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Abstract: We observe the effects of training data sample selection in modelling of a physical
system with Gaussian process nonlinear autoregressive models with exogenous input. Gaussian
process modelling limits the number of training data points and we use a big nonlinear
benchmark data set. The combination calls for training data sample selection. We compare
a ‘smart’ method based on Euclidean distance between training data points with decimation.
We use the training data samples obtained by both methods to train the models, test model
predictions on a test data set, and calculate two figures of merit, eRMSt and mean standardised
log loss (MSLL). The model trained on the ‘smartly’ selected training data points is better in
eRMSt while the one with the decimated data is superior in MSLL. The direct conclusion is that
the purpose of the model determines which training data sample selection method is better,
as the relevant figure of merit depends on the model purpose. We notice that the predicted
variance is more sensitive to the training data sample than the predicted mean. We warn that
training data sample selection may have unexpected consequences.
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1. INTRODUCTION

The F-16 aircraft benchmark example data (Schoukens
and Noël, 2015) was obtained by shaking an aircraft with
two dummy payloads attached. The interfaces between the
aircraft and the payloads caused nonlinear distortions. The
provided signals are the input voltage to the shaker under
the right wing, the force of the shaker, and acceleration at
3 points on the aircraft and the payload, all sampled at 400
Hz. Multiple experiments were done with various sizes and
shapes of the input signal (Noël and Schoukens, 2017). In
the Gaussian process (GP) modelling data selection case
study, we use the shaker force and the acceleration on the
right wing next to the nonlinear interface signals from the
two highest excitation level multisine experiments with full
frequency grid.

Gaussian process is a non-parametric kernel model (Ras-
mussen and Williams, 2006), the main comparative ad-
vantage of which is that it provides information on output
uncertainty in addition to the predicted output value. The
additional information comes at a computational cost, so
only a modest number of training data points can be uti-
lized (Kocijan, 2016) although significant progress is being
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made on increasing the number (Wang et al., 2019). The
benchmark example offers an amount of data sufficient to
overwhelm a typical GP model, so we are only able to use
a part of the available data.

When only a sample of the available data can be used in
training, there are different ways of choosing the sample.
Apart from decimation – using every n-th training data
point, where n is the decimation factor (Naghizadeh and
Sacchi, 2010) – there are several other possibilities, for
example based on convex hulls (Khosravani et al., 2016),
K-means clustering (Tang et al., 2019), outlier pattern
analysis and prediction (Lin et al., 2015), Markov geomet-
ric diffusion (Silva et al., 2016), etc. We test an algorithm
based on Euclidean distances between the points in the
training data set (Perne et al., 2019) on the benchmark
example. It rejects data points that have close neighbours.
It is easy to implement and modest enough in its use of
computational resources that it can be used on the studied
data set. We explore how the choice of the training data
points influences the quality of the model. In particular,
we set to find out whether a better model results from
the training data sample chosen by decimation or by the
advanced method.

The contribution of this paper is the study of the influence
of data sample selection on the resulting model. Among the
many data sample selection methods in existence, the one
used is chosen because of the low effort it requires.
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the Gaussian process (GP) modelling data selection case
study, we use the shaker force and the acceleration on the
right wing next to the nonlinear interface signals from the
two highest excitation level multisine experiments with full
frequency grid.

Gaussian process is a non-parametric kernel model (Ras-
mussen and Williams, 2006), the main comparative ad-
vantage of which is that it provides information on output
uncertainty in addition to the predicted output value. The
additional information comes at a computational cost, so
only a modest number of training data points can be uti-
lized (Kocijan, 2016) although significant progress is being

� The authors acknowledge the financial support from the Slovenian
Research Agency (project “Method for the forecasting of local
radiological pollution of atmosphere using Gaussian process models”,
ID L2-8174, “Modelling the Dynamics of Short-Term Exposure to
Radiation”, ID L2-2615, and research core funding No. P2-0001).

made on increasing the number (Wang et al., 2019). The
benchmark example offers an amount of data sufficient to
overwhelm a typical GP model, so we are only able to use
a part of the available data.

