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∗ Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
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Abstract: This paper presents the data-driven modelling part of a multi-input multi-output
hybrid model of the Wastewater Treatment Plant (WWTP) and the simulation of the WWTP
effluent. The information about the future effluent concentrations is important since it is used
for efficient managing of the plant, for example in decision making, predictive control, quality
control, and detection of violation of effluent limits. The hybrid model consists of a theoretical
model based on first principles upgraded with a probabilistic data-driven model. The integrated
model is based on a multi-input multi-output autoregressive Gaussian process (GP) model where
the exogenous inputs include the predictions from the theoretical model. This approach allows
us to use all available information in a single integrated model. We show significant improvement
over the theoretical model for one-day-ahead prediction and validate the model for simulation,
which can also be used when the effluent concentrations are not measured in an on-line fashion.
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1. INTRODUCTION

Wastewater treatment is important for managing the qual-
ity of the water. Most often it is conducted in biological
Wastewater Treatment Plants (WWTPs) aiming to con-
vert and remove the pollutants to the level that treated
water can be released to the water body or filtered. For ef-
ficient operation and control, a good model of the WWTP
is required. Modelling and prediction of certain wastewater
polluting compounds (e.g. organic matter, nitrogen, and
phosphorus) is important in decision making because it
helps to determine the acceptable impact of the WWTP
effluent on the environment (Rahmat et al., 2011; Guo
et al., 2015). Another aspect of using the model is to design
energy-efficient control schemes of the plant (Vrečko et al.,
2011).

A prediction of the effluent concentrations is usually ob-
tained from a theoretical model that is derived from first
principles. These theoretical models take into account
the knowledge of the biological processes. Currently, the
state-of-the-art theoretical models come from a family
of activated sludge models (ASM) (Henze et al., 2000).
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Another approach is to obtain the predictions with a data-
driven model which is based on directly measured process
variables from sensors within the system and is usually
modelled with multivariate statistics, fuzzy systems, or
artificial neural networks (ANN).

The aforementioned approaches have their strengths and
disadvantages. Theoretical models are time-consuming
and require a lot of effort to adjust the model parameters
to the real WWTP. Another limitation of the theoretical
model is the lack of process knowledge that is yet to be
explained. Data-driven models can suffer from the limited
amount of process measurements. They are also bound to
certain operating conditions and are less interpretable. On
the other hand, the data-driven models can find patterns
and deviations which can not (yet) be explained by a
theoretical model. The hybrid model takes into account
both the benefits of the aforementioned approaches, i.e.,
the prior knowledge of the physical process and data-
driven insight from measured data. The prediction from
the theoretical model is used as an input to the data-
driven model. This results in an integrated model that can
model the remaining deviations from the current theoret-
ical model based on the sensor measurements. A hybrid
approach where the ANNs are used for the data-driven
part can be found in (Anderson et al., 2000; Lee et al.,
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2011).

A prediction of the effluent concentrations is usually ob-
tained from a theoretical model that is derived from first
principles. These theoretical models take into account
the knowledge of the biological processes. Currently, the
state-of-the-art theoretical models come from a family
of activated sludge models (ASM) (Henze et al., 2000).

� The authors acknowledge the research core funding No. P2-0001,
and Ph.D. grant for Tadej Krivec which were financially supported
by the Slovenian Research Agency.

Another approach is to obtain the predictions with a data-
driven model which is based on directly measured process
variables from sensors within the system and is usually
modelled with multivariate statistics, fuzzy systems, or
artificial neural networks (ANN).

The aforementioned approaches have their strengths and
disadvantages. Theoretical models are time-consuming
and require a lot of effort to adjust the model parameters
to the real WWTP. Another limitation of the theoretical
model is the lack of process knowledge that is yet to be
explained. Data-driven models can suffer from the limited
amount of process measurements. They are also bound to
certain operating conditions and are less interpretable. On
the other hand, the data-driven models can find patterns
and deviations which can not (yet) be explained by a
theoretical model. The hybrid model takes into account
both the benefits of the aforementioned approaches, i.e.,
the prior knowledge of the physical process and data-
driven insight from measured data. The prediction from
the theoretical model is used as an input to the data-
driven model. This results in an integrated model that can
model the remaining deviations from the current theoret-
ical model based on the sensor measurements. A hybrid
approach where the ANNs are used for the data-driven
part can be found in (Anderson et al., 2000; Lee et al.,

Integrated theoretical and data-driven
Gaussian Process NARX Model for the
Simulation of Effluent Concentrations in

Wastewater Treatment Plant �

Tadej Krivec ∗ Nadja Hvala ∗∗ Juš Kocijan ∗∗∗
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A prediction of the effluent concentrations is usually ob-
tained from a theoretical model that is derived from first
principles. These theoretical models take into account
the knowledge of the biological processes. Currently, the
state-of-the-art theoretical models come from a family
of activated sludge models (ASM) (Henze et al., 2000).
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Another approach is to obtain the predictions with a data-
driven model which is based on directly measured process
variables from sensors within the system and is usually
modelled with multivariate statistics, fuzzy systems, or
artificial neural networks (ANN).

