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A B S T R A C T   

Atmospheric dispersion models predict the dispersion of harmful substances in case of accidents at industrial 
facilities and nuclear power plants (NPPs). However, high computation time limits their usage in an emergency 
or long-term analyses. This paper reduces the computation time by designing a surrogate data-driven model 
using a grid of tree ensemble models as a surrogate for the physical model and meteorological station mea
surements as model regressors. Regression tree modelling provided information for selecting the most important 
variables for prediction, while model ensembles improved the prediction accuracy. The approach is tested for an 
NPP in complex terrain to predict spatial (2D) maps of population doses for 24 h after a radiological release. The 
average performance of 2D maps against the physical model is SMSE (Standardized Mean Square Error) < 0.5 
and FMS (Figure of Merit in Space) > 0.5. The designed model performs very well in predicting the long-term 
mean and 95th percentile of population doses. The main shortcoming is the underestimation of very high 
doses. Performance is expected to be further improved by selecting training data using pattern selection tech
niques and potentially by alternative machine learning algorithms or interconnected models, which we intend to 
apply in future work.   

1. Introduction 

Releases of chemical substances due to accidents in industrial facil
ities and nuclear power plants (NPPs) pose a threat to people and the 
environment. Some extreme cases of harmful releases into the atmo
sphere are, for example, the gas leak incident at the pesticide plant in 
Bhopal, India, or the release of atmospheric radiation in the Fukushima 
nuclear disaster, to name but a few. Therefore, measures to prevent 
accidents and ensure adequate preparedness and response are needed to 
reduce the associated risks. 

For nuclear power plants, a model to be used in case of an accidental 
radiological release is designed in advance. Such models include com
plex physical phenomena based on atmospheric dispersion and meteo
rological models. They are computationally intensive, and even for a 
basic set-up, they require a lot of time and effort for the design. In more 
advanced cases, model predictions are run online to ensure better pre
paredness and improve emergency response measures. An example of 

such an online Environmental Information System (EIS) for the Krško 
nuclear power system is described further in this paper. It includes 
several building blocks for the prognosis of air pollution dispersion for 
up to 7 days in advance after the incident. It consists of a detailed 
weather forecast based on the WRF (Weather Research and Forecasting) 
model, prognostic dispersion coefficients (X/Q) or relative concentra
tions calculation based on the MINERVE/SURFPRO and SPRAY 
(Lagrangian particle air pollution dispersion model), and the DOZE 
program for the calculation of population doses (Mlakar et al., 2019a). 
Such a system requires a lot of effort, i.e. considerable time and 
appropriately trained personnel for the online monitoring and mainte
nance of the system. Therefore, to reduce the associated effort and costs, 
the idea presented in this paper is to prepare in advance a surrogate 
model for predicting a spatial map of relative radiation doses. In this 
case, the surrogate model is pre-trained to represent the overall model 
predictions under different meteorological conditions. Therefore, in the 
event of an accident, only current meteorological data from SODAR 
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(sonic detection and ranging meteorological instrument) or LIDAR (light 
detection and ranging for meteorological applications) or RASS (Radio 
Acoustic Sounding System) systems and their predictions are needed for 
the surrogate model to predict the dispersion of harmful substances in 
the atmosphere (air). 

Surrogate modelling is a well-known approach in engineering 
problems for replacing expensive full-scale high-fidelity simulations by 
approximating their input-output responses (Jiang et al., 2020; Alizadeh 
et al., 2020). Surrogate models of atmospheric dispersion models, also 
called meta-models or model emulation, have been already developed 
for different purposes and with different modelling approaches. They 
are most often used for the uncertainty studies of plume prediction. As 
described by Le et al. (2021), the uncertainties can originate from 
different sources, i.e. an emission source, meteorological variables, 
physical model parameters and model approximations. Surrogate 
modelling was also used for computationally efficient surrogate-based 
optimization of physical model parameters, where a surrogate model 
was constructed between model parameters and the physical model 
output (Le et al., 2019). Another application is in Bayesian inverse 
modelling (Lucas et al., 2017), where a surrogate model was used to 
replace weather prediction and dispersion models when relating the 
model output and field measurements for the estimation of a source term 
of a nuclear power plant release. 

Surrogate modelling techniques are based on different methods. 
Some of the most often used methods include Response Surface 
Methods, Radial Basis Functions, Support Vector Machines, Gaussian 
Process Models, Artificial Neural Networks and Ensemble learning 
methods (Jiang et al., 2020; Alizadeh et al., 2020). For atmospheric 
dispersion models, surrogate modelling is very often based on artificial 
neural networks (ANNs). One of the very first applications of using ANNs 
for the representation of air pollution dispersion for point location (i.e. 
1D) is presented in Boznar et al. (1993), where a new method using ANN 
was developed for short-term SO2 prediction around the biggest Slove
nian thermal power plant. The method showed promising results and 
initiated a 30-year-long work done by several scientific groups, dealing 
also with other and more challenging two spatial dimensions (2D) 
problems. 

Carnevale et al. (2012) developed a surrogate model to optimize air 
quality measures to reduce the level of PM10 at a regional scale. 
Therefore, they used ANNs to identify non-linear relations between 
control variables (emission control measures) and air quality indicators 
(pollution index) determined from deterministic physics-based model 
simulations. It was found that the surrogate model can reproduce the 
results of an air pollution model with a few percent error and requires 
less than one percent of their computational power. 

Girard et al. (2016) used Gaussian process emulation to apply the 
Sobol’ global sensitivity analysis for studying the relative influence of a 
set of uncertain model inputs and their interactions on the outputs of the 
atmospheric dispersion for the Fukushima nuclear accident. The emu
lators were evaluated in predicting the time- and space-aggregated 
gamma dose rates as well as time-integrated gamma dose rates at 64 
measurement stations. It was concluded that local approximations are 
harder to obtain. 

Mallet et al. (2018) constructed a meta-model that reproduces the 
main features of the air quality model ADMS-Urban for NO2 and PM10 
simulation on an urban scale with street resolution and continuous re
leases from emission sources. The original model is a static model with 
low-dimensional inputs and high-dimensional outputs and has no tem
poral dimension in inputs and outputs. The outputs of the model are 
projected onto a reduced subspace derived from principal component 
analysis and then emulated using multiple linear regression and Kriging 
or Radial basis functions for interpolation between regression residuals. 

Lauret et al. (2016) proposed cellular automata coupled with an ANN 
for forecasting atmospheric dispersion of methane (CH4) in 2D over 
complex terrain. The dynamic model is based on wind field data and 
discretization of the advection-diffusion equation (first and second 

concentration derivatives) to provide inputs for the ANN. 
Desterro et al. (2020) used a Deep Rectifier Neural Network (DRNN) 

for 2D dose prediction in a Brazilian NPP. The approach was designed 
for short-term prediction up to 1 h after the accident and considering 
five model inputs (wind velocity, wind direction, position x, position y 
and time after the accident started). The DRNN achieved good accuracy 
and fast training time. 