When only a sample of the available data can be used in
training, there are different ways of choosing the sample.
Apart from decimation – using every n-th training data
point, where n is the decimation factor (Naghizadeh and
Sacchi, 2010) – there are several other possibilities, for
example based on convex hulls (Khosravani et al., 2016),
K-means clustering (Tang et al., 2019), outlier pattern
analysis and prediction (Lin et al., 2015), Markov geomet-
ric diffusion (Silva et al., 2016), etc. We test an algorithm
based on Euclidean distances between the points in the
training data set (Perne et al., 2019) on the benchmark
example. It rejects data points that have close neighbours.
It is easy to implement and modest enough in its use of
computational resources that it can be used on the studied
data set. We explore how the choice of the training data
points influences the quality of the model. In particular,
we set to find out whether a better model results from
the training data sample chosen by decimation or by the
advanced method.

The contribution of this paper is the study of the influence
of data sample selection on the resulting model. Among the
many data sample selection methods in existence, the one
used is chosen because of the low effort it requires.

Copyright © 2018 IFAC

Gaussian Process Modelling of the F-16
Ground Vibration Test Benchmark: Data

Selection Case Study �

Matija Perne ∗ Martin Stepančič ∗∗ Juš Kocijan ∗,∗∗∗
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∗ Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
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Slovenia
∗∗∗ University of Nova Gorica, Vipavska 13, 5000 Nova Gorica,

Slovenia

Abstract: We observe the effects of training data sample selection in modelling of a physical
system with Gaussian process nonlinear autoregressive models with exogenous input. Gaussian
process modelling limits the number of training data points and we use a big nonlinear
benchmark data set. The combination calls for training data sample selection. We compare
a ‘smart’ method based on Euclidean distance between training data points with decimation.
We use the training data samples obtained by both methods to train the models, test model
predictions on a test data set, and calculate two figures of merit, eRMSt and mean standardised
log loss (MSLL). The model trained on the ‘smartly’ selected training data points is better in
eRMSt while the one with the decimated data is superior in MSLL. The direct conclusion is that
the purpose of the model determines which training data sample selection method is better,
as the relevant figure of merit depends on the model purpose. We notice that the predicted
variance is more sensitive to the training data sample than the predicted mean. We warn that
training data sample selection may have unexpected consequences.

Keywords: Gaussian processes, Data reduction, Benchmark examples, Nonlinear models,
Probabilistic models, Modelling errors, Statistics

1. INTRODUCTION

The F-16 aircraft benchmark example data (Schoukens
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benchmark data set. The combination calls for training data sample selection. We compare
a ‘smart’ method based on Euclidean distance between training data points with decimation.
We use the training data samples obtained by both methods to train the models, test model
predictions on a test data set, and calculate two figures of merit, eRMSt and mean standardised
log loss (MSLL). The model trained on the ‘smartly’ selected training data points is better in
eRMSt while the one with the decimated data is superior in MSLL. The direct conclusion is that
the purpose of the model determines which training data sample selection method is better,
as the relevant figure of merit depends on the model purpose. We notice that the predicted
variance is more sensitive to the training data sample than the predicted mean. We warn that
training data sample selection may have unexpected consequences.

Keywords: Gaussian processes, Data reduction, Benchmark examples, Nonlinear models,
Probabilistic models, Modelling errors, Statistics

1. INTRODUCTION

The F-16 aircraft benchmark example data (Schoukens
and Noël, 2015) was obtained by shaking an aircraft with
two dummy payloads attached. The interfaces between the
aircraft and the payloads caused nonlinear distortions. The
provided signals are the input voltage to the shaker under
the right wing, the force of the shaker, and acceleration at
3 points on the aircraft and the payload, all sampled at 400
Hz. Multiple experiments were done with various sizes and
shapes of the input signal (Noël and Schoukens, 2017). In
the Gaussian process (GP) modelling data selection case
study, we use the shaker force and the acceleration on the
right wing next to the nonlinear interface signals from the
two highest excitation level multisine experiments with full
frequency grid.

Gaussian process is a non-parametric kernel model (Ras-
mussen and Williams, 2006), the main comparative ad-
vantage of which is that it provides information on output
uncertainty in addition to the predicted output value. The
additional information comes at a computational cost, so
only a modest number of training data points can be uti-
lized (Kocijan, 2016) although significant progress is being

� The authors acknowledge the financial support from the Slovenian
Research Agency (project “Method for the forecasting of local
radiological pollution of atmosphere using Gaussian process models”,
ID L2-8174, “Modelling the Dynamics of Short-Term Exposure to
Radiation”, ID L2-2615, and research core funding No. P2-0001).

made on increasing the number (Wang et al., 2019). The
benchmark example offers an amount of data sufficient to
overwhelm a typical GP model, so we are only able to use
a part of the available data.