The aforementioned approaches have their strengths and
disadvantages. Theoretical models are time-consuming
and require a lot of effort to adjust the model parameters
to the real WWTP. Another limitation of the theoretical
model is the lack of process knowledge that is yet to be
explained. Data-driven models can suffer from the limited
amount of process measurements. They are also bound to
certain operating conditions and are less interpretable. On
the other hand, the data-driven models can find patterns
and deviations which can not (yet) be explained by a
theoretical model. The hybrid model takes into account
both the benefits of the aforementioned approaches, i.e.,
the prior knowledge of the physical process and data-
driven insight from measured data. The prediction from
the theoretical model is used as an input to the data-
driven model. This results in an integrated model that can
model the remaining deviations from the current theoret-
ical model based on the sensor measurements. A hybrid
approach where the ANNs are used for the data-driven
part can be found in (Anderson et al., 2000; Lee et al.,
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2002; Cote et al., 1995), and a probabilistic approach based
on Gaussian processes (GPs) can be found in (Hvala and
Kocijan, 2020).

ANNs are prone to overfit given the small dataset avail-
able. Therefore, it is difficult to identify a good model
with ANNs, mainly because of the many metaparameters
involved. Another drawback is that the uncertainty of the
system is not accounted for. Unlike ANNs, GPs proved to
work well on smaller datasets, can model the uncertainty
in the system, and protect well against overfitting since
the Bayesian nonparametric approach penalizes overly
complex models. The information about the predicted
uncertainty can also help to assess the violations of the
conditions under which the theoretical model has been
retrieved. The limitation of the current GP models for
modelling WWTP effluent is that they use multiple multi-
input single-output models, which can not provide multi-
day-ahead predictions within a single integrated model (in
an autoregressive manner).

This paper presents a hybrid model based on a multi-input
multi-output Gaussian Process Nonlinear AutoRegressive
eXogenous (GP-NARX) model which takes into account
all the available information in a single integrated model.
Our contributions are the following:

• We consider a hybrid multi-input multi-output GP-
NARX model to simultaneously model the output
variables of interest inside a single integrated model
for the effluent concentrations in WWTP.

• We extend the software framework for modelling with
GPs (van der Wilk et al., 2020) for multi-output
training and simulation of GP-NARX models.

• We improve on the previous work on hybrid GP-
NARX models for WWTP, where we not only con-
sider prediction, but also the simulation of the effluent
concentrations.

The remaining of the paper is structured as follows. In
Section 2 we present a multi-input multi-output GP-
NARX model and propose a simple (but efficient) sam-
pling scheme for the effluent simulation. In Section 3 we
consider the WWTP case study and present the results of
the prediction and the simulation of the effluent concen-
trations. Lastly, we discuss the limitations of the current
work, future work, and conclude with the final remarks in
Section 4.

2. MULTI-INPUT MULTI-OUTPUT GP-NARX
MODEL

The process is described by

Yi,p = fp(Zi,:) + εpi , (1)

where Y ∈ Rn×p represents a multi-dimensional matrix of
the observed outputs and the mapping f represents a non-
linear mapping modeled with a GP. The latent function fp

is presumed to be corrupted with independent and identi-
cally distributed noise that follows a Gaussian distribution
εpi ∼ N (0, σ2

p). The input matrix Z ∈ Rn×(p·na+d·nb) is
represented with a Nonlinear AutoRegressive eXogenous

We use Ai,: ∈ R1×n to represent the i-th row of the matrix A,
whereas A:,j ∈ Rm×1 represents the j-th column of the matrix
A ∈ Rm×n.

(NARX) model. The i-th row of the input matrix Z is
defined by

Zi,: = [Yi−1,:, . . . ,Yi−na,:,Xi,:, . . . ,Xi−nb,:], (2)

where Yi,: defines the i-th row of the output matrix Y
and [Xi,:, . . . ,Xi−nb,:] ∈ R1×d·nb the i-th row of the matrix
with exogenous inputs. Meta-parameters na and nb denote
the number of lags.