Gunawardena et al. (2021) proposed a machine-learning emulation 
to predict the spatial 2D deposition of radioactive materials. The sur
rogate model is used to emulate FLEXPART-WRF deposition maps ob
tained from the flexible particle Lagrangian dispersion model 
(FLEXPART) and meteorological fields generated from the WRF. The 
aim, in this case, is to obtain an ensemble of predictions due to the 
uncertainties of meteorological modelling, i.e. for different parametri
zations of the WRF model. The surrogate model was designed as a 2D 
grid of hybrid linear and logistic regression models predicting deposi
tion maps for 48 h after the release. In their case, the surrogate model 
needs to be first trained for each of the initial meteorological conditions 
to be able to produce an ensemble of predictions for different WRF 
parameterizations. 

Mendil et al. (2022) developed a Deep Neural Network (DNN) sur
rogate model for spatial 2D representation of air pollution dispersion for 
general cases in urban street canyons. The DNN model was trained offline 
using synthetic data generated by a complex atmospheric transport and 
dispersion Micro-SWIFT-SPRAY model, similar to the model that we 
used in this study. The DNN model was then used to simulate the spread 
of hazardous pollution from different source locations. The approach is 
developed for complex urban environments simulating a 2-h period after 
the incident. The advantage of the proposed system is that it is using 
meteorological and topographical input data. Therefore, it can be 
transferred to similar urban terrains without special DNN model struc
ture adaption. 

This paper aims to design a data-driven surrogate model to represent 
air pollution dispersion for general cases over non-urban complex terrain 
with an NPP as a case study. The task is to emulate the full air-dispersion 
physical model and represent the 2D maps of radiological doses for 24 h 
after a hypothetical radiological release. This should be performed for 
different meteorological conditions using only measured or predicted 
meteorological station measurements as input data for the surrogate 
model predictions. This is a challenging task as doses due to the radio
nuclides in the air are calculated as the integral of the radionuclides 
concentrations over time multiplied by the time of exposure, in this case, 
24 h. Therefore, doses are not simply proportional to a single 2D 
dispersion pattern at given meteorological conditions but to several 
consecutive patterns that may differ significantly one from another. That 
is a significant additional complexity compared to stationary conditions, 
which could be considered in short-term prediction as addressed, for 
example, in Desterro et al. (2020) or Mendil et al. (2022). The thus 
obtained surrogate model can be used for prompt decision-making in 
case of an accidental radiological release, to analyze different model 
options, or to perform long-term analyses, for example, evaluating the 
impact of climate change on the radiological release, which would be 
otherwise difficult due to high computation times. Data to identify a 
surrogate model is obtained by simulating a complete physical model. 
Also, the methodology used is based on a 2D grid of models similar to 
Gunawardena et al. (2021). However, the modelling in our case includes 
several specific features and novelties:  

- The physical model output is a 2D map of relative doses received by 
the population at ground level. Hence an additional mapping of the 
radionuclides concentrations within a limited period of time to 
relative radiation doses is included in the surrogate model. The 
analysis is limited to the ground level since people spend most of 
their time at ground level (we do not analyze skyscraper situations). 
At the ground level, the modelling is also more complex and chal
lenging because of the impact of the terrain and land use. However, 
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the methodology would be the same and could be applied to upper 
levels as well.  

- The surrogate dispersion model is developed for the vicinity of the 
NPP where concentrations are the highest and the computation time 
is critical since the radioactive plume can disperse in a short time, i.e. 
within a few hours. Also, in this case, the methodology could be 
applied for larger distances as well.  

- Model predictions are performed for complex terrain with flat and 
hilly regions using only measured and predicted meteorological 
station data as surrogate model input regressors.  

- Surrogate modelling is based on ensembles of regression tree models. 
Ensemble modelling is one of the commonly listed modelling tech
niques, which have favourable properties for surrogate modelling 
(Alizadeh et al., 2020; Archetti and Candelieri, 2019). The applica
tions in atmospheric dispersion modelling can be found in Lucas 
et al. (2017) for nuclear power source estimation and Ivatt and Evans 
(2020) for predicting the bias in tropospheric ozone prediction 
calculated by an atmospheric chemistry transport model.  

- The surrogate model is tested for a wide variety of realistic annual 
meteorological conditions, and the performance statistics against the 
physical model are evaluated. 

The work presented can also be seen as an attempt at data-driven 
dispersion modelling as an alternative to complex physical modelling, 
provided that input-output data are available, i.e. meteorological mea
surements and information on the process output. In the case presented, 
the output data were generated by the physical model but can also be 
obtained from measurement systems or, for example, 2D satellite im
ages, if available for the pollutants of interest. 

The paper is organized as follows. In the next section, we first present 
the atmospheric dispersion model and the case study of the Krško NPP, 
followed by the description of the main idea, the procedure of designing 
the surrogate model and the performance metrics used to evaluate the 
model. In Section 3, we analyze the model regressors and their time span 
and present some examples of radiation maps as well as statistical results 
of the model performance. The paper ends with conclusions describing 
the main results and perspectives for future work. 

2. Materials and methods 

2.1. The atmospheric dispersion model 

The case study is the Krško NPP, Slovenia, for which the atmospheric 
dispersion model has been already developed and extensively tested 
(Mlakar et al., 2019a). The NPP is located in complex terrain with a flat 
area close to the NPP surrounded by hills reaching up to 450 m in height 
above the level of the NPP (Fig. 1). The problem to be addressed in this 
case is the prediction of relative radiation doses received by the popu
lation in the vicinity of the NPP after a possible accidental radiological 
release into the air. 

A research environmental information system (R-EIS) for the Krško 
NPP predicts the relative radiation doses in the event of a radiological 
release from the NPP. The predictions are made for an area of 25 km ×
25 km centred on the Krško NPP. The area is divided into 100 × 100 
square cells with sides of 250 m, which proved to be the optimal solution 
in terms of accuracy of the physical model, and speed and feasibility of 
the overall modelling process. R-EIS is an upgrade of the online EIS 
described in Mlakar et al. (2019a). In R-EIS, relative doses (Mlakar et al., 
2019b) are used instead of relative concentrations. The input data to 
R-EIS are meteorological measurements and their WRF forecasts on the 
premises of the NPP and its vicinity, including wind speed, wind di
rection, air temperature (all at ground level and vertical profiles) and 
global solar radiation. The output data of R-EIS are 2D fields of relative 
radiation doses at a ground level resulting from the radiological release 
into the air. They are computed by the overall physical transport and 
dispersion model, consisting of the following building blocks:  

- a three-dimensional (3D) weather reconstruction performed by the 
MINERVE and SURFPRO models,  

- the Lagrangian particle air pollution dispersion model SPRAY,  
- the population relative dose model applied in the DOZE software. 

Detailed 3D weather forecast produces spatially and temporally 
varying meteorological fields with a spatial horizontal resolution of 2 
km and a temporal resolution of half an hour for 7 days. It is based on the 
WRF weather forecast, which is performed once a day based on GFS 
(Global Forecast System) initial and boundary conditions. The detailed 
weather reconstruction is then obtained with the mass-consistent wind 
field model for complex terrain MINERVE (Desiato et al., 1998) and 
SURFPRO meteorological pre-processor (Arianet, 2011). The 
high-performance Lagrangian particle model SPRAY (Tinarelli et al., 
2000) calculates the radionuclides dispersion based on a 3D numerical 
description of the atmosphere and a pre-defined hypothetical radionu
clide emission from the NPP. The latter is normalized and has a 
pre-defined time-varying distribution of emission mass over time (Mla
kar et al., 2019b). In the R-EIS, such an accidental radiological release is 
simulated to occur every hour. The Lagrangian particle model calculates 
accurate relative concentrations, also called “dilution coefficients” X/Q, 
and is automatically activated and updated every 30 min based on new 
meteorological data. In EIS (Mlakar et al., 2019a) relative concentra
tions are then used in the DOZE program to calculate the doses received 
by the population being exposed through the inhalation of a polluted 
atmosphere for 24 h after the radiological release. In R-EIS relative doses 
are calculated directly as a normalized measure of exposure. The WRF 
set-up was validated to produce a reliable weather prognosis for 
dispersion (Božnar et al., 2012a), while the air pollution dispersion 
model was validated nearby in the Šoštanj location (Božnar et al., 
2012b). 