When only a sample of the available data can be used in
training, there are different ways of choosing the sample.
Apart from decimation – using every n-th training data
point, where n is the decimation factor (Naghizadeh and
Sacchi, 2010) – there are several other possibilities, for
example based on convex hulls (Khosravani et al., 2016),
K-means clustering (Tang et al., 2019), outlier pattern
analysis and prediction (Lin et al., 2015), Markov geomet-
ric diffusion (Silva et al., 2016), etc. We test an algorithm
based on Euclidean distances between the points in the
training data set (Perne et al., 2019) on the benchmark
example. It rejects data points that have close neighbours.
It is easy to implement and modest enough in its use of
computational resources that it can be used on the studied
data set. We explore how the choice of the training data
points influences the quality of the model. In particular,
we set to find out whether a better model results from
the training data sample chosen by decimation or by the
advanced method.

The contribution of this paper is the study of the influence
of data sample selection on the resulting model. Among the
many data sample selection methods in existence, the one
used is chosen because of the low effort it requires.

Copyright © 2018 IFAC

We present the data set, explain the regressor selection and
the data sampling, and introduce the GP modelling and
the figures of merit in Section 2. In Section 3, the model
prediction results with the traditional and the innovative
data sampling methods are compared. In part 4, we try
to find meaning in the obtained results, and in 5, we
conclude that a good data sample is a relative term and
that data sample selection has to be done carefully because
it gives one a significant freedom to influence the resulting
model. The choice of the data sample selection method
particularly strongly influences the predicted variance.
Which data sample selection method is better depends on
the figure of merit used to evaluate the resulting model.

2. METHODS

An overview of GP modelling is described in 2.1 and the
NARX (nonlinear autoregressive model with exogenous
input) structure in 2.2. The used data set is introduced
in 2.3. The regressor and data sample selection follow in
2.4 and 2.5, respectively. Finally, the formulas used in
evaluating the model results are given in 2.6.

We use the F-16 aircraft benchmark example data set
as the dynamic system data to model. The system is
nonlinear and the quantity of data is sufficient to call for
data sample selection when training a GP.

2.1 Gaussian process modelling

GP is a generalisation of the Gaussian probability distribu-
tion (Kocijan, 2016). It is a stochastic process f for which
any finite set of values f(zi) is jointly normally distributed
For a selection of points z1, . . . ,zM , we label the joint
probability density function of f (z1) , . . . , f (zM ) as

p (f (z1) , . . . , f (zM )) = N (m,Σ) , (1)

where m is the mean vector and Σ stands for the covari-
ance matrix.

In GP modelling, we use a GP to map the regression vector

z (t)=[y (t− a1) , . . . , y (t− ai) , u (t− b1) , . . . , u (t− bi)]
T

to the model output y (t), where t is the time index. We
construct the GP through a mean function and a covari-
ance function. The components mi of the mean vector
m are taken to be the values of a mean function m (z),
mi = m (zi), while the matrix elements Σij are the values
of a covariance function k (z, z′),

Σij = k (zi, zj) . (2)

The role of covariance function can be served by any
function that results in a positive, semi-definite covariance
matrix (Kocijan, 2016).

The output of the GP model at the regression vector z∗

is the probability density function p (f (z∗) |D, z∗), where
the training data D is

D = {Z,y} = [z1, . . . ,zN ] , [y1, . . . , yN ]
T

and the measured output yi corresponds to the input zi.
We assume that the training data are noisy realizations of
the GP model, f (zi) = yi + νi, where the noise is uncor-
related, νi = N (0, σ2

ν). The mean function m (z) can be
taken to be identically equal to 0, m (z) ≡ 0. Under these
assumptions, the model output p (f (z∗) |D, z∗) equals

p (f (z∗) |D, z∗) = N
(
µ (z∗) , σ2 (z∗)

)
, (3)
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Fig. 1. The idea of GP-NARX. The regressors of the GP
are delayed values of the input variables and of the
output variable.

where µ (z∗) and σ2 (z∗) are defined by

µ (z∗) = kTK−1y (4)

σ2 (z∗) = κ (z∗)− kTK−1k. (5)

The symbols k and κ stand for k1×N = k (z∗,Z)
T

and
κ1×1 = k (z∗, z∗). The matrix K is defined as K = Σ +
σ 2
ν I, where Σ is obtained using the covariance function as

in (2). To obtain the probability density of the measured
output y∗ at z∗, noise has to be taken into account. The
resulting expression is

p (y∗|D, z∗) = N
(
µ (z∗) , σ2 (z∗) + σ 2

ν

)
. (6)

The mean function m (z) can be taken to be identically
equal to 0, m (z) ≡ 0, while the choice of the covariance
function k (z, z′) and the noise variance σ2

ν have to be
suitable for the modelled system.