Let the matrix F represent the matrix of latent function
values where Fi,p = fp(Zi,:). Let fp = F:,p and f =

[f1
T
, . . . , fp

T
]T ∈ Rn·p×1 and let the same notation hold

for Y. A GP then defines the prior over the vector
of latent function values f (Rasmussen and Williams,
2006). Allowing separate parametrizations of each fp,
a GP is fully specified by a separate mean mp(Zi,:)
and a separate covariance function kp(Zi,:,Zj,:) for each
output p. The covariance function has to satisfy the
condition of generating a semi-positive definite matrix.
Many popular choices can be found in (Kocijan, 2016),
where combinations of the covariance functions are also
permitted. Without loss of generality, we select the mean
function as 0.

Let θp define the hyperparameters of the covariance func-
tion kp. The covariance matrix of the vector of latent
function values p(fp|Z, θp) ∼ N (0,Kp

ff ) is defined by

Kp
ff =



kp(Z1,:,Z1,:) . . . kp(Z1,:,Zn,:)

...
. . .

...
kp(Zn,:,Z1,:) . . . kp(Zn,:,Zn,:)


 . (3)

The likelihood of f fully specifies the probabilistic model.
Allowing separate noise levels for each column it is defined
by p(yp|fp, σ2

p) = N (fp,Kp
ff + σ2

pI). The covariance of
the joint prior distribution over all vectors of the observed
values p(y|Z, θ, σ2) ∼ N (0,Kyy) is then defined by

Kyy =




K1
ff + σ2

1I 0 . . . 0

0 K2
ff + σ2

2I . . . 0
... 0

. . . 0
0 0 . . . Kp

ff + σ2
pI


 , (4)

where θ = {θ1, . . . , θp} and σ2 = {σ2
1 , . . . , σ

2
p}. The block-

diagonal structure implies that the outputs are condition-
ally independent given the inputs and hyperparameters.
Assuming f t+1 represents a vector of latent function values
at the next time step t and the corresponding input is
denoted by zt+1, the posterior distribution over the vector
of latent function values is defined by

p(f , f t+1|y,Z, zt+1, θ, σ
2) =

p(y|f , σ2)p(f , f t+1|Z, zt+1, θ)

p(y|Z, θ, σ2)
.

(5)

2.1 Hyperparameter estimation

Hyperparameters θ and σ2 can be determined with the
maximization of the marginal-log-likelihood defined by

log p(y|Z, θ, σ2) =

−1

2
log(|Kyy|)−

1

2
yTK−1

yy y − np

2
log(2π).

(6)

Since the covariance matrix Kyy is block-diagonal, each
block can be parametrized with a separate set of hyper-
parameters and different covariance function choices. The
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number of hyperparameters can be reduced by estimating
a single covariance function with only one set of hyper-
parameters. Gradients of the objective can be analytically
obtained (Rasmussen and Williams, 2006). Hereafter we
omit the conditional dependency on θ and σ2 in the nota-
tion for convenience.

2.2 Prediction

Predictive distribution is obtained by integrating the la-
tent posterior out of the likelihood at test inputs

p(yt+1|y,Z, zt+1) =∫
p(yt+1|f t+1)p(f t+1|y,Z, zt+1)df t+1.

(7)

The mean and the variance of the predictive distribution
can be evaluated in closed-form and are defined by

µt+1(p(yt+1|y,Z, zt+1)) = Ky∗yK
−1
yy y, (8a)

σ2
t+1(p(yt+1|y,Z, zt+1)) = Ky∗y∗ −Ky∗yK

−1
yy Kyy∗ (8b)

where Ky∗y∗ , Ky∗y, and Kyy denote the covariance ma-
trices between the test inputs zt+1, between the test and
training inputs Z, and between training inputs Z respec-
tively.

2.3 Simulation

Simulation is obtained in the form of a nonlinear output
error (NOE) model. The first step (i.e., t+ 1) is identical
to the prediction defined with the equation (7). At the
time step t + 2 the input vector to the distribution
p(yt+2|y,Z, zt+2) is defined by

zt+2 = [fTt+1, . . . , f
T
t−na

,Xt+2,:, . . . ,Xt+2−nb,:], (9)

where f t+1 follows a multivariate Gaussian distribution
(i.e., the latent predictive distribution p(f t+1|y,Z, zt+1)).
The input zt+2 is therefore no longer deterministic, but
rather an uncertain input and makes the integral∫

p(yt+2|y,Z, zt+2)p(zt+2)dzt+2 (10)

intractable. The predictive distribution at the time step
t + 2 is approximated in the form of a Gaussian Mixture
Model (GMM) defined by

p(yt+2|y,Z, zt+2) ≈
1

m

m∑
i=1

p(yt+2|y,Z, ẑ
i
t+2), (11)

where

ẑit+2 = [f̂
iT

t+1, . . . , f
T
t−na

,Xt+2,:, . . . ,Xt+2−nb,:], (12)

and f̂
i

t+1 is a sample from the latent predictive distri-
bution. The number of samples is denoted with m. This
process can be repeated up to an arbitrary time step into

the future where the samples of f̂
i

t+q are drawn from a
GMM instead of a Gaussian distribution for all q ≥ 2.

