Wind time series at a meteorological station that represents a candidate wind turbine
location is modelled. As model inputs, measurements from the meteorological stations in
the vicinity and NWP model outputs are used. A single calendar month of training data is
used, the process is repeated through the whole year, and a separate model is generated for
each training month. Thus, each one of the 12 models obtained is tested on the remaining
11 months of the measurement data that are not used in training. Several different linear
and nonlinear modelling methods are examined. They are evaluated graphically and using
figures of merit. Some plots and figures of merit are dedicated to comparing the measured
and predicted wind speed distributions, as they are particularly important in wind power.

2.1. Description of the Site

The study area comprises the Krško Basin and the surrounding hills. Figure 2 provides
a panoramic view, and Figure 3 shows the topography. The climate is temperate humid
with warm summers [30,31]. The land use is diverse—urban, fields, forests, water bodies,
etc.—as demonstrated by CORINE Land Cover 2018 Version 20 data [32] and shown in
Figure 4.

A NWP model for the area that is based on WRF-ARV version 3.4.1 [12] with 4 km
horizontal resolution is available [33,34]. Weather Research and Forecasting model (WRF)
is one of the best currently available mesoscale NWP models. It is suitable for weather
forecasting over complex terrain in fine spatial and temporal resolution. Its outputs are
time series of wind, temperature, and other meteorological variables as ground level values
and vertical profiles on selected grid locations. WRF-ARW is Advanced Research WRF,
one of the two available versions of WRF.

The study uses data from four meteorological stations, as listed in Table 2. The station
Brežice represents a candidate site for small wind turbine placement in most of the numeri-
cal experiments, while signals from the other three are used as model inputs. The ground
level wind signals are measured at 10 m height at all of the stations. The meteorological
stations are up to 30 km apart.

Table 2. Locations of meteorological stations.

Name
WGS84 Coordinates

Latitude Longitude

Brežice 45.906760 15.596502
Cerklje Airport 45.900833 15.516111

Lisca 46.067735 15.284905
Stolp 45.939900 15.513132

Figure 2. A panoramic view of the study area. Photo by Samo Grašič.



Appl. Sci. 2021, 11, 2953 6 of 18

Lisca

Stolp

Cerklje Airport

Brežice

1137

639

141 El
ev

at
io

n
[m

]

Figure 3. Digital elevation model [32] of the study area (30 km by 30 km) with the meteorological
stations marked.
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Figure 4. CORINE Land Cover [32] for the study area (30 km by 30 km) with the meteorological
stations marked.

2.2. Signals

All of the measured and NWP-generated meteorological signals are recorded every
30 min. In the case of measured quantities, 30 min. averages are recorded. Averages
with shorter sampling times are not available. There are seven NWP signals available—
wind speed and direction, temperature, humidity, air pressure, cloud cover, and global
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solar radiation—while one additional signal, diffuse solar radiation is derived from NWP
signals using an artificial neural network [35,36]. Diffuse solar radiation is the part of solar
radiation that is reflected from clouds or other objects, dispersed in the fog, etc. It is not
easily predicted over complex terrain, therefore a dedicated model of it is used.

Three standard ground level meteorological stations in the vicinity are available,
measuring 26 signals in total, and the wind measurement is taken 10 m above ground.
The signals for the calendar year 2017 are used.

2.3. Regressors

Regressors are the independent variables that the model output depends on. They
are selected or computed from the available input signals. Their choice is based on the
general meteorological knowledge and on the familiarity with the area. The four regressors
used are:

1. the current wind speed at Cerklje Airport meteorological station;
2. the current wind speed according to the NWP model;
3. the current temperature difference between Lisca and Cerklje Airport meteorologi-

cal stations; and,
4. the air pressure change in the last 2 h at Stolp meteorological station.