2.2. The main idea 

The problem addressed in this paper is whether the described com
plex and computationally intensive atmospheric dispersion model, also 

Fig. 1. The complex terrain in the vicinity of the Krško NPP (the source) with 
indicated locations of the ground-level stations and the vertical profile mea
surements used in this study. Source of terrain data: Public information of 
Slovenia, Surveying and Mapping Authority of the Republic of Slovenia. 
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referred to as the physical model, can be represented by a surrogate 
data-driven model with reduced complexity and computation time. As 
shown in Fig. 2, the main idea is that the surrogate model represents the 
overall physical model behaviour using measured meteorological data 
and their WRF forecast as inputs and predicting the 2D relative dose 
maps for the population at ground level. In the surrogate model training 
phase, the input and output data of the physical model are generated for 
the training of the data-driven model. The surrogate model is then 
identified using machine learning methods such as ANN, Gaussian 
process models, regression trees, ensemble models, etc. 

The design of the surrogate model, therefore, requires three main 
steps (Le et al., 2019):  

1) Establishment of a design of experiment (DOE) for data collection.  
2) Computing the response of the physical model for each experiment.  
3) Training a data-driven model. 

An important issue in the design of the surrogate model is to perform 
experiments with the original model to capture the entire variation 
space of inputs. There are several algorithms for generating DOEs, some 
very commonly used ones are, for example, factorial designs, grid 
search, random search, Latin Hypercube, etc. (Alizadeh et al., 2020). In 
atmospheric dispersion models, most often the Latin Hypercube sam
pling is used (Lucas et al., 2017; Mallet et al., 2018; Le et al., 2019). The 
problem is complicated in cases with a large number of variables, which 
is one of the biggest challenges. In the case of atmospheric dispersion 
modelling with meteorological variables as model inputs, an additional 
issue related to DOEs is the time-dependent perturbation of the ampli
tude and dynamics of the inputs, since they represent physical quantities 
with limited dynamical variations (Girard et al., 2020). To overcome 
these limitations in our study, the first two steps for the input-output 
data collection were pursued by performing a controlled long-term 
simulation experiment with the physical model as described in Section 
2.3. Long-term modelling, based on two years of meteorological data, in 
this case, is a practical solution to capture a realistic variety of meteo
rological inputs into the physical model (we do not need to model cases 
that would not appear in nature). The main focus is then on the third 
step, i.e. training the data-driven model as described in Section 2.4. 

2.3. Controlled simulation experiment for data collection 

Data for the training and validation of the surrogate model was 
collected by performing a controlled simulation experiment with the 
physical model. The experiment resembled an actual system set-up at 

the Krško NPP. In order to obtain a wide range of different meteoro
logical conditions, meteorological data from July 2019 to July 2021 
were used as inputs for the predictions of the physical model. They were 
obtained from a dedicated fine resolution (2 km, ½ h) weather forecast 
developed for the Krško NPP site and its surroundings (GFS data, 2023). 
The weather forecast is based on the WRF model (WRF, 2023) and was, 
in this case, used to provide information on meteorological data at two 
locations. The first is at the NPP site, where measurements from 
ground-level station 1 and RASS measurements with vertical profiles are 
available. The second site is located some distance from the NPP and 
provides measurements at ground-level station 2 (Fig. 1). Data from 
RASS include wind speed, wind direction and temperature at different 
heights, i.e. 40, 80, 120, 160, 200, 240, 300, 360, 420, and 500 m above 
the ground level. Data from ground-level stations include wind speed 
and wind direction at 10 m above the ground, the temperature at 2 m, 
and global solar radiation. A total of 38 meteorological variables were 
collected as physical model input variables sampled as half-hour mean 
values (every second sample was used). All other settings of the physical 
model were kept constant (DEM and CORINE, 2023). The physical 
model output data were relative radiation doses at ground level, 
generated with the full model structure as shown in Fig. 2. A radiological 
release was simulated to start every hour. 

2.4. Surrogate model design 

2.4.1. Model grid 
The surrogate model for predicting relative radiation doses around 

the NPP was defined as a grid of models, i.e. a collection of 10,000 
models, where each model represents one area in a spatial grid of 100 ×
100 output areas. The individual (i, j) models in a grid, i = 1,…,100, j =

1,…,100, are defined as static models that map a subset of consecutive 
meteorological data to relative radiation doses in the corresponding 
areas of the output grid. For a radiological release initiated at tk, the 
input regressors of the surrogate model are meteorological data m in the 
time interval [tk− p,…,tk− 1,tk,tk+1,…,tk+r], where p and r denote the limits 
of the observed time interval relative to tk. The outputs of the surrogate 
model si,j,k that correspond to a radiological release at tk should resemble 
the outputs of the physical model yi,j,k. As already described, they 
represent the integrated relative radiation doses at ground level for 24 h 
after the release at tk. Identification of the surrogate model, therefore, 
requires determining the surrogate model mappings SM100x100 

Fig. 2. Surrogate model design from measured meteorological data and physical model predictions using machine learning.  
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(
m1,k− p,…,m1,k− 1,m1,k,m1,k+1,…,m1,k+r ,

m2,k− p,…,m2,k− 1,m2,k,m2,k+1,…,m2,k+r ,

…

mM,k− p,…,mM,k− 1,mM,k,mM,k+1,…,mM,k+r
)

SM100x100
=⇒

⎡

⎣
s1,1,k … s1,100,k

⋮ ⋮ ⋮
s100,1,k … s100,100,k

⎤

⎦, k = 1,…,N

(1)  

so that the difference between the surrogate model and physical model 
predictions of each model are minimized 

min
∑N

k=1

⃒
⃒si,j,k − yi,j,k

⃒
⃒, for each (i, j) model, i, j = 1,…, 100, (2)  

where M is the number of measured meteorological variables and N is 
the number of samples in the training dataset. 

The tasks of the surrogate model design are to select the following:  

- the machine learning algorithm for SM mappings,  
- the most important regressors among the M meteorological 

variables,  
- the time range of consecutive input meteorological data samples for 

output prediction, i.e. the time range of input meteorological vari
ables as determined by the r and p parameters. 

As presented in the following subsections, the regression tree 
ensemble was selected for the machine learning algorithm, while the 
selection of the most important regressors and their time range was 
performed by evaluating the variable importance. Note that at present, 
the training pattern selection consists only of the selection of the 
meteorologically reasonable time period used for model prediction 
(heuristic selection of several consecutive samples without missing 
samples, the same time period for all variables). 

