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Abstract: The Gaussian process model is an example of a flexible, probabilistic, nonparametric model 
with uncertainty predictions. It can be used for the modelling of complex nonlinear systems and recently it 
has also been used for dynamic systems identification. A need for the supporting software, in particular for 
dynamic system identification, has been recognised. Consequently, a Matlab toolbox concept for Gaussian 
Process based System Identification was generated. The use of the supporting software is illustrated with a 
nonlinear dynamic system identification example.     
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INTRODUCTION 
While there are numerous methods for the identification of linear dynamic systems 

from measured data, the nonlinear systems identification requires more sophisticated 
approaches. The most common choices include artificial neural networks, fuzzy models 
etc. Gaussian process (GP) models present an emerging, complementary method for a 
nonlinear system identification.  

The GP model is a probabilistic, non-parametric black-box model. It differs from most 
of the other black-box identification approaches as it does not try to approximate the 
modelled system by fitting the parameters of the selected basis functions but rather 
searches for the relationship among measured data. GP models are closely related to 
approaches such as Support Vector Machines and specially Relevance Vector Machines 
[1].  

The output of the GP model is a normal distribution, expressed in terms of mean and 
variance. The mean value represents the most likely output and the variance can be 
interpreted as the measure of its confidence. The obtained variance, which depends on 
the amount and quality of the available identification data, is important information, 
distinguishing the GP model from other methods. The GP model structure determination is 
facilitated as only the covariance function and the regressors of the model need to be 
selected. Another potentially useful attribute of the GP model is the possibility to include 
various kinds of prior knowledge into the model, see e.g. [2] for the incorporation of local 
models and the static characteristic. Also the number of model parameters, which need to 
be optimised is smaller than in other black-box identification approaches. The 
disadvantage of the method is the potential computational burden for optimization, which  
increases with the amount of data and the number of regressors.  

The GP model was first used for solving a regression problem in the late seventies, 
but it gained popularity within the machine learning community in the late nineties of the 
twentieth century. Results of a possible implementation of the GP model for the 
identification of dynamic systems were presented only recently, e.g. [3,4]. The 
investigation of the model with uncertain inputs, which enables the propagation of 
uncertainty through the model, is given in [5] and illustrated in [6].  

If the method is to be interesting for the practical use in the nonlinear black-box 
identification, a supporting software, available for the users in the community, is a 
necessity. The purpose of this paper is to provide a concept for a Gaussian process based 
system identification toolbox for a Matlab programme package. A brief overview of the GP 
models and their application to dynamic system is given in the next two sections.  It is 

- IIIA.23-1 -



International Conference on Computer Systems and Technologies - CompSysTech’07 
 
 

 
             

 

followed by the concept of the toolbox and an illustrative identification example, showing 
its utility. 

 
GAUSSIAN PROCESS MODEL  
A detailed presentation of Gaussian processes can be found e.g. in [7]. A Gaussian 

process is a random process, fully characterized by its mean �  and covariance matrix � . 
For simplicity, a zero-mean process is assumed. Given the inputs { x1,...,xn} , the 
corresponding outputs f(x1),..., f(xn) can be viewed as a collection of random variables with 
joint multivariate Gaussian distribution: f(x1),...,f(xn) ~ N (0, � ), where � pq gives the 
covariance between f(xp) and f(xq) and is a function of the corresponding xp and xq: � pq=C(xp, xq). The covariance function C(.,.) can be of any kind, provided that it generates a 
positive definite covariance matrix � . The Gaussian Process model fits naturally in the 
Bayesian modelling framework, where it places a prior directly over the space of functions 
instead of parameterizing f(x). A common choice of covariance function is the squared 
exponential, i.e. Gaussian function: 
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where xp
d denotes dth component of the D-dimensional input vector xp, and v, w1,...,wD are 

free parameters, called hyperparameters. The smoothness assumption holds for the 
covariance function (1), as the points lying closer together in the input space are more 
correlated than the points lying more far apart. The parameter v controls the vertical scale 
of the variation and the wd's are inversely proportional to the horizontal length-scale in 
dimension d (� d=1/� wd). Part  pq0v δ  reflects the correlation because of the, presumably 

white, noise with variance 0v .  
Let the input/target relationship be y=f(x)+
 . We assume an additive white noise with 

variance v0, 
  ~ N(0, v0), and put a GP prior with covariance function (1) and unknown 
parameters on f(.). Within this probabilistic framework, we can write ) ,( +1N1  ~ *y, y,, Ny �0N� ,  
with Kpq=� pq+v0� pq, where � pq=1 if p=q and 0 otherwise. If we split *y, y,,y N1