We do not have sufficient knowledge of the system to
completely define the covariance function without relying
on the training data. We use optimization to decide on
the values of the parameters of the covariance function
Θ that are named hyperparameters and the noise variance
from the training data. Starting from the prior assumption
that every value of each hyperparameter is equally likely,
the expression

p (Θ|Z,y) ∝ p (y|Z,Θ) (7)

follows for the likelihood p (Θ|Z,y) of the hyperparame-
ters given the training data (Kocijan, 2016). The right-
hand side of the equation is a normal distribution, the
logarithm of the likelihood is (Kocijan, 2016)

log p (y|Z,Θ) = −n

2
log 2π − 1

2
log |K| − 1

2
yTK−1y (8)

and we use this expression in choosing the values of the
hyperparameters Θ that are the most likely. We use a
squared exponential covariance function with automatic
relevance determination, meaning that the hyperparam-
eters are the 15 length scales corresponding to the in-
dividual regressors. The hyperparameters and the noise
variance are optimized together using the conjugate gra-
dient method as implemented in Rasmussen and Nickisch
(2010).

2.2 Model structure

We model a dynamic system with a GP in GP-NARX
(nonlinear autoregressive model with exogenous input)
structure, which means that the GP uses delayed output
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We present the data set, explain the regressor selection and
the data sampling, and introduce the GP modelling and
the figures of merit in Section 2. In Section 3, the model
prediction results with the traditional and the innovative
data sampling methods are compared. In part 4, we try
to find meaning in the obtained results, and in 5, we
conclude that a good data sample is a relative term and
that data sample selection has to be done carefully because
it gives one a significant freedom to influence the resulting
model. The choice of the data sample selection method
particularly strongly influences the predicted variance.
Which data sample selection method is better depends on
the figure of merit used to evaluate the resulting model.

2. METHODS

An overview of GP modelling is described in 2.1 and the
NARX (nonlinear autoregressive model with exogenous
input) structure in 2.2. The used data set is introduced
in 2.3. The regressor and data sample selection follow in
2.4 and 2.5, respectively. Finally, the formulas used in
evaluating the model results are given in 2.6.

We use the F-16 aircraft benchmark example data set
as the dynamic system data to model. The system is
nonlinear and the quantity of data is sufficient to call for
data sample selection when training a GP.

2.1 Gaussian process modelling

GP is a generalisation of the Gaussian probability distribu-
tion (Kocijan, 2016). It is a stochastic process f for which
any finite set of values f(zi) is jointly normally distributed
For a selection of points z1, . . . ,zM , we label the joint
probability density function of f (z1) , . . . , f (zM ) as

p (f (z1) , . . . , f (zM )) = N (m,Σ) , (1)

where m is the mean vector and Σ stands for the covari-
ance matrix.

In GP modelling, we use a GP to map the regression vector

z (t)=[y (t− a1) , . . . , y (t− ai) , u (t− b1) , . . . , u (t− bi)]
T

to the model output y (t), where t is the time index. We
construct the GP through a mean function and a covari-
ance function. The components mi of the mean vector
m are taken to be the values of a mean function m (z),
mi = m (zi), while the matrix elements Σij are the values
of a covariance function k (z, z′),

Σij = k (zi, zj) . (2)

The role of covariance function can be served by any
function that results in a positive, semi-definite covariance
matrix (Kocijan, 2016).