2.4.2. Regression trees 
Regression trees are interpretable models, appropriate also for 

modelling nonlinear systems and systems with interacting inputs (Mol
nar, 2022). They are representatives of decision trees, i.e. hierarchical 
models of supervised learning in which the model classifies instances by 
querying them down the tree from the root to the leaf node (Abraham 
et al., 2020). Each node represents a test over an attribute, and each 
branch denotes its outcome. The root node is the beginning node, and 
the leaf nodes are the outcome. Decision trees can be used for both 
classification and regression problems. The outcomes of regression trees 
are continuous values, typically real numbers. 

There are various algorithms that can grow a tree. One of the most 
common algorithms for creating decision trees is the CART (Classifica
tion And Regression Tree) algorithm using binary splits (Breiman et al., 
1984). It is based on recursive partitioning of the regressor space with p 
inputs X1,…,Xp into M distinct non-overlapping regions R1,…,RM. For a 
system with input-output data (xi, yi) with N observations, i = 1,…,N, 
where xi =

(
xi,1,…, xi,p

)
, the output at x is predicted as (Hastie et al., 

2009) 

ŷ= f̂ (x)=
∑M

m=1
cmI(x∈Rm), (3)  

where I(x∈ Rm) is the identity function that returns 1 if x is in the subset 
Rm and 0 otherwise, and cm = ave(yi

⃒
⃒xi ∈ Rm) is the average of all 

training instances in Rm. 

2.4.3. Tree ensembles 
Although decision trees are simple and intuitive, they also present 

some shortcomings. For example, the results might be unstable since a 
small change to the input data could alter the series of splits, which in 

turn might result in a completely different prediction. Besides, individ
ual decision trees tend to overfit. Therefore, ensemble learning methods 
have been used. They combine and average over multiple decision trees 
using the bagging (bootstrap aggregating) technique (Breiman, 1996). 
The idea is to bootstrap, i.e. random sample with replacement, B training 
sets from the original training data. For each bootstrap sample, a deci
sion tree is grown and the B trees are then aggregated. For regression 
tasks, the mean or average prediction of the individual trees is returned 

f̂ bag(x) =
1
B
∑B

b=1
f̂
b
(x). (4) 

Combining the results of many decision trees reduces the effects of 
overfitting and improves generalization. Since all decision trees are 
trained on bootstrap samples of the original training data, the variance 
decreases as the number of trees B increases. A further extension is 
random forests (Breiman, 2001), which select a random subset of fea
tures to train every tree of the forest. This decreases the correlation 
between individual predictors. Both properties, i.e. the bagging and 
random feature selection, result in one of the most effective and 
computationally efficient methods in machine learning (Archetti and 
Candelieri, 2019). 

2.4.4. Variable importance 
An important property of decision trees is that they provide an 

inherent property of variable importance, which enables, in a compu
tationally efficient way, the selection of a smaller number of important 
features. Similarly, the bagged decision trees allow for empirically 
accessing the variable importance based on the permutation importance 
measure introduced by Breiman (2001). To measure the importance of 
variable Xj, the idea is to permute all values of this variable, and the 
variable importance measure is defined as the decrease in prediction 
accuracy caused by the permutation. If the variable consists of purely 
random noise, the prediction accuracy will likely not be affected by 
permuting the values. Conversely, if the variable is associated with the 
response, the prediction accuracy decreases substantially. 

Formally, the variable importance VI is computed as follows (Strobl 
et al., 2008; Hjerpe, 2016). Let βt denote the out-of-bag samples, i.e. 
observations not contained in a bootstrap sample of tree t, with t ∈ {1,…,

ntree}, and let L denote the prediction accuracy at the i-th training 
example computed from yi and the output of the tree Tt. The importance 
of variable Xj in tree t is defined as 

VI(t)
(
Xj
)
=
∑

i∈β
t L(Tt(xi), yi) − L

(
Tt
(
xi,πj

)
, yi

)
, (5)  

where xi,πj = (xi,1,…,xπj(i),j,xi,j+1,…,xi,p), and πj is a random permutation 
of Xj. In regression, the prediction accuracy L is defined as the RMSE 
(root mean square error). The variable importance measure for Xj is 
computed as the mean importance over all trees in the ensemble 

VI
(
Xj
)
=

∑

t∈B
VI(t)

(
Xj
)

ntree
. (6)  

2.4.5. Model implementation 
The whole procedure of the surrogate model design consists of 

several steps as shown in Fig. 3. 
The surrogate model was designed using Matlab (Mathworks, 2020) 

Regression Learner application that is part of the Statistics and Machine 
Learning toolbox. Before applying the machine learning algorithms, the 
collected input-output data were normalized using Z-score statistics 
(Matlab function zscore) to obtain the mean value 0 and standard de
viation 1 for each model input and model output. 

The Regression Learner enabled the comparison of the performance 
of different algorithms for SM mappings, e.g. linear regression, regres
sion trees, support vector machines, Gaussian Process Regression and 
ensemble models. The best-performing algorithms with respect to the 4- 
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fold RMSE criterion in validation, computed from the outputs of the 
physical and surrogate model, were regression tree ensembles. 

The machine learning algorithm chosen to grow a fitted regression 
tree ensemble was the Matlab function TreeBagger. It grows the decision 
trees in the ensemble using bootstrap samples of the data. Also, Tree
Bagger selects a random subset of predictors to use at each decision split 
as in the random forest algorithm. The adjusted parameters of the al
gorithm were the number of trees in the ensemble and the minimum 
number of observations per tree leaf. These two parameters were chosen 
experimentally by testing different settings and observing the out-of-bag 
error in model learning, calculated as the mean squared error (MSE) for 
the out-of-bag samples in the training data. A higher number of trees 
improves the model quality but also increases the computation time. A 
sufficiently high number of observations per tree leaf prevents over
training the model. 

The selection of the most important regressors in the tree ensemble 
models was evaluated using the Matlab predictor importance function 
OOBPredictorImportance, which determines out-of-bag estimates of 
feature importance in the ensemble. The ten most important regressors 
of each (i, j) model were stored for the evaluation of the most important 
meteorological variables and their p and r parameters for the surrogate 
model prediction. 

Finally, after the model training, the 2D maps of relative radiation 
doses were constructed and evaluated by different performance criteria. 

2.5. Performance metrics 

The following criteria were used for model evaluation:  

• Standardized Mean Square Error (SMSE) 

SMSE is the mean squared error of the true yi and predicted ŷi values 
divided by the variance σ2

y of the true values 

SMSE=
1
N

∑N

i=1
(yi − ŷi)

2

σ2
y

. (7) 

SMSE is dimensionless due to the standardisation on the variance. 
For a perfectly accurate prediction, it equals 0. A value of 1 indicates a 
naive model that predicts the mean of the true values. A value greater 
than 1 means predictions that are more erroneous than the prediction of 
the mean of the true values (Kocijan, 2016). 

In the case of the surrogate model design, the true values correspond 
to the prediction of the physical model and predicted values correspond 
to the prediction of the surrogate model. The SMSE was used to evaluate 
the trained models. The evaluation criterion was the average SMSE of all 
10,000 models for the training or test data. The SMSE was also used to 
evaluate 2D maps, i.e. the outputs of all 10,000 models in a given time 
instance tk. The evaluation criterion was the average SMSE of the 2D 
maps for all time instances in the training or test data.  