A good source of information for predicting the wind speed at the studied location is
the measured wind speed at a nearby meteorological station, used as regressor 1. Another
one is the wind that is predicted by the NWP model for the local cell of the studied site,
used as regressor 2. Regressor 3, the temperature difference between two meteorological
stations at different altitudes, is proportional to the vertical temperature gradient and,
thus, to the atmospheric stability. Changes in the air pressure drive the weather, which
is the reason for choosing regressor 4. The differences used as regressors 3 and 4 are less
dependent on the season than absolute air pressure and temperature values. This makes
them a good choice for a model that is trained on a single month and used throughout
the year.

Quantitative algorithms for regressor selection also exist [37], and they could have
been used as an alternative to the presented heuristic method. The quantitative algorithms
are universal, they can be applied to any signals, and require no knowledge of the modelled
system. However, their use requires skill and, in some cases, a lot of computing time.

2.4. Linear Regression

Linear regression, fitted with least squares, is the basic linear approach in modelling
the relationship between the regressors and output variable. It is used to derive 24 of the
60 presented models.

2.5. Gaussian Process Modelling

As the mathematical structure of the model describing the relationship between the
regressors and the output variable, a Gaussian process (Gaussian process should not
be confused with other terms named after Gauss, such as Gaussian diffusion models in
atmospheric dispersion modelling) (GP) is used in 36 of the 60 presented examples. GP
models are typically nonlinear. Unlike the other nonlinear models, the GP models provide
model uncertainty through variance prediction, which is their main advantage and the
reason they are used in this study.

GP is a stochastic process f (z) for which any finite set of function values is jointly
normally distributed [37],

p( f (z1), . . . , f (zM)|z1, . . . , zM) = N (m, Σ). (1)

In GP modelling, a covariance function or kernel function k is used to obtain the
covariance matrix elements as Σij = k

(
zi, zj

)
, while m is set to m = 0. The model output
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distribution for a given input is obtained from a joint distribution N with the training data.
Unless k is a linear function, GP models are, in general, nonlinear.

The model output is treated as noisy with uncorrelated Gaussian measurement noise,
the variance of which is independent of the model input. The covariance function encodes
the assumptions about the modelled system [38]. Typically, the covariance function is not
fully prescribed in advance, but has some free parameters, named hyperparameters. Their
values are chosen together with the value for the noise variance so as to maximize their
likelihood given the training data [37].

2.6. Experimental Modelling

As different experimental modelling methods have different strengths, several of them
are used for predicting the wind speed:

GP SE: Gaussian process model with squared exponential covariance function;

GP lin: Gaussian process model with linear covariance function;

GP SE+lin: Gaussian process model with covariance function that is the sum of a squared
exponential function and a linear function; and,

LS lin: linear regression with least squares approximation.

GP SE and GP SE+lin are general purpose nonlinear modelling methods. GP lin and
LS lin result in different linear models. The implementation of GP SE, GP lin, and GP
SE+lin is as described in Section 2.5, while the linear regression of LS lin is implemented in
MATLAB Statistics and Machine Learning Toolbox functions.

The difference between GP lin and LS lin is in the assumed measurement noise
distribution. The least squares method results in the best possible fit as long as the output
error is Gaussian, while the Gaussian process linear model makes no such assumption in
maximizing the likelihood.

All of the models share the Finite impulse response (FIR) [37] structure, as there are no
delayed output values in the regressor list. FIR structure is chosen because it avoids error
propagation issues of Autoregressive models with exogenous input, resulting in faster
computation and enabling us to do more extensive testing. A drawback of FIR models is
that they typically require many delayed values of input signals to achieve good results.
However, the results of the numerical experiments show that this is not the case in our
example. The finding is in agreement with the physical background of the system.

The training data for each model are the data for one of the 12 months in the year.
Each model is tested through predicting the output variable for the 11 months of the year
not used in training. A separate model is made using each one of the 12 months as the
training month, which results in 12 tested models for each modelling method, as depicted
in Figure 5.