The output of the GP model at the regression vector z∗

is the probability density function p (f (z∗) |D, z∗), where
the training data D is
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and the measured output yi corresponds to the input zi.
We assume that the training data are noisy realizations of
the GP model, f (zi) = yi + νi, where the noise is uncor-
related, νi = N (0, σ2

ν). The mean function m (z) can be
taken to be identically equal to 0, m (z) ≡ 0. Under these
assumptions, the model output p (f (z∗) |D, z∗) equals

p (f (z∗) |D, z∗) = N
(
µ (z∗) , σ2 (z∗)

)
, (3)
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and
κ1×1 = k (z∗, z∗). The matrix K is defined as K = Σ +
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ν I, where Σ is obtained using the covariance function as

in (2). To obtain the probability density of the measured
output y∗ at z∗, noise has to be taken into account. The
resulting expression is

p (y∗|D, z∗) = N
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The mean function m (z) can be taken to be identically
equal to 0, m (z) ≡ 0, while the choice of the covariance
function k (z, z′) and the noise variance σ2

ν have to be
suitable for the modelled system.

We do not have sufficient knowledge of the system to
completely define the covariance function without relying
on the training data. We use optimization to decide on
the values of the parameters of the covariance function
Θ that are named hyperparameters and the noise variance
from the training data. Starting from the prior assumption
that every value of each hyperparameter is equally likely,
the expression

p (Θ|Z,y) ∝ p (y|Z,Θ) (7)

follows for the likelihood p (Θ|Z,y) of the hyperparame-
ters given the training data (Kocijan, 2016). The right-
hand side of the equation is a normal distribution, the
logarithm of the likelihood is (Kocijan, 2016)

log p (y|Z,Θ) = −n
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and we use this expression in choosing the values of the
hyperparameters Θ that are the most likely. We use a
squared exponential covariance function with automatic
relevance determination, meaning that the hyperparam-
eters are the 15 length scales corresponding to the in-
dividual regressors. The hyperparameters and the noise
variance are optimized together using the conjugate gra-
dient method as implemented in Rasmussen and Nickisch
(2010).

2.2 Model structure

We model a dynamic system with a GP in GP-NARX
(nonlinear autoregressive model with exogenous input)
structure, which means that the GP uses delayed output
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and input values as the regressors as outlined in Fig. 1.
GP-NARX is described by the equation

ŷ (t) = f (y (t− 1) , y (t− 2) . . . , y (t− n) ,

u (t) , u (t− 1) , . . . , u (t−m)) + ν, (9)

where ŷ is the prediction of output, t is the time index, f
is the GP, n is the maximum lag in the output values, m
is the maximum lag in the input values, and ν is Gaussian
noise.

2.3 Data set description

The F-16 aircraft benchmark example data was obtained
by shaking the aircraft with two dummy payloads at-
tached. The interfaces between the aircraft and the pay-
loads caused nonlinear distortions. The provided signals
are the input voltage to the shaker under the right wing,
the force of the shaker, and acceleration at 3 points on the
aircraft and the payload, all sampled at 400 Hz. Multiple
experiments were done with various sizes and shapes of
the input signal (Noël and Schoukens, 2017).

In the study, we use the shaker force as the model input
signal and the acceleration on the right wing next to the
nonlinear interface as the model output signal. We use the
highest excitation level multisine data set 7 for training
and the next to highest excitation level data set 6 for
testing. Both experiments were done with periodic forcing
with the period of 8192 sampling times and 9 periods were
acquired (Noël and Schoukens, 2017), resulting in 73728
data points per experiment.

2.4 Regressor selection

As the first step in data selection, we want to skip several
lagged values from (9).

We begin by choosing the regressor selection method. A
method based on Lipschitz quotients was tested on the
same benchmark example by Perne and Stepančič (2018).
40 regressor candidates were used and 13 regressors were
selected based on 14742 regression vectors from the force
level 7 multisine excitation experiment. We selected the
13 most relevant regressors according to each one of 7
suitable methods implemented in ProOpter IVS (Gradǐsar
et al., 2015) based on the same data. For each choice
of regressors, we trained a GP-NARX model on 1474
regression vectors from the same experiment and tested
it by prediction on the force level 6 multisine excitation
data set. The best performing model in eRMSt criterion
(10) (Noël and Schoukens, 2017) was the one based on
the regressors selected with linear-in-the-parameters (LIP)
method (Li and Peng, 2007) as implemented in ProOpter
IVS, the selected regressors being the output delayed by
1, 2, 4, 7, 8, 10, 13 time steps and the input delayed by 0,
1, 6, 8, 17, 19 steps. We thus use the LIP method to select
the regressors for our study.