• Figure of Merit in Space (FMS) 

FMS is a spatial error metric for evaluating the plume area in 2D 
maps. It is based on a Jaccard index, which is a statistic used for gauging 
the similarity and diversity of sample sets. When evaluating the pre
dicted and actual plumes in dispersion, it is defined as the intersection of 
the area of the predicted Ap and actual Ao plumes divided by the union of 
the area of the predicted and actual plumes (Maurer et al., 2018) 

FMS=
Ap ∩ Ao
Ap ∪ Ao

. (8)  

In our case, Ap and Ao correspond to the plume area predicted by the 
surrogate model and the physical model, respectively. 

This metric depends only on the absence or presence of radiation 
dose, not the magnitude. It is implemented by counting the cells in 2D 
maps. It varies between 0 and 1. Values of 0.8 and above are generally 
considered good for atmospheric models (Gunawardena et al., 2021). 
Note that the FMS is not an absolute measure for assessing performance, 
as it depends on the threshold for relative radiation dose which needs to 
be selected. In our case, this value was determined as 2 × 10− 8 s/m3.  

• Mean absolute percentage error of maximum prediction (MAPEmax) 

The MAPEmax measure was used to evaluate the model accuracy in 
forecasting the maximum relative radiation dose. It was determined as 
the relative error between the maximum of the physical model and the 
maximum of the surrogate model in a 2D map. The final MAPEmax was 
calculated as the average for all samples in the training or test dataset 

MAPEmax =
1
N

∑N

k=1

⃒
⃒
⃒
⃒
⃒

max
{
yi,j,k

}

i,j=1,…,100 − max
{
si,j,k

}

i,j=1,…,100

max
{
yi,j,k

}

i,j=1,…,100

⃒
⃒
⃒
⃒
⃒
x 100%.

(9)    

• Mean, 95th percentile and maximum statistics 

We used these measures to statistically evaluate 2D maps obtained 
by the physical and surrogate models for a selected period of different 
meteorological conditions and to compare, point-by-point in a grid, each 
grid cell’s mean, 95th percentile and maximum values of all available 
cases in a selected evaluation period. 

3. Results 

3.1. Training and validation data 

Three-quarters of the data obtained in the controlled simulation 

Fig. 3. The steps of the surrogate model design.  
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experiment were used to train the surrogate model and one-quarter for 
testing. This corresponds to approximately 13,150 and 4380 data sam
ples in the training and test datasets, respectively. The number of sam
ples with a relative radiation dose greater than 0 is smaller and depends 
on the terrain and the spread of the radiation plume under different 
meteorological conditions. Depending on the position in the grid, it 
ranged from 783 to 9589 samples, with an average value of 3384 sam
ples. The highest relative radiation doses were between 3.68 × 10− 7 and 
1.74 × 10− 5 s/m3, with an average maximum value of 2.6 × 10− 6 s/m3. 
The unit for relative radiation doses is not the same as for doses (the unit 
for radiation doses is [Sv]) since we use the approach of normalized 
emission. This approach leads to the unit for relative radiation doses in 
[s/m3] and is derived in Mlakar et al. (2019b). 

3.2. Learning the model with a complete set of variables 

Training the grid of 100 × 100 models was initially performed for all 
meteorological variables as model input regressors and for the time in
terval − 1 to 5 h with respect to the start of the radiological release 
(sampled every 1 h, i.e. seven consecutive samples). These limits were 
selected based on trial simulations, which showed that weather condi
tions before or far after the release do not significantly affect the per
formance of the model in the observed area around the NPP. Satisfactory 
model performance was obtained with 30 trees in the ensemble and 5 as 
a minimum number of observations per tree leaf. The so obtained set of 
models in the grid was used to optimize the input variables and their 
time range as well as tree ensemble parameters. 

3.3. Importance of different meteorological variables 

The importance of different meteorological variables as model re
gressors was evaluated by observing the ten most important regressors 
of the identified models. The frequency of each meteorological variable 
among the most important regressors is shown in Fig. 4. It can be seen 
that wind direction is the most important for the relative radiation dose 
prediction. Very high importance is obtained for wind direction at both 
ground-level stations as well as for RASS measurements at lower heights. 
High importance is obtained also for global solar radiation. Wind speed 
has lower importance, but also in this case higher importance can be 

seen for ground-level station measurements and RASS measurements at 
lower heights. Finally, the temperature has the lowest importance for 
the prediction of relative radiation doses. 

The importance of variables was analysed also with regard to the 
position in the grid. For that purpose, the most important regressors of 
the identified set of models were grouped into four groups, i.e. wind 
direction, wind speed, temperature and solar radiation. Fig. 5 shows 2D 
maps indicating whether the regressors from the four groups are among 
the most important regressors. It can be seen that wind direction is 
among the most important regressors of all grid models, followed by 
wind speed, solar radiation and temperature. If we compare the ob
tained results with the terrain in Fig. 1, we can see that wind speed is 
more important in the hilly area and solar radiation in the flat area, 
while temperature does not seem to be very important for the model 
prediction. 

The results show that although some meteorological variables have 
lower overall importance, they might be important for the relative ra
diation dose prediction in certain parts of the grid. Therefore, they 
should not be excluded from the set of regressors. They should be 
retained as model inputs if showing importance in certain grid areas. 
Based on these results, a smaller set of meteorological measurements 
was selected. Temperature signals have not been included as they do not 
show high importance. Solar radiation was included due to its overall 
and grid importance. Wind direction and wind speed signals were also 
included but at a smaller number of heights. A detailed analysis of in
dividual variables showed that wind direction at lower heights is 
important for the prediction of relative radiation dose in the middle flat 
area of the grid, wind direction at higher heights and wind speed at all 
heights are important for the prediction in distant hilly areas. Finally, 
the reduced set of input regressors included 17 variables (see Table 1). 

3.4. Time range of input meteorological data samples 

The most appropriate time range of the meteorological variables was 
also determined by observing the time lag of the ten most important 
regressors of the identified set of tree ensemble models. Fig. 6 (left) 
shows the percentage of regressors for each time lag. It can be seen that 
meteorological data within 0–3 h with respect to the radiological release 
have the largest impact on the prediction of relative radiation doses. 

Fig. 4. Frequency of meteorological variables in the ten most important model regressors of the identified tree ensemble models (ws – wind speed, wd – wind 
direction, temp – temperature, gsr – global solar radiation, st1 – first station, st2 – second station). 
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Fig. 6 (right) also shows the average time lag of the most important 
regressors of the individual models presented in a 2D map. It can be seen 
that the average time lag is smaller in the flat area closer to the radiation 
release, while it is larger in more distant and hilly areas. This is an ex
pected result since long-term meteorological conditions with larger 
delay are important for the spread of the plume in the surrounding hilly 
area. Based on these results, the selected time lags of meteorological 
variables were {0,1, 2,3, 4} hours for all variables. 

3.5. Selection of tree ensemble parameters 

The reduced set of model regressors includes 17 variables and 5 time 
lags for each variable (Table 1). Therefore, the total number of model 
inputs is 17 × 5, i.e. 85 input signals. For this set of variables, different 
settings of tree ensemble parameters were evaluated to optimize the 
performance. 

To select the appropriate number of trees in TreeBagger, a grid with a 
reduced number of models with i, j ∈ {5,20,35,50,65,80,95} was 

evaluated for different numbers of trees while observing the out-of-bag 
error in model learning. As can be seen in Fig. 7, a larger number of trees 
improves the performance but also increases the computation time for 
model learning. A value of 100 trees was selected for further model 
evaluation. 