3. CASE STUDY

The WWTP plant considered in this study is subjected
to control which heavily depends on the accurate model
of the plant. This case study focuses on the simulation
model of nitrogen and phosphorus in an autoregressive
manner which enables the use of historic measurements for
estimating the model parameters, and iterative prediction
even when the nitrogen and phosphorus concentrations are
not measured on-line.

3.1 WWTP description

The plant consists of mechanical treatment (screens, grit,
and grease chamber), a biological stage with suspended
biomass activated sludge process (three parallel plug-flow
aerobic reactors and four parallel secondary clarifiers), and
a sludge treatment (sludge thickening, aerobic digestion,
dewatering, and sludge drying). To design efficient and
reliable control schemes, a good predictive model for ni-
trogen and phosphorus is needed. The data used in this
study are presented in Table 1 where Qi stands for influent
flow, CODi for influent chemical oxygen demand, TNi for
influent total nitrogen, NH4i for influent ammonia nitro-
gen, TPi for influent total phosphorus, Tw for wastewater
temperature, DOb1 for dissolved oxygen concentration at
the beginning of the aeration tank, DOb2 for dissolved
oxygen concentration at the end of the aeration tank, Qr

for return sludge flow, MLSSb for mixed liquor suspended
solids concentration at the outlet of the aeration tank,
Qrw for reject water flow, TNth for effluent total nitrogen
predicted by the theoretical model, TPth for effluent total
phosphorus predicted by the theoretical model, TNp for
measured effluent total nitrogen, and TPp for measured
effluent total phosphorus. The data consists of 650 daily
measurements, where the first 400 measurements are se-
lected for the training dataset and the rest as a test
dataset.

3.2 WWTP theoretical model

For predicting the nitrogen and phosphorus effluent con-
centrations, a theoretical model was first proposed. Table 1
shows the measured outputs Yth and the measured inputs
Xth that were used to tune the theoretical model. The
measured outputs are only used for tuning the model and
are not used as historic inputs for predicting the concentra-
tions of the effluent. The theoretical model can therefore

Table 1. Data used in the case study for modelling
the nitrogen and phosphorus concentrations in a full-
scale WWTP plant. Matrix Xth represents the inputs
to the theoretical model and Yth the measurements of
the outputs to which the theoretical model is tuned.
Matrix X is the matrix of inputs which together with
the delayed output measurements Y parametrizes the

inputs to the GP-NARX model.

Theoretical model GP-NARX model

Xth Yth X Y

Qi × - × -
CODi × - × -
TNi × - × -
NH4i × - × -
TPi × - × -
Tw × - × -

DOb1 × - × -
DOb2 × - × -
Qr × - × -

MLSSb × - × -
Qrw - - × -
TNth - - × -
TPth - - × -
TNp - × - ×
TPp - × - ×
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number of hyperparameters can be reduced by estimating
a single covariance function with only one set of hyper-
parameters. Gradients of the objective can be analytically
obtained (Rasmussen and Williams, 2006). Hereafter we
omit the conditional dependency on θ and σ2 in the nota-
tion for convenience.

2.2 Prediction

Predictive distribution is obtained by integrating the la-
tent posterior out of the likelihood at test inputs

p(yt+1|y,Z, zt+1) =∫
p(yt+1|f t+1)p(f t+1|y,Z, zt+1)df t+1.

(7)

The mean and the variance of the predictive distribution
can be evaluated in closed-form and are defined by

µt+1(p(yt+1|y,Z, zt+1)) = Ky∗yK
−1
yy y, (8a)

σ2
t+1(p(yt+1|y,Z, zt+1)) = Ky∗y∗ −Ky∗yK

−1
yy Kyy∗ (8b)

where Ky∗y∗ , Ky∗y, and Kyy denote the covariance ma-
trices between the test inputs zt+1, between the test and
training inputs Z, and between training inputs Z respec-
tively.