Training data

Testing data

January
February
March
April
May
June
July
August
September
October
November
December
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od
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Figure 5. Splitting of the data in different ways to train and test several models. Model 1 is trained
on January data and tested on the other 11 months, etc.
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2.7. Model Evaluation

The models are qualitatively evaluated using various relevant plots and quantita-
tively using figures of merit. Quantitative evaluation is more exact, more convenient for
ranking the models, and based on the whole dataset, while qualitative evaluation is more
profound and it better illustrates the behaviour of the model. Thus, it is beneficial to use
both. For qualitative evaluation, time series plots, scatter plots, Q–Q plots, and sunflower
diagrams [39] are used, while quantitative evaluation is based on several different figures
of merit.

In accordance with the assumption that only one month of data is available for
construction of the model, the signals of the 11-month test period are not used at any stage
of modelling. Thus, the test data set used in model evaluation is completely independent.

2.7.1. Qualitative

Tme series of the predicted and of the measured signal are plotted to qualitatively
observe the models’ response.

Scatter plots emphasise the relationship between the measured value at a given time
and the model output at the same time. This is achieved by omitting the time dependence
of the signals.

The distributions of the predicted and measured wind speeds are best compared with
Q–Q plots. The values plot on the line of equality if the distributions are equal and the
deviations from the line mark the parts of the distribution that differ.

The sunflower diagrams reveal the information on the wind speed distribution at
different times of day. This is particularly useful if the energy production at different times
of day is of interest, e.g., if the electric energy price varies throughout the day.

2.7.2. Quantitative

Figures of merit enable us to quantitatively evaluate the results of the wind speed
models for wind resource characterization and to benchmark the experimental models
against NWP.

Pearson correlation coefficient R, coefficient of determination R2, mean square error
(MSE), and mean standardised log loss (MSLL) values are used in evaluating the results of
the models.

Pearson correlation coefficient is defined as

R =
cov(y, µ)

σyσµ
, (2)

where y is the vector of measured values, µ is the vector of predicted values, cov is
covariance, σy is the standard deviation of the measured value, and σµ is the standard
deviation of the predicted (mean) value. The value is between −1 and 1, and the more
positive value is better.

The coefficient of determination is defined as

R2 = 1− ‖y− µ‖2

Nσ2
y

, (3)

where N is the number of the test samples and σ2
y is the variance of the measured value.

The value is between 0 and 1, and a bigger value is better.
MSE is defined as

MSE =
‖y− µ‖2

N
; (4)

It is always positive and smaller is better.
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MSLL is defined as [38]

MSLL =
1

2N

N

∑
i=1

[
ln
(

σ2
i

)
− ln

(
σ2

y

)
+

(E(ŷi)− yi)
2

σ2
i

− (yi − E(y))2

σ2
y

]
, (5)

where yi is the measured value, E(ŷi) is the mean prediction, and σ2
i is the predictive

variance. The summation includes all of the test samples and the index i corresponds
to the sample. MSLL takes the predictive variance into account. A lower MSLL value
corresponds to a better model, and the values are typically negative.

R, R2, and MSE are popular standard figures of merit. They do not provide completely
independent information, and the main reason for listing several of them is for easier
comparison with other studies. MSLL is the figure of merit that is used to evaluate the
predictive variance in addition to the predicted mean value.

To evaluate the time-series results over the whole sample of the models, the figure of
merit for each modelling method is averaged over the 12 models that were obtained with
different training months.

Estimating the annual energy production or related derivatives from the wind speed
distribution is specific to the turbine [9] and is not attempted. The average wind speed v̄
and the average cube of the wind speed v̄3, averaged over time throughout the test period,
are used to quantify the distributions instead. The model-predicted values of v̄ and v̄3 are
computed from the predicted expected values of the wind speed. They are compared to the
values of v̄ and v̄3 that are calculated from the field measurements over the same period.
For each modelling method, the MSE of either quantity over the 12 different choices of the
training month is computed.

2.8. Spatial Transferability of the Method

The model structure and the regressors are chosen based on the whole region and not
adapted to a particular location. Thus, the model is only bound to a specific location by
the training output signal of wind speed measurements. If the wind measurements for
the training are taken at another location within the region, the resulting model will be
valid for the new location. This is demonstrated by modelling the wind speed at Stolp
meteorological station, which is over 7 km away from Brežice, and it has very different
surroundings and wind speeds.