The number of observations per tree leaf was also evaluated. A suf
ficiently large number reduces the overfitting of the model on the 
training data, but a further increase gives a similar or lower perfor
mance. Based on the results in Fig. 7, the value of 10 was selected. Other 
parameters of TreeBagger were left at default values. 

3.6. Learning a model with a reduced set of variables 

For the chosen model structure and parameters, a grid of 100 × 100 
models with a reduced number of variables was trained and evaluated 
using the SMSE metric. The SMSE, computed as the average of all models 
in the grid, was 0.337 and 0.647 for the training and test data, respec
tively. We can see that the performance is much better for the training 

Fig. 5. The presence of different meteorological variables among the ten most important regressors of the identified tree ensemble models.  

Table 1 
Initial and finally selected surrogate model variables and their time period with respect to radiological release.   

Initial model variables Important model variables  

Time range {− 1, 0,1, 2,3, 4,5} hours Time range {0, 1,2, 3,4} hours 
Wind speed RASS at 40, 80, 120, 160, 200, 240, 300, 360, 420 and 500 m 

Ground-level stations 1 and 2 
RASS at 40, 80, 160, 200, 360 and 500 m 
Ground-level stations 1 and 2 

Wind direction RASS at 40, 80, 120, 160, 200, 240, 300, 360, 420 and 500 m 
Ground-level stations 1 and 2 

RASS at 40, 80, 160, 200, 360 and 500 m 
Ground-level stations 1 and 2 

Temperature RASS at 40, 80, 120, 160, 200, 240, 300, 360, 420 and 500 m 
Ground-level stations 1 and 2 

– 

Global solar radiation Ground-level station 1 Ground level-station 1  
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Fig. 6. Time lag of meteorological data in the ten most important model regressors of the identified tree ensemble models: percentage of most important regressors 
with a given time lag (left), average time lag of individual models (right). 

Fig. 7. Out-of-bag error for different numbers of trees and different numbers of observations per tree leaf.  

Fig. 8. The SMSE measures of the identified tree ensemble models for the training and test datasets presented in a grid.  
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data. However, also for the test data, the average performance is rela
tively good. It is significantly better than the naive prediction, which 
predicts average values and has an SMSE equal to 1. 

Fig. 8 also shows the SMSE of individual models in the grid for the 
training and test data. It can be seen that individual models perform 
consistently better or worse in some parts of the observation area. With 
respect to the terrain around the NPP (Fig. 1), better performance is 
achieved in the flat area in the middle part, while worse performance is 
achieved in the hilly parts. A possible reason for the worse prediction in 
the hilly areas is the number of informative data available for training 
the model. Namely, the plume is less likely to spread over the hilly 
terrain. Therefore, in the available dataset for model training, relative 
radiation doses in the hilly areas are often zero. Fig. 9 shows the number 
of data points with relative radiation doses greater than zero. It can be 
seen that the number is lower in the hilly parts. Another possible reason 
could be also the meteorological conditions, which are more complex in 
the hilly parts. Therefore, it is more difficult here to model relative ra
diation doses with station measurements alone. 

3.7. Examples of 2D maps of relative radiation doses 

Using the grid of identified tree ensemble models, 2D radiation maps 
were constructed for the time instances in the training and test datasets. 
The performance of the trained models has been inspected for different 
meteorological conditions. A video showing 10 days of consecutive 2D 
maps for the test data is available in Appendix A (Supplementary 
material). 

Figs. 10–13 show some examples of good model performance on test 
data. The meteorological parameters of the presented examples are 
shown in Table 2 for the two most influential measurements, i.e. RASS at 
80 m and ground-level station 1. For better visualization, the scale is the 
same in all figures, i.e. between 10− 8 and 10− 6 s/m3. The upper limit 
was chosen because the area of very high relative radiation doses is 
usually small. It can be seen from the figures that most of the plume 
typically has a relative radiation dose of less than 0.35 × 10− 7 s/m3 for a 
unit radiological release. 

Supplementary video related to this article can be found at https:// 
doi.org/10.1016/j.pnucene.2023.104594 

Fig. 10 shows an example of a very good prediction of the surrogate 
model with small differences between the physical and surrogate 

models, and a good prediction of the plume. Such results are obtained 
for moderate or high wind speed and southwest wind direction. Similar 
good results are usually obtained also for northeast or east winds. 

Fig. 11 shows an example of a northwest wind spreading the plume 
towards the southeast hilly area. Because of higher instability of the 
atmosphere and differences in wind direction, in this case, the spreading 
of the plume is wider. Nevertheless, the prediction of relative radiation 
doses is good, as confirmed by the low SMSE and high FMS values. 

Fig. 12 shows a different case at low wind speed and nighttime 
conditions. In this case, the plume appears to spread over a much larger 
area. The prediction of relative radiation doses is less accurate. This can 
be seen from the larger SMSE value and the larger area of significant 
differences between the predictions of the physical model and the sur
rogate model. However, also in this more challenging case, the spread of 
the plume is well predicted. 

Fig. 13 also shows an example of the high maximum relative radia
tion doses. In this case, the surrogate model also predicted the relative 
radiation doses quite well. However, during model training, it was 
observed that very high doses are underpredicted in both the training 
and test datasets. 

This can be seen in Fig. 14, where the obtained grid of models was 
statistically evaluated with regard to mean, maximum and 95th 
percentile of relative radiation doses in comparison to the physical 
model predictions for the test data (around 4380 data in each grid cell). 
A comparison shows that the surrogate model is very reliable in pre
dicting the mean relative radiation doses over a longer period of data. 
Also, the 95th percentile is well predicted although slightly lower, which 
indicates the underestimation of very high doses by the surrogate model. 
The greatest difference can be seen in maximum prediction. The 
maximum values of the surrogate model are low and around 3 times 
lower than those of the physical model. It could be concluded that the 
surrogate model is well predicting the long-term mean and 95th 
percentile statistics, while the maximum values are underpredicted. 

3.8. Performance metrics of 2D maps 

The average performance metrics of 2D maps are shown in Table 3. It 
can be seen that the performance on the training data is better than on 
the test data. The biggest difference can be observed for the SMSE 
measure, but its value of 0.470 for the 2D maps is significantly lower, i.e. 
better compared to 0.647 for the SMSE of the trained models on test 
data. This is because of the higher variance of the relative radiation 
doses in the spatial than in the temporal dimension. It suggests that 
while the prediction error of a single model in the grid may be relatively 
large, the significance of this error decreases when the predictions of all 
models in the grid at a certain time instance are considered. A visual 
inspection of the radiation maps showed that an SMSE of 0.5 or less gives 
a moderate or good radiation map. These results were obtained for 97% 
and 61% of training and test data, respectively. Better SMSE values are 
achieved at higher wind speeds, especially when measured at both 
ground-level stations. 