2.3 Simulation

Simulation is obtained in the form of a nonlinear output
error (NOE) model. The first step (i.e., t+ 1) is identical
to the prediction defined with the equation (7). At the
time step t + 2 the input vector to the distribution
p(yt+2|y,Z, zt+2) is defined by

zt+2 = [fTt+1, . . . , f
T
t−na

,Xt+2,:, . . . ,Xt+2−nb,:], (9)

where f t+1 follows a multivariate Gaussian distribution
(i.e., the latent predictive distribution p(f t+1|y,Z, zt+1)).
The input zt+2 is therefore no longer deterministic, but
rather an uncertain input and makes the integral∫

p(yt+2|y,Z, zt+2)p(zt+2)dzt+2 (10)

intractable. The predictive distribution at the time step
t + 2 is approximated in the form of a Gaussian Mixture
Model (GMM) defined by

p(yt+2|y,Z, zt+2) ≈
1

m

m∑
i=1

p(yt+2|y,Z, ẑ
i
t+2), (11)

where

ẑit+2 = [f̂
iT

t+1, . . . , f
T
t−na

,Xt+2,:, . . . ,Xt+2−nb,:], (12)

and f̂
i

t+1 is a sample from the latent predictive distri-
bution. The number of samples is denoted with m. This
process can be repeated up to an arbitrary time step into

the future where the samples of f̂
i

t+q are drawn from a
GMM instead of a Gaussian distribution for all q ≥ 2.

3. CASE STUDY

The WWTP plant considered in this study is subjected
to control which heavily depends on the accurate model
of the plant. This case study focuses on the simulation
model of nitrogen and phosphorus in an autoregressive
manner which enables the use of historic measurements for
estimating the model parameters, and iterative prediction
even when the nitrogen and phosphorus concentrations are
not measured on-line.

3.1 WWTP description

The plant consists of mechanical treatment (screens, grit,
and grease chamber), a biological stage with suspended
biomass activated sludge process (three parallel plug-flow
aerobic reactors and four parallel secondary clarifiers), and
a sludge treatment (sludge thickening, aerobic digestion,
dewatering, and sludge drying). To design efficient and
reliable control schemes, a good predictive model for ni-
trogen and phosphorus is needed. The data used in this
study are presented in Table 1 where Qi stands for influent
flow, CODi for influent chemical oxygen demand, TNi for
influent total nitrogen, NH4i for influent ammonia nitro-
gen, TPi for influent total phosphorus, Tw for wastewater
temperature, DOb1 for dissolved oxygen concentration at
the beginning of the aeration tank, DOb2 for dissolved
oxygen concentration at the end of the aeration tank, Qr

for return sludge flow, MLSSb for mixed liquor suspended
solids concentration at the outlet of the aeration tank,
Qrw for reject water flow, TNth for effluent total nitrogen
predicted by the theoretical model, TPth for effluent total
phosphorus predicted by the theoretical model, TNp for
measured effluent total nitrogen, and TPp for measured
effluent total phosphorus. The data consists of 650 daily
measurements, where the first 400 measurements are se-
lected for the training dataset and the rest as a test
dataset.

3.2 WWTP theoretical model

For predicting the nitrogen and phosphorus effluent con-
centrations, a theoretical model was first proposed. Table 1
shows the measured outputs Yth and the measured inputs
Xth that were used to tune the theoretical model. The
measured outputs are only used for tuning the model and
are not used as historic inputs for predicting the concentra-
tions of the effluent. The theoretical model can therefore

Table 1. Data used in the case study for modelling
the nitrogen and phosphorus concentrations in a full-
scale WWTP plant. Matrix Xth represents the inputs
to the theoretical model and Yth the measurements of
the outputs to which the theoretical model is tuned.
Matrix X is the matrix of inputs which together with
the delayed output measurements Y parametrizes the

inputs to the GP-NARX model.

Theoretical model GP-NARX model

Xth Yth X Y

Qi × - × -
CODi × - × -
TNi × - × -
NH4i × - × -
TPi × - × -
Tw × - × -

DOb1 × - × -
DOb2 × - × -
Qr × - × -

MLSSb × - × -
Qrw - - × -
TNth - - × -
TPth - - × -
TNp - × - ×
TPp - × - ×

Fig. 1. The hybrid model used for WWTP plant modelling.
The exogenous inputs to the Gaussian process model
are the same inputs as to the theoretical model Xth

augmented with the predictions from the theoretical
model TNth and TPth, additional measurement Qrw

and all their laggs as shown in Table 1. The solid lines
represent the model for parameter estimation. The
dashed line represents the back-propagated outputs
in simulation. In that case, the delayed outputs are
random variables, rather than deterministic measure-
ments.

also be seen as a simulation model since the predicted
effluent concentrations at an arbitrary time step in the
future only depend on the measurements of the input for
the time step considered. The theoretical model of the
plant was designed and tuned with plant measurements.
The aerobic reactors in the biological stage are modelled
with ASM2d model. The secondary clarifiers are consid-
ered biologically inactive and are modelled with the double
exponential settling velocity function (Takács et al., 1991).
The full model is developed in GPS-X simulation software
(Hydromantis, 2016). The details of the theoretical model
can be found in (Hvala et al., 2018).