As the possible regressors, we use the excitation force
delayed for between b = 0 and b = 49 time steps and
the 2nd acceleration signal delayed for between a = 1
and a = 50 time steps, in total 100 candidates. The 15
most relevant regressors are selected using LIP based on
every 5th regression vector of the force level 7 multisine

excitation data set, 14736 1 regression vectors in total. A
subset of the data points is used in order to reduce the
computational demands.

2.5 Data sample selection

The number of operations required for GP model training
is proportional to the third power of the number of
data points, O(N3), restricting the number of training
data points (Kocijan, 2016). The amount of training data
available is too big to process, so a sample is used.

Of the several known ways of sampling the training data,
the most self-evident one is decimation, that is, using every
n-th training data point. The decimation factor n should
be chosen so as to produce a sample of the desired size.
We also take care that the greatest common divisor of the
period of the input signal and n is small in order to avoid
artefacts.

With advanced sample selection algorithms, care has to
be taken that the algorithm itself does not require too
many operations or too much computational resources,
considering that the number of data points entering the
selection algorithm is big.

We test the ‘smart’ method for data sample selection
proposed by Perne et al. (2019) and compare it with
decimation. The method is based on Euclidean distance
between training data points. Every data point from the
training data set is treated as a vector with normalized
regressor and output values as its coordinates. Euclidean
distances between all pairs of data points are computed.
The points closest to their nearest neighbours are rejected.
The procedure is done iteratively, 5 % of the points
are discarded in every cycle until the desired number of
training points is reached. When comparing the methods,
we ensure that the number of training data points is the
same between them.

There are multiple reasons for comparing these two sample
selection methods. Decimation is conceptually clear and
fast to both implement and compute. Of the more ad-
vanced methods, the ‘smart’ method is sufficiently fast and
easily available as it is easy to program, so it is the perfect
method to try out to observe the effect of data sample
selection. Most other methods would require a significant
amount of programming effort or computational resources,
or both.

2.6 Model evaluation

To evaluate the models, we compare the model predictions
to the test data set, obtaining the relevant figures of merit.

The model prediction is done for the time steps for which
the regressor values are available from the measurements.
The predicted normal distribution of the system output is
calculated from (6) and given as the predicted mean and
the predicted variance at every time step.

The benchmark figure of merit for the benchmark example
eRMSt prescribed by Noël and Schoukens (2017) is calcu-

1 The number of available regression vectors is smaller than the
number of measurements as not all the delayed values are available
for the first 50 measurements.

lated from the predicted mean and the measured system
output by the formula

eRMSt =

√√√√N−1

N∑
t=1

(yt − µ)
2
, (10)

where yt is the measured output, µ the model predicted
mean value, and N the number of prediction points.

Since the eRMSt figure of merit does not depend on the
predicted variance while the main benefit of GP modelling
is variance prediction, there is a need for another figure of
merit. We choose the mean standardised log loss (MSLL),
(Rasmussen and Williams, 2006, p. 23)

MSLL =
1

2N

N∑
t=1

[
ln
(
σ2

)
− ln

(
σ2
y

)

+
(µ− yt)

2

σ2
− (yt − E (y))

2

σ2
y

]
, (11)

where E (y) is the mean of the measured value, σ2
y is the

variance of the measured value, µ is the mean prediction,
and σ2 is the predictive variance. MSLL is zero for a model
returning the sample mean and sample variance of the test
outputs and smaller for better models (Chen and Wang,
2018).

We are thus using two different figures of merit and calcu-
lating them for the same model runs. We treat them com-
pletely separately, drawing conclusions from the calculated
eRMSt results independently from the conclusions based on
the MSLL values. Which figure of merit is appropriate or
more relevant depends on the model purpose. Investigating
two figures of merit is thus equivalent to investigating two
different model uses.

3. RESULTS

The 15 selected regressors are the value of the input
variable delayed by 1, 4, 8 time steps and the value of
the output variable delayed by 1, 2, 4, 7, 8, 10, 14, 17, 21,
24, 28, 32 time steps.

Ten models are constructed based on the selected regres-
sors and different training data samples. Two of them
use 4913 data points selected either through decimation
or by the ‘smart’ method. The number of 4913 training
data points results from decimating with the decimation
factor of 15 and is reasonably close to the upper limit
of our computer system. We require the same number
of data points from the ‘smart’ method as well so that
we can compare the effect of a change in training data
sample quality without a change in quantity. To observe
the consequences of a change in the training data sample
size, we multiply the decimation factor by 10 to obtain
the sample size of 491 and also select 491 training data
points with the ‘smart’ method. Decimation factors of 300,
500, and 1000 are also used, and a model based on the
same number of ‘smartly’ selected training data points is
produced for each of these‘ too.