3. Results

The results that are directly related to the predicted wind speed time series are pre-
sented separately from the ones related to the wind speed distributions of the predictions.

3.1. Time-Series Modelling Results

Figures 6 and 7 set the measured signal of wind speed at Brežice meteorological station
side-by-side with the predictions of one of the models. It can be seen that there is a match
between the measurement and the prediction.

Table 3 shows the figures of merit for various modelling methods of wind speed.
The values are averages: each modelling method is used on 12 different training months.
Each model is tested on the remaining 11 months of the data. The 12 test figures of merit are
averaged. It can be seen that, in terms of these two figures of merit, LS lin models perform
best at the Brežice meteorological station. If raw NWP values are used to approximate the
local wind speed, they perform very poorly.

At Stolp meteorological station, the best-performing modelling method, which is, LS
lin, is used. The dimensionless figures of merit show that modelling of the wind speed at
Stolp is more successful than at Brežice. The likely explanation is that Stolp is the better
positioned meteorological station of the two with less local obstacles. The MSE values
should not be directly compared between the two locations, as winds at Stolp are, on
average, 38% faster than at Brežice.
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Figure 6. Comparison of measurement and model results for Brežice for the first week of May 2017. The model used is
a linear regression with least squares model trained on November 2017 data, referred to as Model 11 in Figure 5. It can
be seen that the predicted mean value reasonably follows the measured signal and that the predicted variance is nearly
constant and reasonable. The figures of merit for the model are R = 0.6906, R2 = 0.4760, MSE = 0.2345, and MSLL = −0.3155
when computed over the whole 11-month test period.

Figure 7. Comparison of measurement and model results Brežice over 50 days of 2017. The model used is a linear regression
with least squares model trained on November 2017 data, referred to as Model 11 in Figure 5.
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Table 3. Figures of merit for various models of wind speed at Brežice meteorological station and for
LS lin model at Stolp meteorological station. The values given are the values obtained on the test
data averaged over the 12 models with different train/test data set selections and the Brežice models
are ordered in ascending MSE.

Model Name R R2 MSE [m2/s2] MSLL

LS lin 0.685 0.454 0.243 −0.285
GP lin 0.685 0.435 0.251 −0.266

GP SE+lin 0.636 0.378 0.276 −0.198
GP SE 0.601 0.341 0.293 −0.190
NWP 0.418 0.000 2.842 -

LS lin Stolp 0.811 0.652 0.442 −0.514

3.2. Results Related to Wind Speed Distribution

The role of the MSE(v̄) value is comparing the average wind speed during the 11 month
test period as predicted by the models with the actual average wind speed. Each modelling
method results in 12 average wind speeds, and Table 4 provides the MSE of these results.
The third power of the wind speed is likewise averaged and its MSE is presented in the
column MSE(v̄3). The models that better predict the wind speed time series (see Table 3)
tend to also predict average values that are closer to the true average.

Table 4. Wind speed distribution-related figures of merit for various models of wind speed at Brežice
meteorological station and for LS lin model at Stolp meteorological station. The wind speed and the
cube of the wind speed are averaged over the 11-month test period for each model to obtain v̄ and
v̄3. The difference between v̄ or v̄3 obtained with model prediction and v̄ or v̄3 obtained from the
measurement is computed, squared, and the 12 squares that correspond to the 12 train/test data set
selections are averaged.

Model Name MSE(v̄) [m2/s2] MSE(v̄3) [m6/s6]