The mean values of the FMS criterion were 0.639 and 0.547 for the 
training and test data, respectively. These values are relatively low 
compared to the 0.8 suggested by Gunawardena et al. (2021) for at
mospheric models. In our case, 0.8 and above provided very good plume 
prediction (see Figs. 10–13, bottom left graph). It should be noted that, 
in our case, terrain and atmospheric conditions are challenging due to 
the basin and very often weak or no wind conditions. This is a difficult 
case for predicting atmospheric dispersion, as wind fluctuations and, in 
particular, wind direction could be almost random. Therefore, FMS 
values of 0.5 or higher are considered acceptable and represent a 
moderate or good radiation map. They were achieved for 81% and 61% 
of the training and test data, respectively. Better results were achieved at 
higher wind speeds and higher solar radiation. 

Table 3 also shows the mean absolute percantage error MAPEmax in 
predicting the maximum relative radiation doses, calculated as the 

Fig. 9. Number of training data in a grid with radiation relative doses greater 
than zero. 
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Table 2 
Meteorological conditions at the time of hypothetical radiological release for RASS 80 m and Station 1 for the four cases of radiation maps presented in Figs. 10–13.  

Case Date Meteorological and plume conditions RASS at 80 m Station 1 

Wind 
speed 

Wind 
direction 

Temperature Wind 
speed 

Wind 
direction 

Solar 
radiation 

m/s ◦ ◦C m/s ◦ W/m2    

min 0 0 − 7.9 0.03 0 0    
max 20.40 360 32 14.36 360 975    
mean 3.96 166 12.52 2.68 164 176 

1 June 05, 2021 10:30 Plume in the middle flat area  3.60 238 23.1 2.91 238 892 
2 December 31, 2020 

19:30 
Plume in the southeast hilly area  4.00 272 3.5 3.06 317 0 

3 March 11, 2021 00:30 Plume at low wind speed conditions  1.30 115 2.7 1.02 64 0 
4 June 03, 2021 23:30 Plume with high maximum 

radiation dose  
4.70 107 18.3 3.63 66 0  

Fig. 10. Plume spreading in the flat middle area (case 1). Predicted relative radiation doses of the physical model (top left) and the surrogate model (top right), the 
differences between the two models (bottom left), and the figure of merit in space for the predicted plume (bottom right). 
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average of all training or test data. The values presented are quite large 
and are in most cases due to underestimation of the maximum doses by 
the surrogate model. That shows again the already mentioned under
prediction of the very high doses by the surrogate model. Note that 
Table 3 shows the average error in predicting the maximum in one 2D 
map, i.e. the average error in predicting the maximum for one meteo
rological condition, while Fig. 14 (bottom plot) shows the maximum 
values in each grid cell as expected over a longer period of time, i.e. the 
worst case scenario for a given location under all different meteoro
logical conditions. 

4. Discussion 

Based on statistical results obtained for a wide range of meteoro
logical conditions and a detailed case-by-case examination, we can 
summarize that the developed surrogate model can predict 2D maps of 
relative radiation doses quite reliably using measured meteorological 
data and numerical weather predictions as model inputs. Results show 
that the central part of the plume is homogenous and well-predicted, 

even though it was determined using a set of non-interacting models. 
This can be considered a very good result as more “outlying” cells or 
larger differences in neighbouring cells could be present. The direction 
of the plume expansion is also well predicted. However, the developed 
surrogate model also has some shortcomings, as seen in a significant 
share of cases that do not reach the desired SMSE and FMS values. 
Therefore, some improvements in data collection and the modelling 
approach are still needed to improve the performance. 

As already mentioned, two years of collected input-output data with 
three quarters for training and one quarter for testing provide a 
reasonably large dataset to train and test a data-driven surrogate model. 
However, in some parts of the observed area, because of zero radiation 
values, it provides a relatively small set of informative data for model 
training, which reduces the performance of the trained models in these 
parts. Besides, data was based on a realistic occurrence of actual mete
orological conditions. Therefore, some meteorological conditions may 
be underrepresented and statistically insignificant in machine learning 
algorithms. More balanced training data could be selected in future 
research using dimension-reduction techniques and/or pattern-selection 

Fig. 11. Plume spreading in the southeast hilly area around the NPP (case 2). Predicted relative radiation doses of the physical model (top left) and the surrogate 
model (top right), the differences between the two models (bottom left), and the figure of merit in space for the predicted plume (bottom right). 
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strategies. An approach of pattern selection strategies that has proven 
advantageous for improving generalization and successfully predicting 
high concentrations in air pollution models is described in Božnar 
(1997). 

It should also be noted that the two-year data was split so that the 
first three quarters were used for training and the last quarter for testing 
the model. Therefore, data similar to the test data might be under- 
represented in the training data. Randomly splitting the data samples 
from the whole period into training and test data improved the perfor
mance of the surrogate model. But, in the end, it was not used because it 
could be too optimistic about the actual quality of the model if the test 
points were too close to the training points. 

Another possibility regarding measurements is to provide additional 
ground-level station measurements. The importance analysis of meteo
rological variables showed that station measurements, also those distant 
from the NPP, are among the most important regressors of the surrogate 
model. It can be concluded that they partly replace the information that 
is otherwise provided by the multi-dimensional weather prognosis in the 
physical model. It is therefore expected that the prediction of the 

surrogate model could be improved by additional station measurements 
at appropriate locations. 

An important shortcoming is also in the chosen modelling approach, 
where a set of independent models was designed without any in
teractions between the models during the model training or in the 
construction of a 2D map. It is an excellent result that such a straight
forward and relatively simple approach has yielded already quite good 
and useful results. It is expected that other data-driven methods, e.g. 
deep learning (neural network) models for multi-output regression or 
Gaussian Process models with grid structure for large-scale regression, 
could potentially further improve the performance compared to indi
vidual models, which we intend to do as future research. 

Finally, the computation time of the surrogate model to predict a 2D 
map on an Intel Core i7 9750H CPU @ 2.60 GHz, 16 GB RAM is around 
300 s. The advantage is that a parallel run for multiple input data does 
not significantly affect the computation time. Conversely, in the case of 
the physical model, the computation time increases linearly with the 
number of 2D maps generated. Hence, the construction of 1000 2D maps 
using a surrogate model requires around 560 s, while the same task with 

Fig. 12. Plume spreading at low wind speed conditions (case 3). Predicted relative radiation doses of the physical model (top left) and the surrogate model (top 
right), the differences between the two models (bottom left), and the figure of merit in space for the predicted plume (bottom right). 
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the physical model on a similar dedicated computer requires approxi
mately 100,000 s. 

5. Conclusions 

A surrogate model of an atmospheric dispersion model is needed for 
various purposes, but its design is a challenging task due to the 
complexity of the physical processes involved. This paper addresses the 
question of whether machine learning methods can replace the three 
demanding and computationally intensive steps of the physical model 
prediction, i.e. 3D weather reconstruction, Lagrangian particle disper
sion and integrated relative radiation dose calculation, to predict rela
tive radiation doses at ground level in two spatial dimensions (2D) in the 
case of a hypothetical radiological release from the NPP. The specific 
tasks were to represent the physical model predictions over complex 
terrain, in all and non-selectively chosen weather conditions and by 
using meteorological data at selected locations as the only information 
on weather conditions. Hence, we deal with the most general and 
challenging cases over complex terrain. 