3.3 Hybrid model

For the data-driven part of a hybrid model, a multi-
input multi-output Gaussian process was used, which was
described in Section 2. The hybrid model considered in
this case study is shown on Figure 1. The data used for
estimating the model hyperparameters are presented in
Table 1. We can see that the theoretical knowledge of

Table 2. The results of a 10-fold cross-validation on
the training dataset for hyperparameter estimation of
shared (S.) and independent (I.) covariance functions
(k), where TNhyb and TPhyb represent the one-day-
ahead predictions from the hybrid model of nitrogen
and phosphorus concentrations respectively. The final

choice of covariance functions is shown in bold.

TNhyb TPhyb

k1 SMSE k2 SMSE

I. Lin. + M52A 0.244 ± 0.12 Lin. + M52A 0.317 ± 0.11
I. Lin. + RBFA 0.249 ± 0.12 Lin. + RBFA 0.316 ± 0.10
I. Lin. + M52 0.210 ± 0.11 Lin. + M52 0.297 ± 0.09
I. Lin. + RBF 0.211 ± 0.11 Lin. + RBF 0.296 ± 0.10
S. Lin. + M52A 0.214 ± 0.09 Lin. + M52A 0.320 ± 0.10
S. M52A 0.244 ± 0.15 M52A 0.347 ± 0.20
S. Lin. + RBFA 0.218 ± 0.11 Lin. + RBFA 0.329 ± 0.11
S. RBFA 0.238 ± 0.14 RBFA 0.350 ± 0.21
S. Lin. + M52 0.204 ± 0.09 Lin. + M52 0.310 ± 0.09
S. M52 0.223 ± 0.11 M52 0.315 ± 0.11
S. Lin. + RBF 0.202 ± 0.09 Lin. + RBF 0.312 ± 0.10
S. RBF 0.217 ± 0.11 RBF 0.314 ± 0.11

Fig. 2. Comparison of a hybrid one-day-ahead prediction
(TNhyb, TPhyb), and a theoretical one-day-ahead pre-
diction (TNth, TPth), for the first 100 days on the
test dataset. The solid region represents a 2 standard
deviation interval of the prediction.

the process is introduced to the data-driven model with
the inclusion of the theoretical predictions of nitrogen
(TNth) and phosphorus (TPth) in the input matrix X
which parametrizes the inputs to a GP-NARX model.

Block diagonal joint distribution of a GP-NARX model
presented with equation (4) allows us to estimate the
hyperparameters of the model with 2 schemes, either a
covariance function is shared among the block elements
and only one set of hyperparameters is optimized, or each
block is parameterized by a separate covariance function.

Multiple covariance functions and their combinations from
(Kocijan, 2016) were tested empirically through 10-fold
cross-validation on the training dataset, where Table 2
only shows some on them. In the Table 2 Lin. stands for
linear covariance function, RBF for radial basis function,
M52 for Matérn52 covariance function, and the subscript
in, e.g. M52A, denotes the Automatic Relevance Deter-
mination (ARD) property. Covariance functions used in
Table 2 are defined in the Appendix A. We can see in Table
2 that the best overall results were obtained from hyper-
parameter estimation of independent covariance functions
for each output, where a combination of a linear and
Matérn52 covariance function was used for modelling the
nitrogen concentration and a combination of a linear and
RBF covariance function for modelling the phosphorus
concentration.

The objective, defined by equation (6), was optimized with
Adam (Kingma and Ba, 2014) with learning rate α =
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Table 3. Comparison of the performance between
the hybrid-model prediction (TNhyb, TPhyb), and
theoretical-model prediction (TNth, TPth), on the test

dataset. The best results are shown in bold.

TNhyb TPhyb TNth TPth

SMSE 0.180 0.229 0.254 0.378
PCC 0.902 0.879 0.869 0.811

MSLL -2.50 -1.00 - -

Table 4. Comparison of the performance between
the hybrid-model simulation (TNhyb, TPhyb), and
theoretical-model simulation (TNth, TPth), on the test

dataset. The best results are shown in bold.

TNhyb TPhyb TNth TPth

SMSE 0.261 0.281 0.254 0.378
PCC 0.856 0.849 0.869 0.811

MSLL -2.067 -0.907 - -

0.1 and 500 iterations. Optimization parameters and the
autoregressive parameters from equation (2) were found
empirically over 10-fold cross-validation. Autoregressive
parameters were selected as [na, nb] = [1, 2]. Increasing
the lags did not significantly improve the results.

3.4 Results

In this section, we present the results for the one-day-
ahead prediction and the simulation of nitrogen and phos-
phorus effluent concentrations in the WWTP.