LS lin 0.003 1.177
GP lin 0.011 1.399

GP SE+lin 0.005 1.210
GP SE 0.004 1.421
NWP 1.004 645.327

LS lin Stolp 0.003 14.179

Predictions of one of the LS lin models from each site are statistically compared to
the measured wind speeds and NWP predictions in Figures 8–10. Scatter plots, Q–Q plots,
and sunflower diagrams showing the daily wind patterns are presented. The shown LS
lin model is the one with the choice of the training month that resulted in the best MSE at
each site.
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Figure 8. Scatter plots and Q–Q plots of wind speeds for the Brežice meteorological station. The mea-
surements are compared to the numerical weather prediction (NWP) model (left) and to the linear
regression with least squares model trained on November 2017 data (right). The experimental model
used is the same one as in Figure 6. The shown LS lin model predictions are for the test data. The black
line is the line of equality, and the red line is the least-squares linear fit of all the data points.
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Figure 9. Scatter plots and Q–Q plots of wind speeds for Stolp meteorological station. The measure-
ments are compared to the NWP model (left) and the linear regression with least squares model
trained on May 2017 data (right). The shown LS lin model predictions are for the test data. The black
line is the line of equality, and the red line is the least-squares linear fit of all the data points.
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Figure 10. Sunflower diagrams [39] for Brežice and Stolp meteorological stations. The measurements
(left) are compared to the linear regression with least squares model trained on one month of data (right)
and the NWP model (top). The experimental models used are the same as in Figures 8 and 9, the LS lin
model predictions are for the test data. In a sunflower diagram, each one of the 24 sectors corresponds
to one hour of the day. The values for each hour are sorted into classes that are represented with
sections of different colours. The length of each section is proportional to the statistical frequency of
the values within the class.

4. Discussion

Decisions regarding small wind turbine placement benefit a lot from obtaining more
useful information from a shorter period of data measured at a candidate location. A way
of achieving this goal is by using the measurement data of the wind speed to train a model
of this quantity with inputs that are available for a longer time period, such as NWP signals
and measurements from the meteorological stations in the vicinity. Several experimental
models for the purpose that use these signals and their combinations as regressors are
proposed and tested.

In testing, the criteria for model quality have to be defined in a meaningful way. The match
between the measurement and the model is shown in Figures 6 and 7 and in the scatter plots in
Figures 8 and 9, and Table 3 lists the standard figures of merit. These pieces of information offer
a general measure on model performance, which is useful in developing and improving
the models. However, they do not directly address the performance of the models in wind
turbine placement decisions. These decisions are based on wind statistics [40] the choice
of which depends on the type of the turbine and even on the turbine use case—one is
typically, but not necessarily, interested in the annual energy production. The local wind
predicted by the model has to result in similar values of the chosen statistics if the model is
to be useful in decision-making.

To this end, the measured and predicted wind speed distributions are compared in
Q–Q plots and sunflower diagrams in Figures 8–10. We see that the distributions that are
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predicted by the linear regression with least squares models match the distributions of
measured values better than the NWP model does. The match is quite good, particularly
for speeds under 5 m/s. Beyond that point, the mismatch in Q–Q plots increases, while
the frequency of the speeds decreases. Figure 10 demonstrates that the predicted and
measured speed distributions match by hour of day. This is beneficial if one is interested
in the dependence of power on time and it is also a confirmation of the skill of the model.
A couple of meaningful statistics from the model results are calculated—the average wind
speed v̄ and the average wind speed to the third power v̄3. The reason for choosing v̄ is
that it is the simplest wind speed statistic that is related to wind power. Wind power by
unit area is proportional to v3 [40], so its average is also examined. The results in Table 4
show that the models better matching the measurements are also better at predicting v̄ and
v̄3. This indicates that the good predictions of the wind speed distributions and of the v̄
and v̄3 values result from successful time-series modelling and can be relied on.

The measured wind speeds at the studied locations are below the typical necessary
speeds for wind power use. However, they are within the expected range of wind speeds
for a candidate site, as it is, by definition, not possible to avoid infeasible locations when
doing feasibility studies. The locations are thus adequate for testing of the presented
method—for models used in checking feasibility, it is, in fact, most important that they
perform well close to the boundary of feasibility. At the same time, the location-optimized
design of wind turbines is becoming more common, enabling wind power use, even at these
speeds [41]. The required wind speed for a viable wind farm is also lower when sustainable
development is taken into account than if only financial value is considered [42].

The NWP signals used are generated with the finest resolution NWP model that is
available for the study area. The use of the best available data improves the chances of
success, which is desirable for the initial testing of a novel method. It is not implied that
the method would not work with a coarser NWP grid, especially on a flatter terrain, but it
remains to be tested.