An attempt to represent the physical model by a set of independent 
tree ensemble models, each model representing a specific non- 
interacting location in the grid around the NPP, showed that by selec
tively choosing the regressors and their time range, a model is obtained 
that provides a suitable prediction of relative radiation doses. Among 
the most important regressors of the model are meteorological variables 
at ground-level stations, also those distant to the source of the hypo
thetical radiological release that provide additional information on the 
weather conditions. Although the surrogate model prediction in 2D is 
composed of individual and independent models, it gives a homogenous 
picture of the radiation plume and adequately predicts the direction of 
radiation propagation under different meteorological conditions. The 
homogeneity of the plume is very good with almost no individual false 
alarms of increased radiation outside the range of dispersion. A short
coming of the model is the under-prediction of very high relative radi
ation doses, which we believe is due to the use of realistic meteorological 
measurements as training data, where the representation of such cases is 
statistically small. This problem will be further addressed by pattern 
selection strategies. 

Fig. 13. Plume with a high maximum relative radiation dose (case 4). Predicted relative radiation doses of the physical model (top left) and the surrogate model (top 
right), the differences between the two models (bottom left), and the figure of merit in space for the predicted plume (bottom right). 
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We can conclude that the idea of using station measurements as re
gressors for the surrogate model has proven to be feasible and promising 
also for complex terrain, although it has not yet yielded the best results. 
It is expected that the use of other data-driven methods, e.g. deep 
learning (neural network) models for multi-output regression or 
Gaussian Process models with grid structure for large-scale regression, 
would improve the performance compared to a set of individual models, 
which we intend to investigate in future work together with more 

Fig. 14. Comparison of the mean (upper plot), 95th percentile (middle plot) and maximum (bottom plot) relative doses received by the population as predicted with 
the physical model (left) and surrogate model (right) for the test data, i.e. for approximately 4380 2D maps. 

Table 3 
The average values of evaluation criteria for 2D maps.  

Performance measure Unit Training data Test data 

SMSE – 0.203 0.470 
FMS – 0.639 0.547 
MAPEmax % 31.9 39.3  
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elaborated training data selection. 
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assessment of a new thermal power plant Šoštanj Block 6 in highly complex terrain. 
Int. J. Environ. Pollut. 48, 136. https://doi.org/10.1504/IJEP.2012.049660. 

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984. Classification and 
Regression Trees. Chapman & Hall, Boca Raton, FL. https://doi.org/10.1201/ 
9781315139470.  

Breiman, L., 1996. Bagging predictors. Mach. Learn. 24, 123–140. https://doi.org/ 
10.1007/BF00058655. 

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A: 
1010933404324. 

Carnevale, C., Finzi, G., Guariso, G., Pisoni, E., Volta, M., 2012. Surrogate models to 
compute optimal air quality planning policies at a regional scale. Environ. Model. 
Software 34, 44–50. https://doi.org/10.1016/j.envsoft.2011.04.007. 

Dem and Corine, 2023. Digital Elevation Model and Corine Land Cover. https://land. 
copernicus.eu. (Accessed 6 January 2023). Accessed. 

Desiato, F., Finardi, S., Brusasca, G., Morselli, M.G., 1998. TRANSALP 1989 experimental 
campaign-I. Simulation of 3D flow with diagnostic wind field models. Atmos. 
Environ. 32, 1141–1156. https://doi.org/10.1016/S1352-2310(97)00196-9. 

Desterro, F.S.M., Santos, M.C., Gomes, K.J., Heimlich, A., Schirru, R., Pereira, C.M.N.A., 
2020. Development of a Deep Rectifier Neural Network for dose prediction in 
nuclear emergencies with radioactive material releases. Prog. Nucl. Energy 118, 
103110. https://doi.org/10.1016/j.pnucene.2019.103110. 

GFS data, 2023. https://www.nco.ncep.noaa.gov/pmb/products/gfs/. (Accessed 6 
January 2023). Accessed.  

Girard, S., Mallet, V., Korsakissok, I., Mathieu, A., 2016. Emulation and Sobol’ sensitivity 
analysis of an atmospheric dispersion model applied to the Fukushima nuclear 
accident. J. Geophys. Res. Atmos. 121, 3484–3496. https://doi.org/10.1002/ 
2015JD023993. 

Girard, S., Armand, P., Duchenne, C., Yalamas, T., 2020. Stochastic perturbations and 
dimension reduction for modelling uncertainty of atmospheric dispersion 
simulations. Atmos. Environ. 224, 117313 https://doi.org/10.1016/j. 
atmosenv.2020.117313. 

Gunawardena, N., Pallotta, G., Simpson, M., Lucas, D.D., 2021. Machine learning 
emulation of spatial deposition from a multi-physics ensemble of weather and 
atmospheric transport models. Atmosphere 12 (8), 953. https://doi.org/10.3390/ 
atmos12080953. 

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning. Data 
Mining, Inference and Prediction, second ed. Springer. https://doi.org/10.1007/ 
978-0-387-84858-7. 

Hjerpe, A., 2016. Computing Random Forests Variable Importance Measures (VIM) on 
Mixed Continuous and Categorical Data. Thesis at KTH Computer Science and 
Communication, Stockholm. Corpus ID: 208013322. 

Ivatt, P.D., Evans, M.J., 2020. Improving the prediction of an atmospheric chemistry 
transport model using gradient-boosted regression trees. Atmos. Chem. Phys. 20, 
8063–8082. https://doi.org/10.5194/acp-20-8063-2020. 

Jiang, P., Zhou, Q., Shao, X., 2020. Surrogate Model-Based Engineering Design and 
Optimization. Springer Nature Singapur. https://doi.org/10.1007/978-981-15- 
0731-1. 

Kocijan, J., 2016. Modelling and Control of Dynamic Systems Using Gaussian Process 
Models. Springer International Publishing, Cham. https://doi.org/10.1007/978-3- 
319-21021-6.  

Lauret, P., Heymes, F., Aprin, L., Johannet, A., 2016. Atmospheric dispersion modeling 
using Artificial Neural Network based cellular automata. Environ. Model. Software 
85, 56–69. https://doi.org/10.1016/j.envsoft.2016.08.001. 

Le, N.B.T., Mallet, V., Korsakissok, I., Mathieu, A., Périllat, R., 2019. Calibration of a 
Surrogate Dispersion Model Applied to the Fukushima Nuclear Disaster. 3rd 

ECCOMAS Thematic Conference UNCECOMP, pp. 215–228. https://doi.org/ 
10.7712/120219.6337.18843. 

Le, N.B.T., Korsakissok, I., Mallet, V., Périllat, R., Mathieu, A., 2021. Uncertainty study 
on atmospheric dispersion simulations using meteorological ensembles with a Monte 
Carlo approach, applied to the Fukushima nuclear accident. Atmos. Environ. X 10, 
100112. https://doi.org/10.1016/j.aeaoa.2021.100112. 

Lucas, D.D., Simpson, M., Cameron-Smith, P., Baskett, R.L., 2017. Bayesian inverse 
modeling of the atmospheric transport and emissions of a controlled tracer release 
from a nuclear power plant-. Atmos. Chem. Phys. 17, 13521–13543. https://doi.org/ 
10.5194/acp-17-13521-2017. 

Mallet, V., Tilloy, A., Poulet, D., Girard, S., Brocheton, F., 2018. Meta-modeling of ADMS- 
Urban by dimension reduction and emulation. Atmos. Environ. 184, 37–46. https:// 
doi.org/10.1016/j.atmosenv.2018.04.009. 

Mathworks, 2020. Statistics and Machine Learning Toolbox™ User’s Guide R2020a. 
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