�  into two parts,  
y=[y1,..., yN] and y* , we can write  
 

y, y* ~ N(0, KN+1),   (2) 
with 

[ ] [ ] ��
��
�
�

�

��
��
�

�

�

��
��
�

��
�
�
�

��
��
�

��
�
�
�

=+

))

)

T

1N

**

*

(xk(x

k(xK
K

κ

 (3) 

 
where K is an N × N matrix giving the covariances between yp and yq, for p,q=1 ... N, k(x*) 
is an N × 1 vector giving the covariances between y*  and yp, kp(x* )=C(x* , xp), for p=1 ... N, 
and � (x* )=C(x* , x* ) is the covariance between the test output and itself. 

For modelling purposes, this joint probability can be divided into the marginal and 
the conditional part. Given a set of N training data pairs, N

1ppp }y ,{ =x , the marginal term 

gives the likelihood of the observed data: y| X ~ N(0, K), where y is the N × 1 vector of 
training targets and X is the N × D  matrix of corresponding training inputs. The unknown 
parameters of the covariance function, as well as the noise variance v0, can be estimated 
via maximization of the log-likelihood. The conditional part of (2) provides us with the 
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predictive distribution of y*  corresponding to a new given input x* . We only need to 
condition the joint distribution on the training data and the new input x* ,  p(y* |y,X, x* ) = 
 p(y, y* )/p(y|X). It can be shown that this distribution is Gaussian with mean and variance 

tKk(x*)(x*) 1T −
=µ  (4) 

k(x*)Kk(x*)(x*)(x*) 1T2 −
−= κσ  (5) 

This way, the predictive mean � (x* ) can be used as an estimate for y*  and the 
predictive variance � 2(x* ), or standard deviation � (x* ), as the uncertainty attached to it. 
 

DYNAMIC SYSTEMS  MODELLING 
The presented GP model was originally used for the modelling of static nonlinearities, 

but it can be extended to model the dynamic systems as well [3,5]. Our task is to model 
the dynamic system (2) with output y �  where input 

 
x(k)=[y(k-1),y(k-2),…,y(k-L),u(k-1),u(k-2),…,u(k-L)]T (8) 

is the vector of regressors that determines nonlinear ARX model structure, and be able to 
make multi-step ahead model prediction. 

One way to do multi-step ahead prediction is to make iterative one-step ahead 
predictions up to desired step whilst feeding back the predicted output. Two general 
approaches to iterated one-step ahead prediction are possible using the GP model. In the 
first only the mean values of the predicted output are fed back to the input. In this, so 
called “naive” approach, the input vector x into the GP model at time step k is: 

 
x(k)=[� (k-1), �  (k-2),…, �  (k-L),u(k-1),u(k-2),…,u(k-L)]T (9) 

In the second, so called “exact”, approach the complete output distributions are fed 
back. More on the GP model simulation and differences of approaches can be found e.g. 
in [5,3]. 

There are two additional forms of the GP model which need to be mentioned. The 
first is a GP model with incorporated local linear dynamic models named as the Local 
Model Gaussian Process model (LMGP model). The LMGP model [8,2] is a hybrid 
between the GP model and the Local Model Network, achieved with specially adopted 
Gaussian covariance function. The second is a parametric, linear parameter varying 
model, named Fixed Structure Gaussian Process model (FSGP model) [9], with its varying 
parameters  represented with the GP models.Both models are included in the concept of 
the toolbox.    

 
THE CONCEPT FOR THE TOOLBOX 
The toolbox is going to be developed as a Matlab toolbox package, as Matlab has 

become one of the most used software tools in the field of dynamic systems identification 
and because of the available mathematical and software tools available within.  

The toolbox should consist of several function groups, assisting the designer in all 
steps of the identification procedure: GP model structure selection, model training, model 
simulation and validation of the obtained model. Also the groups of functions, supporting 
special forms of the GP model, e.g. LMGP and FSGP model, would be added.  