It is assumed that the training wind measurements at the candidate site are collected
at the target height for the turbine. In the presented case, the height is 10 m, which is within
the range for small wind turbines (Figure 1). As 10 m is the standard for meteorological
stations, the wind measurements at the surrounding stations that are used as model inputs
are measured at the same height. However, this is not a requirement. The training wind
measurements at the location should be taken at the planned turbine height, but the wind
measurements from the meteorological stations in the vicinity can be used as model inputs,
regardless of the height at which they are taken.

The presented use case precludes collecting measurements at different times of the
year, because avoiding year-long measurements is the objective of the modelling. As the
model is to be used year-round, the training data only span a part of the operating range in
which the model is to be used, which is undesirable. The observed good performance of the
model can be ascribed to the careful selection of the regressors. The temperature difference
between two locations at different altitudes is less seasonal than the temperature itself.
Similarly, the air pressure change over a given time period is less affected by the season
than the air pressure itself. The remaining two regressors are wind speeds at a nearby
location and as predicted by the NWP model. The dependence of the model output on
these two seems to be close enough to linear that it is identified sufficiently well by the used
linear model from the limited training data available. Models of this kind have the potential
to also work in other areas, particularly in areas similar to the studied one. Nevertheless,
when applying the method to a new region, it may be beneficial to validate a model on the
data from an established meteorological station before using it for wind turbine placement
decisions, particularly if the region is very different in climate or topography from the one
studied here.

The finding that least-squares linear regression models perform well is fortunate for
the possible practical use of the model. The most laborious part of the modelling process is
selecting the potential regressors and obtaining and parsing the historical data, which is
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likely to have been done in the earlier stages of the project. Coding the model in a high-level
computer language is trivial and the required computation time is under a second. The
processing of the model output is no different from processing a long-term measured time
series, which would be required otherwise. thus, such modelling is completely feasible,
even in the scope of a small wind power project.

5. Conclusions

A method for evaluating wind conditions at candidate locations for small wind turbine
installation with short time series of local measurement data is developed. Different soft
sensors of the wind speed at the studied locations are constructed, tested, and compared.
They use measurements from the meteorological stations in the vicinity and numerical
weather prediction signals as inputs.

The tested soft sensors predict the wind speed time series well and the wind speed
distribution very well. The predictions of the soft sensors are much better when compared
to the predictions of the high resolution NWP model. A linear model optimized with least
squares performs better than the tested nonlinear models in predicting the wind speed at
the main study site.

The proposed modelling method can serve to shorten the wait for the measurements
when evaluating candidate locations for small wind turbines, which enables the turbine to
be built more quickly and to start producing electricity sooner. It is conceptually simple and
easy to use, so it is practical to apply, even when planning the installation and operation of
a small wind turbine where the budget does not allow for expensive studies.

The envisioned use of the method only assigns a short part of the year for taking
measurements. Thus, the resulting experimental model has to be trained on data points
covering only a part of the range of conditions in which the model is going to be used.
The theory of system identification does not recommend such extrapolation, as it can
harm the model performance. Fortunately, the presented models give good predictions,
regardless of it. Part of the reason may be in careful choice of meaningful regressors. Linear
models tend to perform relatively well in extrapolation, which may explain why the linear
models have the best performance.

The method is likely to work similarly well in different regions if the regressors
are chosen so as to provide similar information than the ones that are used in the study.
However, the good performance of the models is not completely explained and expected,
so equally good results in areas very different from the study area cannot be guaranteed. It
should be noted that the same regressors result in good models for different sites in the
study area. When using it in another area, the method, including the choice of regressors,
can first be validated on sites with the historical data available and then applied to the
candidate wind turbine sites.

Two directions of future research are proposed. Verifying that the findings generalize
to different climates and topographies is one of the objectives, which will enable the
method to be used in a wider geographic range. In addition, the method is ready to
be tested in actual candidate wind turbine locations, particularly in complex terrain in
temperate regions.
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