Prediction Figure 2 shows the first 100 days of the
predicted response for nitrogen and phosphorus concen-
trations on a test dataset. The whole training dataset
was used for estimating the hyperparameters, where the
metaparameters were choosen as previously described in
Section 3.3. We can see that the concentrations are well de-
scribed with the predicted means. Also, the shaded region
of 2 standard deviations captures the measured values well.
Table 3 shows the comparison between the hybrid-model
prediction and the theoretical-model prediction for 2 stan-
dard performance measures, standardized mean squared
error (SMSE) (Kocijan, 2016) and Pearson correlation
coefficient (PCC) (Freedman et al., 2007). Mean stan-
dardized log loss (MSLL) is also presented, which is more
suitable for validation in the form of random variables,
weighting the error by the predicted standard deviation.
MSLL is approximately zero for simple methods and neg-
ative for better methods and is defined in Appendix B.
We can see in Table 3 that the effluent predictions from
the theoretical model are significantly improved with the
hybrid model. Also, MSLL shows that not only the means
are well modeled, but also the predicted uncertainty.

Simulation The ultimate model validation is the sim-
ulation. This can be seen as training a NARX model,
and validating the learned hyperparameters with a NOE
model. Figure 3 shows 50 independent free-run simula-
tion responses of nitrogen and phosphorus concentrations
on the test dataset and the corresponding means of the
samples. We can see that the simulation samples describe
the measured variables well. Table 4 shows the SMSE,

Fig. 3. Comparison of a hybrid simulation (TNhyb, TPhyb),
and theoretical simulation (TNth, TPth), for the first
100 days on the test dataset. The thick blue line
represents the mean of the 300 simulated samples.

PCC, and MSLL for the simulation response, where the
distribution at each step is approximated with a Gaussian
from 300 independent simulation samples (50 samples are
only used for the purpose of presentation). Similarly, as
with the prediction, MSLL shows that the concentrations
are well modelled in terms of probability distributions.
Overall, we can see that the hybrid model achieves better
results than the theoretical one. Worse SMSE for the sim-
ulation of the concentration of nitrogen is not significant
in comparison with a far better SMSE for the simulation
of the concentration of phosphorus.

4. CONCLUSION

This paper presented the data-driven modelling part of
a hybrid model of WWTP. The managing of wastewater
is essential in water quality control and has a significant
environmental impact. Accurate predictions of nitrogen
and phosphorus concentrations are important in devising
efficient control schemes, which aim to satisfy the accept-
able impact of the WWTP effluent on the environment.
To devise optimal control schemes, both multiple-day-
ahead prediction and its uncertainty estimation are heavily
desired.

Our modelling solution significantly improved the pre-
dictions of nitrogen and phosphorus concentrations com-
pared to the existing theoretical approach. The existing
hybrid approach using GPs consisted of multiple multi-
input single-output models, whereas we considered a single
multi-input multi-output GP model. This allows us to
concurrently simulate multiple outputs considered in this
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Table 3. Comparison of the performance between
the hybrid-model prediction (TNhyb, TPhyb), and
theoretical-model prediction (TNth, TPth), on the test

dataset. The best results are shown in bold.

TNhyb TPhyb TNth TPth

SMSE 0.180 0.229 0.254 0.378
PCC 0.902 0.879 0.869 0.811

MSLL -2.50 -1.00 - -

Table 4. Comparison of the performance between
the hybrid-model simulation (TNhyb, TPhyb), and
theoretical-model simulation (TNth, TPth), on the test

dataset. The best results are shown in bold.

TNhyb TPhyb TNth TPth

SMSE 0.261 0.281 0.254 0.378
PCC 0.856 0.849 0.869 0.811

MSLL -2.067 -0.907 - -

0.1 and 500 iterations. Optimization parameters and the
autoregressive parameters from equation (2) were found
empirically over 10-fold cross-validation. Autoregressive
parameters were selected as [na, nb] = [1, 2]. Increasing
the lags did not significantly improve the results.

3.4 Results

In this section, we present the results for the one-day-
ahead prediction and the simulation of nitrogen and phos-
phorus effluent concentrations in the WWTP.

Prediction Figure 2 shows the first 100 days of the
predicted response for nitrogen and phosphorus concen-
trations on a test dataset. The whole training dataset
was used for estimating the hyperparameters, where the
metaparameters were choosen as previously described in
Section 3.3. We can see that the concentrations are well de-
scribed with the predicted means. Also, the shaded region
of 2 standard deviations captures the measured values well.
Table 3 shows the comparison between the hybrid-model
prediction and the theoretical-model prediction for 2 stan-
dard performance measures, standardized mean squared
error (SMSE) (Kocijan, 2016) and Pearson correlation
coefficient (PCC) (Freedman et al., 2007). Mean stan-
dardized log loss (MSLL) is also presented, which is more
suitable for validation in the form of random variables,
weighting the error by the predicted standard deviation.
MSLL is approximately zero for simple methods and neg-
ative for better methods and is defined in Appendix B.
We can see in Table 3 that the effluent predictions from
the theoretical model are significantly improved with the
hybrid model. Also, MSLL shows that not only the means
are well modeled, but also the predicted uncertainty.