The model prediction for 2000 time steps of the test data
set by the model with 491 ‘smartly’ selected training data
points is shown in Fig. 2. For comparison, there is the
model prediction for the same time period based on the
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Fig. 3. Prediction of the GP-NARX model with 4913
training data points selected with decimation

model with 4913 decimated training data points in Fig. 3.
The figures of merit are calculated for predictions of all 4
models and are presented in Fig. 4 and Table 1.

It is interesting to observe the mean value of the third
term in the sum (11) that we call r,

r =
1

N

N∑
t=1

(µ− yt)
2

σ2
,

we provide it in Table 1. This term is one of the two terms
in the sum that depend on the model prediction, the other
one is the first term ln

(
σ2

)
. In Table 1 we also provide the

average σ2 = 1
N

∑N
t=1 σ

2 which is related to the first term
in the sum (11). It should be noted that the quantity r is
related to eRMSt.

We see in Table 1 that the ‘smart’ selection improves eRMSt

and worsens MSLL compared to decimation, except for
73 data points, where ‘smart’ selection improves both.
The eRMSt figure of merit is based on the prediction of
the mean value, while MSLL also takes into account the
predicted variance σ2. MSLL can worsen when eRMSt

improves only if the prediction of variance worsens, so
we can infer that the prediction of σ2 typically worsens
with ‘smart’ sampling. The change in predicted variance
is systematic and results in an increase of the average
σ2. As a result of both increase in the average predicted
variance and decrease in mean square error, r decreases. If
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lated from the predicted mean and the measured system
output by the formula
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where yt is the measured output, µ the model predicted
mean value, and N the number of prediction points.

Since the eRMSt figure of merit does not depend on the
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training data points selected with decimation

model with 4913 decimated training data points in Fig. 3.
The figures of merit are calculated for predictions of all 4
models and are presented in Fig. 4 and Table 1.

It is interesting to observe the mean value of the third
term in the sum (11) that we call r,

r =
1

N

N∑
t=1

(µ− yt)
2

σ2
,

we provide it in Table 1. This term is one of the two terms
in the sum that depend on the model prediction, the other
one is the first term ln

(
σ2

)
. In Table 1 we also provide the

average σ2 = 1
N

∑N
t=1 σ

2 which is related to the first term
in the sum (11). It should be noted that the quantity r is
related to eRMSt.

We see in Table 1 that the ‘smart’ selection improves eRMSt

and worsens MSLL compared to decimation, except for
73 data points, where ‘smart’ selection improves both.
The eRMSt figure of merit is based on the prediction of
the mean value, while MSLL also takes into account the
predicted variance σ2. MSLL can worsen when eRMSt

improves only if the prediction of variance worsens, so
we can infer that the prediction of σ2 typically worsens
with ‘smart’ sampling. The change in predicted variance
is systematic and results in an increase of the average
σ2. As a result of both increase in the average predicted
variance and decrease in mean square error, r decreases. If
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Fig. 4. Figures of merit for predictions with models based
on different training data samples

σ2 was a constant independent of t, which is a reasonable
approximation considering that the variance of predicted
variance Var

(
σ2

)
is small, MSLL would be smallest if σ2

was chosen so that r = 1. We see that r < 1 for most
models, they are biased towards high values of σ2. Except
at 73 data points, the decrease in r by the ‘smart’ selection
is more than compensated for by the increase in the first
term of (11) resulting in the observed increase in MSLL.

To summarise, most models have their average predicted
variance σ2 bigger than optimal, meaning that they have
too little confidence in their predictions. As the ones
with the ‘smart’ data sampling are the most lacking in
confidence, their MSLL is worse even though their mean
prediction is better, except in the case of 73 training
points.

4. DISCUSSION

The increase in the number of training data points im-
proves the model predictions in both eRMSt and MSLL
measures. This behaviour is expected.