More detailed concept can be given with the list of tasks of the contained functions:  
1. Functions for training and general use of the GP model: 

− Training of the GP model 
− Minimisation routine for a continuous differentiable multivariate function based on 

conjugate gradient method with line searches 
− GP model one-step-ahead prediction calculation 

2. Covariance functions: 

- IIIA.23-3 -



International Conference on Computer Systems and Technologies - CompSysTech’07 
 
 

 
             

 

− Gaussian covariance function 
− Linear covariance function 
− Constant covariance function 
− Periodical covariance function 
− Covariance function for the incorporation of the white noise 
− Covariance function for the incorporation of the coloured noise 
− Summation of the covariance functions 
− Multiplication of the covariance functions 

3. Functions for the training of the LMGP model: 
− Training of the LMGP model 
− LMGP model one-step-ahead prediction calculation 

4. Functions for the simulation of the trained GP model: 
− Simulation of a GP model without distribution propagation 
− Simulation of a GP model with analytical approximation of distribution propagation 

(for Gaussian covariance function) 
− Simulation of a GP model with numerical approximation of distribution propagation 

5. Functions for the simulation of the LMGP model: 
− Simulation of a LMGP model without distribution propagation 
− Simulation of a LMGP model with analytical approximation of distribution 

propagation  
− Simulation of a LMGP model with numerical approximation of distribution 

propagation 
6. Functions for training and application of FSGP model: 

− Training of the FSGP model 
− FSGP model one-step-ahead prediction calculation, function for the use with 
Matlab/Simulink 
− Matlab/Simulink FSGP model template for dynamic system simulation 

7. Miscellaneous support functions: 
− Data normalisation 
− Data denormalisation 
− Input matrix composition 
− Plot of simulation responses with confidence band 
− Plot of identification residuals with confidence band 
− Performance measures calculation 
− Statistical validation measures 

Let us stress that this is not a complete list of functions to be included in the toolbox. 
The toolbox development is an iterative procedure and more functions are expected to be 
added by the time the toolbox becomes functional. To illustrate the utility of the listed 
functions, an example with a typical identification procedure is given in the next section. 
 

EXAMPLE 
The following example illustrates the use of described toolbox functions. Consider the 

system described by the following nonlinear state space model: 

)tanh( 3uyy +−=
�

,   (10) 

The output of the model is state y, disturbed with Gaussian white noise with variance 
0.0025. The sampling time, determined according to the system dynamics, was selected 
as Ts = 0.5. The Euler approximation of the system (10) is: 

))()(tanh()()1( 3 kukyTkyky S +−=+ , (11) 
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The control signal u was generated by a random number generator with normal distribution 
in the magnitude range u∈[-1; 1]. Its rate of change was Tu = 6Ts, i.e. the signal was kept 
constant for six time instants. The number N of the input signal samples, used for training, 
which determines the dimension of the covariance matrix, is N = 200.  We would like to 
obtain a Gaussian process model for the discrete-time system (11). 

Based on the generated data set, the discrete-time system (11) is approximated with 
Gaussian process with zero mean and the covariance function of the form (1). The 
maximum likelihood framework was used to determine the hyperparameters. The 
optimization method applied for identification of the Gaussian process model was the 
conjugate gradient method with line searches [7]. Models of various orders were fitted, but 
the optimization found the first order model as the most appropriate. The optimisation gave 
the following set of hyperparameters at found maximum likelihood: 

 

Θ = [ w1, w2, v, v0] = [0.3952,0.9754,1.0333,0.0354], (12) 
A validation control input signal, different from the one used for the identification, was 
generated by random number generator with normal distribution. For the validation of the 
GP model the simulation and not one-step-ahead prediction was used. The response of 
the Gaussian process model to the validation signal is shown in Fig. 1 in the form of 
prediction means together with the 95% confidence band, corresponding to the interval 

σ2± .   
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Fig. 1. Response of the Gaussian process model to the excitation signal used 
for validation. 
 
The goodnes of the fit of the validation signal was assessed by average squared error as 
the most frequently used performance measure for comparison with other black-box         
methods and log-density error as the performance measure usually used for GP models. 
Their values are ASE = 0.0017 and LD = −2.1476, respectively.  
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CONCLUSIONS AND FUTURE WORK 
The Gaussian process model is an example of a flexible, probabilistic, nonparametric 

model with inherent uncertainty prediction. It has been used for the modelling of complex 
nonlinear systems and recently also for the dynamic systems identification. This paper 
presents the concept for the development of a Gaussian Process Based System 
Identification Toolbox for the use with Matlab.  

The toolbox concept consists of the sets of functions, corresponding to the specific 
identification tasks, and the list of needed functions to be included into the toolbox to fulfil 
the needs met at the dynamic system identification: model training, simulation, validation 
and application. 

The next step, according to a linear software developing life cycle, is the preparation 
of the software specifications, followed by the software coding in Matlab syntax.  The 
existing software code is likely to be redesigned and/or incorporated into the new software. 
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