Simulation The ultimate model validation is the sim-
ulation. This can be seen as training a NARX model,
and validating the learned hyperparameters with a NOE
model. Figure 3 shows 50 independent free-run simula-
tion responses of nitrogen and phosphorus concentrations
on the test dataset and the corresponding means of the
samples. We can see that the simulation samples describe
the measured variables well. Table 4 shows the SMSE,

Fig. 3. Comparison of a hybrid simulation (TNhyb, TPhyb),
and theoretical simulation (TNth, TPth), for the first
100 days on the test dataset. The thick blue line
represents the mean of the 300 simulated samples.

PCC, and MSLL for the simulation response, where the
distribution at each step is approximated with a Gaussian
from 300 independent simulation samples (50 samples are
only used for the purpose of presentation). Similarly, as
with the prediction, MSLL shows that the concentrations
are well modelled in terms of probability distributions.
Overall, we can see that the hybrid model achieves better
results than the theoretical one. Worse SMSE for the sim-
ulation of the concentration of nitrogen is not significant
in comparison with a far better SMSE for the simulation
of the concentration of phosphorus.

4. CONCLUSION

This paper presented the data-driven modelling part of
a hybrid model of WWTP. The managing of wastewater
is essential in water quality control and has a significant
environmental impact. Accurate predictions of nitrogen
and phosphorus concentrations are important in devising
efficient control schemes, which aim to satisfy the accept-
able impact of the WWTP effluent on the environment.
To devise optimal control schemes, both multiple-day-
ahead prediction and its uncertainty estimation are heavily
desired.

Our modelling solution significantly improved the pre-
dictions of nitrogen and phosphorus concentrations com-
pared to the existing theoretical approach. The existing
hybrid approach using GPs consisted of multiple multi-
input single-output models, whereas we considered a single
multi-input multi-output GP model. This allows us to
concurrently simulate multiple outputs considered in this

study up to the desired horizon. From the results, we con-
clude that our model can be also used for simulation, which
is essential in the case when the nitrogen and phosphorus
concentrations are not measured on-line.

The current limitation of our approach is that the joint
distribution of GP-NARX model is block-diagonal, which
only considers conditionally independent outputs given the
inputs and hyperparameters. A future improvement would
be to consider a non-block-diagonal joint distribution (Guo
et al., 2010). Another limitation of our approach is that the
hyperparameters of the GP-NARX model are estimated
for prediction, where we do not consider simulation in
their estimation. This could be improved with models that
do consider simulation, e.g., NOE models or state-space
models.
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Appendix A. COVARIANCE FUNCTIONS

A.1 Linear covariance function

Linear covariance function is defined by

k(Zi,:,Zj,:) = σ2
fZi,:Zj,:, (A.1)

where σf denotes a scaling factor.

A.2 Radial basis covariance function

Radial basis covariance function is defined by

k(Zi,:,Zj,:) = σ2
fe

− 1
2 r

2

, (A.2)

where r = || 1l (Zi,: − Zj,:)|| and l represents a lengthscale
parameter. Automatic Relevance Determination (ARD)
property weights the columns of the input Z with their
corresponding lengthscale ld, where r is defined by

r =

√
(Zi,: − Zj,:)TΛ

−1(Zi,: − Zj,:), (A.3)

and Λ−1 = diag([l−2
1 , . . . , l−2

d ]), where d is the number of
columns in matrix Z.

A.3 Matérn52 covariance function

A Matérn52 covariance function is defined by

k(Zi,:,Zj,:) = σ2
f (1 +

√
5r +

5

3
r2)e−

√
5r. (A.4)

Matérn52 covariance function with an ARD property
defines r the same as in the Radial basis covariance
function with equation A.3.

Appendix B. PERFORMANCE MEASURES

B.1 Mean Standardized Log Loss

The mean standardized log loss (MSLL) is defined by

MSLL =
1

2N

N∑
i=1

[
ln(σ2

i ) +
(yi − µi))

2

σ2
i

]

− 1

2N

N∑
i=1

[
ln(V(y)) +

(yi − E(y))2

V(y)

]
,

(B.1)

where y represents the ground truth, µi the predicted
mean at time step i, σ2

i the predictive variance at time
step i, and N the number of data points.