Except at 73 training data points, where ‘smart’ selection
clearly outperforms decimation, the effects of different
training data sampling methods are contradictory. ‘Smart’
selection of training data points improves the mean predic-
tion compared to decimation as seen from the eRMSt val-
ues. On the contrary, MSLL value is better if the training
data points are sampled using decimation than if ‘smart’
selection is used. The finding holds true for the models

Table 1. Figures of merit and some other
statistics of predictions with models based on

different training data samples

Data sample
eRMSt MSLL r σ2 Var

(
σ2
)

choice N

decimation 73 0.239 −1.82 2.59 0.017 1 · 10−4

‘smart’ 73 0.153 −2.26 0.40 0.057 1 · 10−5

decimation 147 0.153 −2.48 1.44 0.014 3 · 10−5

‘smart’ 147 0.148 −2.38 0.55 0.038 2 · 10−6

decimation 245 0.144 −2.51 0.97 0.020 5 · 10−6

‘smart’ 245 0.138 −2.47 0.61 0.030 1 · 10−6

decimation 491 0.133 −2.57 0.94 0.018 2 · 10−6

‘smart’ 491 0.131 −2.48 0.50 0.033 1 · 10−6

decimation 4913 0.115 −2.71 0.86 0.015 2 · 10−6

‘smart’ 4913 0.113 −2.65 0.58 0.021 1 · 10−6

with both the smaller and the bigger number of training
data points.

It is thus not clear which model is better – the one based on
decimated or the one based on ‘smartly’ selected training
data points. How good a model is should be measured
with respect to the model objectives (Ljung, 1999), and
the figures of merit used are supposed to reflect those
objectives. The model that is better in eRMSt is better
for the purposes where one only needs the predicted mean
value, such as where one’s goal is to be able to predict
an acceleration that will be as close to the observed
acceleration as possible. The model with the better MSLL
value is better for other purposes, for example, when
one wants to have a prediction and at the same time
know how much trust to put into the prediction. We have
encountered an example where a different choice of the
figure of merit propagates all the way to a different data
sampling method being favoured. The two different data
sampling methods result in models giving considerably
different predictions and we cannot give a general answer
on which one performs better, even when both are tested
on the same data set.

The results demonstrate that if data sample selection is
used, it has to be done carefully. The intention is to pick
a ‘better’ sample and get a ‘better’ model. Data sample
selection is thus meant to change the model. In the extreme
case, one could choose the desired model parameters and
select the sample based on them. It is clear that such
cherry picking of data is to be avoided – however, if
the sample is not directly selected for the desired model
parameters, it does not guarantee that there will not be
trouble. Since the figure of merit is used in the definition of
what it means for a model to be ‘better’, the figure of merit
may influence which data set selection method is better.
The studied system, data sample selection methods, and
figures of merit offer such an example.

5. CONCLUSION

We use the F-16 ground vibration test benchmark data set
to test a computationally efficient way of data sampling
based on Euclidean distance and compare it with decima-
tion. The intended purpose of the ‘smart’ data sampling
method is modelling, therefore we use the data samples to
train models. We test the models on a data set separate
from the training data set and compare the figures of
merit.

The results show that the research question was ill-posed.
Training data sampling methods cannot be ranked from
best to worst any more than models can be ranked. Models
can be ranked in suitability for a particular purpose – and
the purported use of the model percolates to the other
side and determines the suitability of the data sample.
In particular, decimation is better when we want a good
MSLL and ‘smart’ sampling is better for eRMSt, at least
with the system studied. We want to emphasise that we
do not vary the test data set. The change of the figure of
merit is sufficient to change which model better predicts
the outcome of the same experiments and which way of
training data sampling leads to a better model.

Data sample selection has a particularly strong influence
on the predicted variance compared to the predicted
mean value. This is not surprising: the sample variance
is typically easier to influence than the sample mean by
carefully choosing the sample.
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Perne, M. and Stepančič, M. (2018). Regressor selection
using Lipschitz quotients on the F-16 aircraft bench-
mark. In 2018 Workshop on Nonlinear System Identi-
fication Benchmarks, 18. Liège, Belgium, April 11–13,
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Data sample selection has a particularly strong influence
on the predicted variance compared to the predicted
mean value. This is not surprising: the sample variance
is typically easier to influence than the sample mean by
carefully choosing the sample.
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Noël, J. and Schoukens, M. (2017). F-16 aircraft
benchmark based on ground vibration test data. In
2017 Workshop on Nonlinear System Identification
Benchmarks, 19–23. Brussels, Belgium, April 24–26,
2017. URL http://nonlinearbenchmark.org/FILES/
BenchmarkWorkshop2017_Abstracts.pdf.
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